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Abstract

Value decomposition multi-agent reinforcement learning methods learn the global
value function as a mixing of each agent’s individual utility functions. Coordination
graphs (CGs) represent a higher-order decomposition by incorporating pairwise
payoff functions and thus is supposed to have a more powerful representational
capacity. However, CGs decompose the global value function linearly over local
value functions, severely limiting the complexity of the value function class that
can be represented. In this paper, we propose the first non-linear coordination
graph by extending CG value decomposition beyond the linear case. One major
challenge is to conduct greedy action selections in this new function class to which
commonly adopted DCOP algorithms are no longer applicable. We study how to
solve this problem when mixing networks with LeakyReLU activation are used. An
enumeration method with a global optimality guarantee is proposed and motivates
an efficient iterative optimization method with a local optimality guarantee. We
find that our method can achieve superior performance on challenging multi-agent
coordination tasks like MACO.

1 Introduction

Cooperative multi-agent problems are ubiquitous in real-world applications, such as crewless aerial
vehicles [20, 35] and sensor networks [38]. However, learning control policies for such systems
remains a major challenge. Recently, value decomposition methods [26] significantly push forward
the progress of multi-agent reinforcement learning [22, 24, 28, 29, 30]. In these methods, a centralized
action-value function is learned as a mixing of individual utility functions. The mixing function
can be conditioned on global states [22] while individual utility functions are based on local action-
observation history. The advantage is that agents can utilize global information and avoid learning
non-stationarity [27] via centralized training, while maintaining scalable decentralized execution.

Notably, the major focus of the value function decomposition research was on full decomposi-
tion, where local utility functions are based on actions and observations of a single agent. Full
decomposition leads to several drawbacks, such as miscoordination problems in partially observable
environments with stochastic transition functions [28, 32] and a game-theoretical pathology called
relative overgeneralization [18, 4]. Relative overgeneralization embodies that, due to the concurrent
learning and exploration of other agents, the employed utility function may not be able to express
optimal decentralized policies and prefer suboptimal actions that give higher returns on average.

*These authors contributed equally to this work.
*Code is available at https://github.com/fringsoo/CGMIX
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Figure 1: Different value decomposition methods. VDN [26] and QMIX [22] represent the global
Q-function as a linear and monotonic combination of individual utility functions. Conventional
coordination graphs (CGs) [9, 4] learn a linear decomposition of pairwise payoff functions. Our work
extends CGs by introducing non-linear combination of payoff functions.

Coordination graph (CG) learning [9] holds the promise to address these problems while preserving
the advantages of value decomposition methods. In a CG, each vertex represents an agent, and each
(hyper-) edge stands for a payoff function that is defined on the joint action-observation space of the
connected agents. The existence of payoff functions increases the granularity of decomposition, and
connected agents explicitly coordinate with each other. As a result, a CG represents a higher-order
factorization of the global value function and represents a much larger value function class.

However, coordination graphs typically assume a linear decomposition of the value function among
sub-groups of agents, which is too simple to represent credit assignment in complex tasks. In this
paper, we solve this long-standing problem and extend CG by introducing non-linear and learnable
value decomposition. To our best knowledge, it is the first study on non-linear coordination graphs.

The major challenge against extending CGs beyond linear cases is the calculation of value-maximizing
actions. When linearly decomposed, DCOP algorithms [6] can find a globally greedy action via
message passing. However, when the mixing function is non-linear, DCOP algorithms are no longer
applicable. To address this problem, we develop a DCOP method for non-linear mixing functions
represented as a deep network with LeakyReLU (or ReLU) activation.

The core idea of our non-linear DCOP algorithm is to exploit the fact that these neural networks
are equivalent to piece-wise linear functions. For each linear piece, a value-maximizing action can
be found by classic DCOP. However, this action may fall out of the domain of the linear piece and
is thus infeasible. We first prove that such a shifted action indicates a better solution in its domain.
Based on this conclusion, we first show how to find a feasible joint action with the global optimal
value, and then derive an iterative algorithm with local optimum convergence guarantee.

We demonstrate the improved representational capacity of our Non-Linear Coordination Graphs
(NL-CG) on a matrix game by comparing the learned Q functions to those learned by conventional
coordination graphs. We then evaluate our method on the Multi-Agent COordination (MACO)
Benchmark [33] for its high requirements on close inter-agent coordination. The experimental results
show the superior performance enabled by the non-linear value decomposition.

2 Preliminaries

In this paper, we focus on fully cooperative multi-agent tasks that can be modelled as a Dec-
POMDP [17] consisting of a tuple G=⟨I, S,A, P,R,Ω, O, n, γ⟩, where I is the finite set of n agents,
γ ∈ [0, 1) is the discount factor, and s ∈ S is the true state of the environment. At each timestep,
each agent i receives an observation oi ∈ Ω drawn according to the observation function O(s, i) and
selects an action ai ∈ A. Individual actions form a joint action a ∈ An, which leads to a next state
s′ according to the transition function P (s′|s,a), a reward r = R(s,a) shared by all agents. Each
agent has local action-observation history τi ∈ T ≡ (Ω × A)∗ × Ω. Agents learn to collectively
maximize the global return Qtot(s,a) = Es0:∞,a0:∞ [

∑∞
t=0 γ

tR(st,at)|s0 = s,a0 = a].

2



Estimating Qtot is at the core of multi-agent reinforcement learning (MARL) [26, 24, 14, 34, 12]. The
complexity of calculating maxQtot grows exponentially (|A|n) with the number of agents [15, 31]. To
solve this problem, value-based MARL decomposes the global action-value function into local utility
functions qi and guarantees that the global maximizer can be obtained locally: argmaxa Qtot(s,a) =(
argmaxa1

q1(τ1, a1), . . . , argmaxan
qn(τn, an)

)T
. Value decomposition network (VDN) [26]

satisfies this condition by learning the global value function as a summation of local utilities (Fig. 1-
left). QMIX [22] extends the function class of VDN by learning Qtot as a monotonic mixing of local
utilities. The mixing function is parameterized so that: ∂Qtot(s,a)

∂qi(τi,ai)
≥ 0.

2.1 Coordination Graphs

For fully decomposed value functions, local utility functions are conditioned on local action-
observation history. Coordination Graphs (CGs) [9] increase the representational capacity of fully
decomposed value functions by introducing higher-order payoff functions. Specifically, a coordi-
nation graph is a tuple of a vertex set and an edge set: G = ⟨V, E⟩. Each vertex vi ∈ V represents
an agent i, and (hyper-) edges in E represent coordination dependencies among agents. In previous
work, the global value functions are decomposed linearly based on the graph topology:

Qtot(τ ,a) =
1

|V|
∑
i

qi(τi, ai) +
1

|E|
∑

{i,j}∈E

qij(τij ,aij), (1)

where qi and qij is utility functions for individual agents and pairwise payoff functions, respectively.
τij = ⟨τi, τj⟩ and aij = ⟨ai, aj⟩ is the joint action-observation history and action of agent i and j.

Previous work studies different aspects of such coordination graphs. It is shown that higher-order
factorization is important on tackling an exponential number of joint actions [5]. Sparse cooperative
Q-learning [11] learns value functions for sparse coordination graphs with pre-defined and static
topology. Zhang et al. [38] propose to learn minimized dynamic coordination sets for each agent.
DCG [4] incorporates deep function approximation and parameter sharing into coordination graphs
and scales to large state-action spaces. CASEC [33] and SOP-CG [36] studies how to build sparse
deep coordination graphs that are adaptive to the dynamic coordination requirements. In all these
works, the global value function is represented as a summation of local value functions. To the best of
our knowledge, this paper presents the fist CG learning method with non-linear value decomposition.

2.2 Message Passing

Within a coordination graph, the greedy action selection required by Q-learning can not be completed
by simply computing the maximum of individual utility and payoff functions. Instead, distributed
constraint optimization (DCOP) [6] techniques are used. Max-Sum [25] is a popular implementation
of DCOP. Max-Sum finds near-optimal actions on a CG G = ⟨V, E⟩ via multi-round message passing
on a bipartite graph Gm = ⟨Va,Vq, Em⟩. Each node i ∈ Va represents an agent, and each node
g ∈ Vq represents a utility (qi) or payoff (qij) function. Edges in Em connect g with the associated
agent node(s). Message passing starts with sending messages from node i ∈ Va to node g ∈ Vq:

mi→g (ai) =
∑

h∈Fi\g

mh→i (ai) + cig, (2)

where Fi is the set of nodes in Vq connected to node i, and cig is a normalizing factor preventing the
value of messages from growing arbitrarily large. Messages are then sent from node g to node i:

mg→i (ai) = max
ag\ai

[q (ag) +
∑

h∈Vg\i

mh→g (ah)], (3)

where Vg is the set of nodes in Va connected to node g, ag= {ah|h ∈ Vg}, ag\ai= {ah|h ∈ Vg\{i}},
and q represents utility or payoff functions conditioned on ag. Eq. 2 and 3 make up an iter-
ation of message passing. Each agent i can find its local optimal action by calculating a∗i =
argmaxai

∑
h∈Fi

mh→i (ai) after several iterations of message passing. Notably, Max-Sum and
other DCOP algorithms are only applicable to linearly decomposed value functions.
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2.3 Piece-Wise Linear Neural Networks

Following the recent decade’s success of deep neural networks (DNNs), analysis works have been
done trying to explain the mechanism of the DNN black-boxes and assess their function approximation
capabilities. One conclusion is that a DNN with piece-wise linear (PWL) activation functions (e.g.
ReLU, LeakyReLU, PReLU) is equivalent to a PWL function. This kind of DNNs are called piece-
wise linear neural networks (PLNNs) [7]. Early papers [16, 19] assess the expressivity of PLNNs
by the amount of linear pieces. [2, 23, 10] give more theoretically grounded results about the upper
and lower bounds for the amount of pieces. In this sense, it is shown that increasing the depth of
a network can generally be exponentially more valuable than increasing the width [19, 8, 2]. Chu
et al. [7] propose OPENBOX to compute the mathematically equivalent set of linear pieces, which
provides an accurate and consistent interpretation of PLNNs. For neural networks with a single layer
of hidden nodes, the problem can be reduced to hyper-plane arrangement [37], and linear functions
and their domain can be enumerated efficiently [21, 3].

3 Method

Our method extends the representational capability of coordination graphs by introducing non-linear
factorization of the global value function. Specifically, for a coordination graph G = ⟨V, E⟩ (we study
complete coordination graphs in this paper), we decompose the global Q as:

Qtot(s,a) = fn (qi, qij) , (4)
where qi is the vector of all individual utilities, and qij is the vector of all pairwise payoffs for
edges in E . Similar to DCG [4], we learn a shared utility function fv, parameterized by θv, and get
the individual utility qi(τi, ai) = fv(ai|τi; θv). The payoffs are estimated by a shared function fe

parameterized by θe: qij(τi, τj , ai, aj) = fe(ai, aj |τi, τj ; θe).
Different from conventional CGs (Eq. 1), our fn is a non-linear mixing network whose parameters
are generated by a hypernet fh conditioned on the global state s and parameterized by θh. Our
discussion is based on LeakyReLU networks with the slope coefficient α ∈ [0, 1]. For efficiently
calculating the maximizer of Qtot, we require the weights after the first layer of the mixing network
to be non-negative. The reason for this non-negativity constraint will be discussed in Lemma 1
and 2. Such a mixing network is effectively a type of input convex neural networks (ICNN [1]). The
non-negativity constraint on parameters is somewhat constraint, but we can use the passthrough trick
introduced in Proposition 1 of [1] to maintain substantial representation power of the mixing network.

The whole framework, including the utility function fv , the payoff function fe, and the hypernet fh,
is updated by minimizing the TD loss:

LTD(θ
v, θe, θh) = E(s,a,r,s′)∼D

[
(Qtot(s,a)− (r +max

a′
Q̂tot(s

′,a′)))2
]
, (5)

where D is the replay buffer, and Q̂tot is a target function whose parameters are periodically copied
from the function Qtot.

The main challenge left, for both the training and execution phase of deep Q-learning, is to select
actions that maximize the global Q value at each time step, argmaxa Qtot(τ ,a). An exact solution
to this problem is intractable. Though the mixing network is convex, optimizing its output is still
very hard since the inputs are correlated variables, whose simple summation is already a hard
one to optimize. In the following sections, we first provide a global optimal algorithm for this
problem. The complexity of this algorithm grows polynomially with the number of hidden units
in the mixing network. To reduce time complexity, we propose an iterative algorithm with local
optimum convergence guarantee.

We use the following notations. The input to the mixing network is q = [qi∥qij ], where [·∥·] means
vector concatenation. We use q(a) to denote the utilities and payoffs corresponding to action a. The
mixing network has L LeakyReLU linear layers. d = |V|+ |E| is the input dimension. mi, Wi, and
bi ∈ Rmi are the width, weights, and biases of the ith layer. The weights after the first layer are
non-negative. The input to the activation units at ith layer is zi, and the corresponding output is hi =
LeakyReLU(zi) = ci ◦ oi, where ci is the value of LeakyReLU activation (c = α when z < 0 and
c = 1 when z ≥ 0) and ◦ is the element-wise multiplication. We call c = [c1∥ . . . ∥cL] ∈ {α, 1}m,
m =

∑
i mi, a slope configuration of the mixing network. Subscripts of Wi, bi, zi, and hi means

index. For example, zij is the jth element of zi, and Wij is the jth row of Wi.
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3.1 Piece-Wise Optimization

The general idea of our action selection algorithm is to utilize the piece-wise linear property of the
LeakyReLU network. Given a slope configuration c, the mixing network becomes linear, and we can
run a DCOP algorithm to get the corresponding maximizer of Qtot. The question is that the obtained
solution may be out of the domain of the linear piece. We show that, when the weights after the first
layer are non-negative, we can ignore whether the obtained local optimal solution is in the piece’s
domain, and the global maximizer of Qtot is the best of the local optima.

Formally, there are 2m slope configurations in Call = {c|c ∈ {α, 1}m}, each of which makes
the mixing network an affine function in Pall = {ρ1, ρ2, . . . , ρ2m}. Each affine function ρk has a
corresponding cell Pk where q ∈ Pk yields ck in the forward pass. For each ck ∈ Call, by running
DCOP, we obtain the local maximum qk and the corresponding joint action ak and utilities/payoffs
qk. However, it is possible that qk falls out of Pk and indeed yields another slope configuration cr ̸=k.
We first show that such a shifted solution indicates an equal or better solution in its domain.
Lemma 1. Denote affine function pieces and their cells of a fully-connected feedforward mixing
network with LeakyReLU activation as Pall = {ρj}2

m

1 and {Pj}2
m

1 . For q in the cell of the rth piece,
Pr, and ∀ρs ∈ Pall, we have ρr(q) ≥ ρs(q).

Proof. We start with the first difference between cr and cs. We denote it as crij ̸= csij . Because this
is the first difference, the input to this unit, zij , is the same. Since q is in Pr, we have that crij is 1
when zij is positive and is α < 1 when zij is negative. Therefore, the output satisfies that

hr
ij = crijzij ≥ csijzij = hs

ij . (6)
It follows that

zr
i+1 = WT

i+1h
r
i + bi+1 ≥WT

i+1h
s
i + bi+1 = zs

i+1, (7)
because Wi+1 ≥ 0. Other differences in the ith layer will lead to the same conclusion. At layer
i+ 1, we have

hr
i+1 = cri+1 ◦ zr

i+1 ≥ csi+1 ◦ zr
i+1 ≥ csi+1 ◦ zs

i+1 = hs
i+1. (8)

The first inequity is because q is in the cell of ρr. The second inequity is because of Eq. 7 and that
LeakyReLU is a monotonic increasing function. The proof can repeat for the following layers and
thus holds for the last layer, i.e., ρr(q) ≥ ρs(q).

Based on Lemma 1, when the local optimal solution, ak, of piece k returned by DCOP actually falls
in cell Pr ̸=k, we have ρr(q(ak)) ≥ ρk(q(ak)). This indicates that, on piece r, we will get a solution
at least as good as the one on piece k. Based on this conclusion, we now prove that the maximum of
each piece’s local optimum is the global optimum.
Lemma 2. Running DCOP algorithm for each linear piece in Pall, then take the maximum value
among these pieces, we can get the global optimizer of Qtot.

Proof. We have that maxq fn(q) = maxq maxρp∈Pall
ρp(q) = maxρp∈Pall

maxq ρp(q) (fn is the
mixing function, Eq. 4), which means the maximum of local optimal values is the global optimal
value. Suppose the global optimal value Qmax is found on piece r and the corresponding action is ar,
the question is whether q(ar) is feasible, i.e., q(ar) ∈ Pr. Assume that q(ar) falls in Ps ̸=r. Then
for piece s, ar is a feasible solution with the value Qmax (due to Lemma 1). This means the global
optimal solution is always a feasible solution.

According to Lemma 2, we can run message passing on each piece (Algorithm ?? in Appx. ??)
and then take the best of these results to get the global optimum. Detailed process can be found in
Algorithm 1.

The problem of Algorithm 1 is time complexity. When m is small, we enumerate all 2m slope
configurations. For a large m, we can use the hyperplane arrangement algorithm [7] to calculate
exact linear pieces and their domains. Specifically, there are

nm,d =

d∑
i=0

(
m

d− i

)
(9)

pieces need enumerating, where d is the input length. This number is exponential to d. To reduce
time complexity, we propose an iterative optimization method in the next section.
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3.2 Iterative Optimization with Local Optimum Guarantee

When m is large, enumerating either 2m or nm,d pieces can be costly. We thus propose an iterative
algorithm with local optimum guarantee (Algorithm 2) to get approximate solutions. We begin with
the slope configuration where all hidden units are activated (c = {1}m). We run message passing on
the current configuration cp and get a local optimum solution ap. If the real configuration creal of
ap is not cp, we calculate the local optimum of creal. The iteration continues until creal = cp.

Lemma 1 guarantees that the solution values in the iteration are monotonically increasing. Since
there is a finite number of configurations, our algorithm can converge to a local optimum.

With a very low probability, a loop would appear in the iteration. The appearance of a loop means
that the equity in Lemma 1 holds. In this case, the solutions on the loop have the same value, thus we
can stop our iteration when encountering a slope configuration that has been searched.

Algorithm 1 ENUMERATE-OPTIMIZATION
/*Show the case for a two-layer mixing network,
but can be easily extended to more layers.*/

Input: fV ∈ R|V|×A, fE ∈ R|E|×A×A, W0,
b0, W1, b1
qmax := −∞; amax :=

[]
/*Initialize the best found solution.*/
for cp ∈ {α, 1}m do

/*Calculate the equivalent weights and bi-
ases.*/
Wρp

:= W0 · (cp ◦W1)

bρp
:= (cp ◦W1) · bT0 + b1

q,a, · ←
w-MAX-SUM(fV,fE,Wρp , bρp)
if q > qmax then
amax ← a
qmax ← q
/*Remember only the best actions.*/

end if
end for
return amax
/*Return the selected joint action amax.*/

Algorithm 2 ITERATIVE-OPTIMIZATION
/*Show the case for a two-layer mixing network,
but can be easily extended to more layers.*/

Input: fV ∈ R|V|×A, fE ∈ R|E|×A×A, W0,
b0, W1, b1, nmax, ϵ
qmax := −∞, amax :=

[]
, cp := {1}m

for n ∈ {1, . . . , nmax} do
/*Try one configuration at a time.*/
Wρp

:= W0 · (cp ◦W1)

bρp := (cp ◦W1) · bT0 + b1
q,a, · ←
w-MAX-SUM(fV,fE,Wρp

, bρp
)

if q > qmax then
amax ← a
qmax ← q
creal ← The real LeakyReLU slope con-
figuration

end if
if creal ̸= cp then cp ← creal else with prob.
ϵ break or continue with an unvisited cp.

end for
return amax

To increase the possibility of finding a global optimum, we can introduce a simulated annealing
mechanism. Each time we find a better solution, with a probability of 1 − ϵ, we move to the
corresponding piece, and with a probability of ϵ, we jump to a random piece that has not been
searched. ϵ decreases with the iteration number.

Discussion about loopy graph topology In this paper, we consider complete graphs when studying
non-linear coordination graphs. A concern is that message passing algorithms like Max-Sum may
not converge to the optimal solutions in loopy graphs and has an error rate of e. Lemma 1 is not
affected because it is a property of LeakyReLU Networks. For Lemma 2, the maximum of solutions
found by message passing in all slope configurations is the global optimum with a probability of
1− e. An error occurs when message passing cannot find the right solution on the piece where the
global optimum is located. Our iterative method may stop earlier when message passing returns a
wrong solution located in the current cell. The probability of this situation is less than e. Thus we
have at least a probability of (1− e)n (n is the number of iterations) to find the piece where the local
optimum is located, and the final probability of finding the local optimum is larger than (1− e)n+1.

4 Representational Capability

In this section, we compare the representational capacity of our model against conventional coordina-
tion graphs. The comparison is carried out on a two-step cooperative matrix game with four players
and two actions. At the first step, Agent 1’s action decides which of the two matrix games (Table. 1)
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to play in the next timestep. In the second step, the number of agents taking Action B determines the
global reward received by the agent team (Table. 1).

State 2A
# Action B 0 1 2 3 4

Reward 7 7 7 7 7

State 2B
# Action B 0 1 2 3 4

Reward 0 -0.1 0.1 0.3 8

Table 1: Payoff matrices of the two-step game after Agent 1 chooses the first action. Action A takes
the agents to State 2A, while action B takes them to State 2B. The team reward depends on the
number of agents taking Action B.

We first theoretically prove that the representational capacity of conventional coordination graphs
is unable to represent the Q-function of this game. Since the reward is invariant to the identity of
agents, i.e., R(a1, a2, a3, a4) = R(p(a1, a2, a3, a4)), where p is an arbitrary permutation, the learned
action-value function should also be permutation invariant. Therefore we can ignore the order of
actions in value functions. Now let’s focus on State 2B (s2B). Conventional coordination graphs need
to solve a linear system consisting of five unknowns and five equations. However, for this system, the
rank of the augmented matrix (4) is greater than the rank of the coefficient matrix (3). Details can be
found in Appx. ??. Therefore, this system has no solution, and it is impossible for conventional CGs
to learn a correct Q function.

We then empirically demonstrate our idea. We train NL-CG and DCG on the task for 5000 episodes
under full exploration (ϵ = 1) and examine the learned value functions. Full exploration ensures
that both methods explore all state-action pairs. In such a case, the representational capacity of the
action-value function approximator remains the only challenge of learning accurate Q functions. For
our algorithm, the utility and payoff function is fully connected networks with a single hidden layer
of 64 units with a ReLU non-linearity. γ is 0.99, and the replay buffer stores the last 500 episodes,
from which we uniformly sample batches of size 32 for training. The target network is updated every
100 episodes. The learning rate of RMSprop is set to 5 × 10−4. Agents receive the full state as
observation, which is represented as an one-hot vector.

Table 2 and 3 show the learned Q by DCG and NL-CG. In line with our theoretical analysis, we can
see that DCG learns a sub-optimal strategy of selecting Action A in the first step. By contrast, our
method learns the accurate value of Action B in State A and get the optimal strategy. Furthermore,
the Q values for State 2B learned by NL-CG is more accurate than those learned by DCG. These
results demonstrate that NL-CG’s higher representational capacity allows it to accurately estimate the
value function of this game whereas DCG cannot. We also note that such an example is common for
task with few actions because there are typically more equations than unknowns.

State A
Action A B

Q 6.91 5.85

State 2B
# Action B 0 1 2 3 4

Q 1.32 -0.89 -0.77 1.41 5.89

Table 2: Q-functions learned by DCG for the matrix game.

State A
Action A B

Q 6.92 7.95

State 2B
# Action B 0 1 2 3 4

Q 0.19 -0.12 0.20 0.63 8.02

Table 3: Q-functions learned by our method for the matrix game.

5 Experiments

In this section, we conduct experiments to show the effectiveness of our method on complex tasks.
We benchmark our method on the Multi-Agent COordination (MACO) benchmark [33], which
covers various classic coordination tasks in the literature of multi-agent learning and increases their
complexity to better evaluate the performance of different algorithms. The MACO benchmark is
characterized by a high demand on the sophistication of agent coordination. For NL-CG, we use a
mixing network that has one hidden layer with different widths. Detailed hyperparameter settings of
our method can be found in Appendix ??. For fair comparison, we run all our experiments with 5
random seeds and show the mean performance with a 95% confidence interval.
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Figure 2: Performance comparison against baselines on the MACO benchmark.

Figure 3: Influence of the size of the mixing network. When the width of the hidden layer is 10,
enumerating all linear pieces is quite time-consuming. We thus stop training when we observe its
performance reaching or surpassing the best performance achieved by other algorithms.

Figure 4: Our iterative optimization method reduces NL-CG’s time cost and thus can use a larger
mixing network, leading to better performance when checking the same number of linear pieces.

Figure 5: Performance on Pursuit.

In Fig. 2, we compare NL-CG against the state-of-the-art
coordination graph learning method (DCG [4]) and fully
decomposed methods (QMIX [22], DICG [13]). For both
DCG and our method, we use the complete graphs for
all experiments in the paper. For NL-CG, we (1) set the
hidden width to 3 and enumerate all configurations and
(2) set the hidden width to 4 and run our iterative method
with nmax=4. We stop iteration when nmax slope config-
urations are visited. The result shows that our algorithm
can outperform conventional CGs significantly. More-
over, our iterative optimization method has comparable
performance with the enumeration method, showing its
effectiveness. QMIX struggles on these tasks, indicating
that these tasks are beyond the representation capacity of
a fully decomposed function.
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We further investigate the the influence of the mixing network’s width. Specifically, we test NL-
CG with a width of 2, 3, 4, and 10 and compare their performance in Fig. 3. It can be observed
that, generally, more units (10) in the hidden layer lead to better or at least equal performance than
other configurations. This result is in line with our motivation: a powerful non-linear mixing network
increases the capability of CGs.

In Fig. 4, we compare our enumerative and iterative methods. These two methods check the same
number (16) of linear pieces, but the iterative method can use a hidden layer of 10. As a result, the
iterative method outperforms the enumerative method.

Additionally, in Fig. 5, we compare NL-CG against DCG [4], QMIX [22], and DICG [13] on
Pursuit. We find NL-CG generally outperforms previous methods.

5.1 Analysis of the optimality and efficiency of the iterative optimization method

Figure 6: Left: Ground-truth Q value comparisons show that NL-CG learns a policy with higher
value than DCG. Middle: Actions obtained by enumerative and iterative methods have similar values.
Right: Qtot output of NL-CG against ground-truth Q value (averaged Monte Carlo returns).

Figure 7: Efficiency of the iterative method. x-axis: Time spent by enumerating all pieces. y-axis:
Time spend by the iterative method. The farther down the line y = x, the faster the method is.

Although we have checked the performance of our iterative optimization method, learning curves can
not fully reveal its optimality and efficiency. In this section, we provide optimality and efficiency
analyses by checking the action selection results and time costs in detail.

In Fig. 6-middle, we compare the Qtot value of our enumerative and iterative optimization methods.
We can see that the iterative method is near-optimal after checking only 4 (embed=3) slope configura-
tions: the Q-values of its actions are very close to those selected by enumeration and are better than
those selected by DCG. In Fig. 6-left, we compare the ground truth Q estimates of DCG and NL-CG
(embed=3, iterative, nmax = 4). The result shows that NL-CG learns a policy with higher value.
In Fig. 6-right, we compare the Qtot values estimated by NL-CG (embed=3, iterative, nmax = 4)
against ground truth Q estimates. The estimation errors on all tested state-action pairs are less than
20%.

In Fig. 7, we compare the time spent by enumerative and iterative optimization methods. It can be
found that the iterative method saves 50% to 65% of running time. We can thus conclude that the
iterative optimization method provides a good trade-off between complexity and optimality.
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6 Conclusion

In this paper, we extend coordination graphs beyond linear decomposition by introducing non-linear
mixing networks. Experiments manifest its superior representation power on complex tasks that
conventional CGs are not able to solve. An important research direction is the stability of non-linear
CGs and to get rid of the non-negative constraint on weights of the mixing network. The authors do
not see obvious negative societal impacts of our method.
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