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A Training Curves of Different Models with or without StratifiedSampling

In Figure 5, we demonstrate the training curves of different models with or without stratified sampling
based on site information from ABIDE. The curves of different variants display similar patterns
across three model architectures in a single run. We remove Graphormer since its performance is
much worse than others. Specifically, it is shown that (a) with stratified sampling, the performance
gap between validation and test on ABIDE is much smaller than the one without stratified sampling;
(b) stratified sampling can stabilize the training process on ABIDE, especially for VanillaTF and
BRAINNETTF.

Figure 5: Training Curves of Different Models with or without StratifiedSampling.

B Transformer Performance with Different Node Features

We compare the performance of Transformer model equipped with different node features. The
results are shown in Table 3, where connection profile represents the corresponding row for each
node in the adjacency matrix, identity feature initializes a unique one-hot vector for each node, and
eigen feature generates a k-dimensional feature vector for each node from the k eigenvectors based
on the eigendecomposition on the adjacency matrix. Empirical observations demonstrate that adding
identity or eigen node features to connection profiles cannot improve the model’s performance.

Model Node Feature
Dataset

ABIDE ABCD

VanillaTF
Connection Profile 76.4±1.2 94.3±0.7

Connection Profile w/ Identity Feature 75.4±1.9 94.5±0.6
Connection Profile w/ Eigen Feature 75.9±2.1 94.0±0.8

Table 3: The Performance (AUROC%) of Transformer with Different Node Features.

C Statistical Proof of the Goodness with Orthonormal Cluster Centers

We propose two statistical methods to prove the goodness in orthonormal case since it is impractical
to directly compare the performance of the orthonormal and non-orthonormal initializations.
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C.1 Proof of Theorem 3.1

We state Theorem 3.1 here and show the proof details.

Theorem C.1. For arbitrary r > 0, let Br = {Z ∈ RV ; ∥Z∥ ≤ r} denote the round ball centered
at origin of radius r with Z being fracture vectors. Let Vr be the volume of Br. The variance of
Softmax projection averaged over Br

1

Vr

∫
Br

K∑
k

( e⟨Z,Ek·⟩∑K
k′ e⟨Z,Ek′·⟩

− 1

K

)2

dZ, (6)

attains maximum when E is orthonormal.

Proof. For simplicity, we first consider the two-dimensional case with two cluster centers E1,E2.
Since we integrate over the round ball Br, spherical symmetry allows us to set E1 = (1, 0) and
E1 = (cos(ϕ), sin(ϕ)) with ϕ ∈ [0, π

21 ] being the angle between E1 and E2 under polar coordinates.
Then the Softmax readout Eq. (2) can be rewritten as:

P1 =
eρ cos(θ)

eρ cos(θ) + eρ cos(θ−ϕ)
, P2 =

eρ cos(θ−ϕ)

eρ cos(θ) + eρ cos(θ−ϕ)
, (7)

where θ is the angle between Z and E1 and ρ is the norm of Z . Hence, the integral is

F (ϕ) :=
1

Vr

∫
Br

2∑
k=1

(Pk − 1

2
)2dZ =

1

πr2

∫ r

0

∫ 2π

0

( e2ρ cos(θ) + e2ρ cos(θ−ϕ)

(eρ cos(θ) + eρ cos(θ−ϕ))2
+

1

2

)
dθdρ. (8)

Our aim is to show that the integral F (ϕ) attains its maximum when E1,E2 are orthogonal. It is
unclear whether the above integral has an elementary antiderivative. Thus, instead of evaluating
the integral directly, we firstly prove two symmetric properties of the integrand f(ρ, θ, ϕ): (a) It is
straightforward to show that f(ρ, θ + kπ, ϕ) = f(ρ, θ, ϕ) for k ∈ N. That is, f is periodic for π on
the first argument θ. (b) We have

f(
ϕ

2
+

π

2
− θ) =

e2ρ sin(ϕ
2 +θ) + e−2ρ sin(ϕ

2 −θ)

(eρ sin(ϕ
2 +θ) + e−ρ sin(ϕ

2 −θ))2

=
e2ρ sin(ϕ

2 +θ) + e−2ρ sin(ϕ
2 −θ)

e2ρ sin(ϕ
2 +θ) + e−2ρ sin(ϕ

2 −θ) + 2eρ sin(ϕ
2 +θ)−ρ sin(ϕ

2 −θ)

=
e2ρ sin(ϕ

2 −θ) + e−2ρ sin(ϕ
2 +θ)

(eρ sin(ϕ
2 −θ) + e−ρ sin(ϕ

2 +θ))2
= f(

ϕ

2
+

π

2
+ θ),

(9)

which means f is symmetric with respect to θ = ϕ
2 + π

2 + kπ. As the integrand f(ρ, θ, ϕ) is periodic,
we are allowed to compare F (ϕ1), F (ϕ2) via∫ ϕ1

2 +2π

ϕ1
2

f(ρ, θ, ϕ1)dθ =

∫ 2π

0

f(ρ, θ, ϕ1)dθ,

∫ ϕ2
2 +2π

ϕ1
2

f(ρ, θ, ϕ2)dθ =

∫ 2π

0

f(ρ, θ, ϕ2)dθ.

(10)

The integral domain [ϕ2 ,
ϕ
2 + 2π] is taken according to the second symmetry property of f and can be

significant for the following trick: we take the directional derivative of f along v = (1, 2) tangent to
the straight line θ = ϕ

2 :

Df(v) =
∂f

∂θ
+ 2

∂f

∂ϕ

=
2ρeρ cos(θ−ϕ)+ρ cos(θ)(eρ cos(θ−ϕ) − eρ cos(θ))(sin(θ) + sin(θ − ϕ))

(eρ cos(θ−ϕ) + eρ cos(ϕ))3
.

(11)
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It is easy to check that in the above integral domain and for any ρ > 0, Df(v) is always non-negative.
Hence,

f(ρ, θ − ϕ1

2
, ϕ1) ≤ f(ρ, θ − ϕ2

2
, ϕ2) (12)

when ϕ1 ≤ ϕ2. After taking integral, F (ϕ1) ≤ F (ϕ2) and thus it attains maximum in the orthonormal
case (ϕ = π

2 ). Comparing F (ϕ1), F (ϕ2) without adjusting the integral domain as above cannot give
a clear result because the simple partial derivative ∂f/∂ϕ oscillates around zero. Higher dimensional
cases follow similarly by employing spherical and hyperspherical coordinates.

C.2 Proof of Theorem 3.2

Theorem 3.2 deals with a more general case: comparing the performance of an arbitrary readout P
defined by orthonormal cluster centers with non-orthonormal ones. We regard P as an estimated
similarity probability between nodes and clusters and solve this problem from the perspective of
statistics. The estimation is considered as a regression of samples (Ẑ(s), Ê(t), P̂ (st)) from node
features, cluster centers and similarity probabilities. We then judge the estimation relative to true
similarity probability PT . Although it is almost impossible to find an analytic formula for PT , we
can indirectly judge the quality of estimation. To clarify the idea, we introduce some basic concepts
from statistics and prove our results on a statistical basis.

C.2.1 Background Knowledge of Regression Analysis

We first consider process samples by logistic regression with cluster centers as categorical variables.
Intuitively, non-orthonormal centers correlate with each other, which means there is an overlap
among categorical variables and makes it hard to identify the decision boundary that leads to a
failed classification. However, as far as we know, it is unclear how to compare overlaps between
orthonormal and non-orthonormal variables rigorously. Thus, we simply process samples by a general
nonlinear regression. The regression process is linearized by the Gauss-Newton algorithm to facilitate
the analysis. We judge the goodness-of-fit describing the degree to which the regression function fits
its observed value, and then conduct a hypothesis test. The goodness-of-fit is measured by coefficient
of determinate R2 [47]:

Definition C.2. We consider a regression with r independent main variables:

Y = β0 + β1X1 + β2X2 + · · ·+ βrXr + ϵ. (13)

Let x̂p = (x̂p1, ..., x̂ps)
⊤ and ŷ = (ŷ1, ..., ŷs)

⊤ be data sets (samples) associated with fitted values
y̌ = (y̌1, ..., y̌s). Each difference eq = ŷq − y̌q is called a residue. We denote the mean of x̂p and ŷ
by x̄p, ȳ. The variability of data set can be measured by the total sum of squares (SST), the sum of
squares of residuals (SSR) and the explained sum of squares (SSE) defined as (where p = 1, 2, ..., r
q = 1, 2, ..., s):

SST =
∑
q

(ŷq − ȳ)2, SSR =
∑
q

e2q =
∑
q

(ŷq − y̌q)
2, SSE =

∑
q,p

(x̂qp − x̄p)
2. (14)

In linear regression, SSR + SSE = SST and the coefficient of determination R2 is defined as:

R2 =
SSE
SST

= 1− SSR
SST

. (15)

Conceptually, SSE is the error cost by regression of main variables. Thus by definition, R2 reveals
the percentage of errors that main variables can explain in the total error SST. The value of R2 is
bounded by 1. A large value of R2 indicates a better fitting. However, it should be noted that an
extremely-large R2 could indicate overfitting.

In our problem, since our regression is nonlinear, the sum of SSR and SSE is less than SST [1].
Therefore, measuring goodness-of-fit by R2 in nonlinear regression is inaccurate. A common strategy
to remedy this problem is approximating nonlinear functions by polynomials via Gauss-Newton
algorithm. We provide a brief introduction here, and more details can be found in [1]: for a nonlinear
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model fk with parameter δ, in a small neighborhood of δT -the true value of δ, we have the linear
expansion:

fk(δ) ≈ fk(δT ) +

M∑
m=1

∂fk
∂δm

∣∣∣
δT
(δm − δTm). (16)

Or briefly, we write it by vector notation:

f(δ) ≈ f(δT ) + F (δ − δT ), (17)

where F (δ−δT ) stands for the dot product of derivatives and differences of parameters from Eq. (16).
Suppose δ(γ) is an approximation to the least-squares estimation δ of our model, for δ close to δ(γ),
we rewrite the expansion as:

P̌ = f(δ) ≈ f(δ(γ)) + F (γ)(δ − δ(γ)), (18)

where P̌ denotes a fitted value of P and F (γ)(δ − δ(γ)) again means a dot product. Applying this to
the residual vector e(δ), we have:

e(δ) = P − f(δ) ≈ e(δ(γ))− F (γ)(δ − δ(γ)). (19)

Thus, the norm

S(δ) := ∥P − f(δ)∥2 = e⊤(δ)e(δ)

≈ e⊤(δ(γ))e(δ(γ))− 2e⊤(δ(γ))F (γ)(δ − δ(γ)) + (δ − δ(γ))⊤F (γ)⊤F (γ)(δ − δ(γ)). (20)

The right-hand side is minimized with respect to δ when

δ − δ(γ) = (F (γ)⊤F (γ))−1F (γ)⊤e(δ(γ)) = ζ(γ). (21)

This suggests that given a current approximation δ(γ), the next approximation should be:

δ(γ+1) = δ(γ) + ζ(γ). (22)

Expanding the nonlinear function f as polynomials and modifying the parameter δ as above, we can
use R2 to measure the goodness-of-fit. To acquire higher accuracy in a general nonlinear regression,
one can make a elaborated goodness-of-fit test for specific fitting functions e.g., [9, 11]. We do not
discuss this sophisticated method as it is out of the scope of this paper.

C.2.2 Comparing R2 by Variance Inflation Factor

The proof of Theorem 3.2 consists of two steps: (a) we first prove that the regression accuracy, the
accuracy when regressing P is higher when sampling from orthonormal cluster centers (Theorem
C.4), and consequently (b) higher regression accuracy increases appraisal accuracy, the accuracy
when appraising an estimated value in hypothesis testing (Theorem C.6).

In this subsection, we compare regression accuracy. we fix Zi when regressing P via the fitted
value P̌ (Ek). Statistically, the expectation E(P ) of all readouts is identified as the true similarly
probability PT . In regression analysis, the Ordinary Least Squares (OLS) guarantees asymptotically
unbiased estimations. That is, when the sample size s is large enough, it can be regarded as an
unbiased estimation [47]:

E(P̌ ) = PT = E(P ). (23)

Therefore, the better the goodness-of-fit reflected by R2, the smaller the variance of estimation. To
compare this, we use the concept of variance inflation factor which reflects the inflation of weights
of variables in regression:
Definition C.3. The variance inflation factor (VIF)p is defined as:

(VIF)p =
1

(1−R2
p)
, (24)

where R2
p is the coefficient of multiple determination when Xp is regressed by the r-1 other variables

in the model from Eq. (13).
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Remark. We discuss more details about VIF in the following context [47]. For simplicity, we denote
the following collection of samples and regression coefficients:

X̂ = (x̂1, ..., x̂r) = (x̂qp), ŷ = (ŷ1, ..., ŷs)
⊤, β = (β1, ..., βr).

In the regression model Eq. (13), the estimation β̌p of regression coefficients βp are obtained by
Ordinary Least Squares (OLS):

β̌ = (X̂⊤X̂)−1X̂⊤ŷ. (25)

We standardize the regression equation by covariance matrices σy of y̌ and the variance σq of x̂p as

y̌∗q =
y̌q − ȳ

σy
, x̂∗

qp = σ−1
q (x̂pq − x̄p), (26)

and

β̌∗
q = β̌q

σq

σy
, y̌∗ = β̌∗

0 + β̌∗
1X

∗
1 + β̌∗

2X
∗
2 + · · ·+ β̌∗

rX
∗
r . (27)

Similarly to Eq. (25), standardized estimation of regression coefficients are equal to

β̌∗ = (X̌∗⊤X̌∗)−1X̌∗⊤y̌∗. (28)

On the other hand, the covariance matrix of the estimated regression coefficients is

σ2
β̌
= σ2(X⊤X)−1, σ2 =

s∑
q=1

(y̌q − ȳ)2, (29)

where σ2 is the error term variance for X (cf. Definition C.2). After standardization, it is noted that
X∗⊤X∗ is just the correlation matrix rXX of X∗. Hence, by Eq. (29) we obtain:

σ2
β̌∗ = (σ∗)2r−1

XX . (30)

Let (VIF)p be the p-th diagonal element of the matrix r−1
XX . The variance of β∗

p is equal to:

σ2
β̌∗
p
= (σ∗)2(VIF)p. (31)

The diagonal element (VIF)p is just the variance inflation factor for β̌∗
p . The variance of β∗

p can also
be written as [47]

σ2
β̌∗
p
=

1

1−R2
p

[ σ2∑
q(xqp − x̄p)2

]
. (32)

With the previous discussion, we conclude that

(VIF)p =
1

(1−R2
p)
, (33)

where R2
p is defined in C.3.

Theorem C.4. Let

VIF =

∑r
p=1(VIF)p
r − 1

, (34)

where r denotes the number of variables in Eq. (13). Then VIF ≥ 1 with equality holds if and only if
the variables are orthogonal.

Proof. To prove this, we need to generalize the definition of R2. By definition,

R2 =
SSE
SST

=

∑s
q=1(y̌q − ȳ)2∑s
q=1(yq − ȳ)2

=

s∑
q=1

(y̌∗q )
2. (35)
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Substituting Eq. (27) into the above identity, we have
s∑

q=1

(y̌∗q )
2 =

s∑
q=1

(X̌∗
q β̌

∗)2 = (X∗
q β̌

∗)⊤X∗
q β̌

∗, (36)

and by Eq. (28), we conclude that

R2 = (rXY )
⊤(rXX)−1rXY . (37)

As the finial step, we compute R2
p from Definition C.3 by Eq. (37). It should be noted that according

to Definition C.3, R2
p is the goodness-of-fit when Xp is regressed by the r-1 other variables. These

variables are uncorrelated in orthonormal case. Hence rXY = 0, R2
p = 0 and VIF = 1.

Remark. In statistics, when a variable’s VIF is greater than 1, or equivalently R2
p ̸= 0, the influence of

this variable on the whole estimation is inflated. It breaks the so-called absence of multicollinearity, a
fundamental principle in multiple regression analysis, and hence causes more error. Since SSE is
a constant value, the error generated by the inflation would be counted into SSR, which leads to a
decrease in R2 by Definition C.2 (see [47, 1] for more details).

C.2.3 Statistical Hypothesis Testing

The previous discussion verifies that regressing with orthonormal samples attains a higher goodness-
of-fit. In other words, it achieves a higher regression accuracy. Tools from hypothesis testing are
borrowed here to determine the appraisal accuracy mentioned at the beginning of Section C.2.2. We
first introduce mean squared error (MSE) commonly used in statistics [19]:
Definition C.5. Recall that the residue eq = (ŷq − y̌q) from Definition C.2. Then,

MSE =
1

s

s∑
q=1

(ŷq − y̌q)
2 =

1

s

s∑
q=1

(eq)
2 =

1

s
e⊤e. (38)

As mentioned in C.2.1, a small coefficient of determination R2 indicates a large SSR and hence leads
to a large MSE. As a result of Theorem C.4, MSE is minimized in the orthonormal case.

We now assume a domain centered at the true value PT of radius d, and treat the outside space W
as the rejection region. Statistically, if the distance between P̌ and PT is less than a small enough
d, we can regard them as the same. Intuitively, if fitted values P̌ are largely scattered from the
true value PT , that is, when MSE is large, it can interfere with our judgment of whether P can be
identified with PT . Rigorously, we make a hypothesis testing and analyze the probability of rejecting
a well-estimated readout function. We prove in the following that when sampling from orthonormal
cluster centers, a higher regression accuracy (Theorem C.4) guarantees a lower MSE and therefore
increases the appraisal accuracy.
Theorem C.6. The significance level αEk· reveals that the probability of rejecting a well-estimated
readout is lower when sampling from orthonormal centers than sampling from non-orthonormal
centers.

Proof. Let P be a readout function such that ∥PT − P ∥ ≤ d for small enough d. Statistically, we
can treat them as the same and simply write P̌ = PT . In hypothesis testing, we define null hypothesis
H0 and alternative hypothesis H1 by

H0 : P̌ = PT , H1 : P̌ ̸= PT , (39)

in which H1 means that we reject a well-estimated readout with H0 having the opposite meaning.
The rejection region for this test is thus given as W = {P̌ ̸= PT }. As a conventional procedure in
hypothesis testing, we take a suitable test statistic TEk

(Zi) whose distribution f is known [19]. It
is used to compute the probability that P̌ is in the rejection region. The corresponding probability
distribution is called potential function g(θ) for W in this setting:

g(θ) = Pθ(P̌ ∈ W ) =

∫
W

f(TEk
(Zi))dZi ≤ αEk

, θ = H0 ∪H1, (40)
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where the significance level αEk
is the upper bound of the probability of making mistakes (formally

called type I error) [19].

By Theorem C.4 and Remark C.5, MSE is minimized in the orthonormal case. It can be treated as
a variance of distribution f . Then by Vysochanskij–Petunin inequality, a refinement of Chebyshev
inequality, the integration over W with orthonormal cluster centers Ek is smaller than that with
non-orthonormal cluster centers E′

k:∫
W

f(TEk
(Zi))dZi ≤

∫
W

f(TE′
k
(Zi))dZi. (41)

As the result holds true for any well-chosen TEk
(Zi), αEk

≤ αE′
K

, this finishes the proof.

D Running Time

Table 4 shows that state-of-the-art models of Graphormer and SAN are much slower than our
BRAINNETTF and VanillaTF, mainly because their implementations are not optimized toward the
unique properties of brain networks. Specifically, let e be the number of edges and v be the number
of nodes. The calculation of Graphormer and SAN optimizes the case where e ≪ v2. However, brain
networks usually have a small number of nodes but dense connections, i.e., e ≃ v2. Therefore the
optimized sparse graph operations in PyTorch Geometric [23] do not work properly. On the other
hand, since the number of nodes in brain networks is usually relatively small (less than 500), we can
directly speed up the calculation using matrix multiplication, which is what we did in BRAINNETTF
and VanillaTF. Besides, the edge feature generation operator in Graphormer further increases the
burden on its computing time.

Table 4: Running time with different graph transformer methods.

Method Running Time on ABIDE (min) Running Time on ABCD (min)

SAN 93.01±0.96 908.05±3.6
Graphormer 133.52±0.54 4089.86±5.7
VanillaTF 2.32±0.10 36.26±2.12

BRAINNETTF 1.98±0.04 30.31±1.16

E Number of Parameters

Table 5: The number of parameters in different models.

Method #Para on ABIDE #Para on ABCD

BrainNetCNN 0.93M 0.93M
BrainGB 1.08M 1.49M

FBNetGen 0.55M 1.18M
SAN 57.7M6 186.7M

Graphormer 1.23M 1.66M
VanillaTF 15.6M 32.7M

BRAINNETTF 4.0M 11.2M

F Parameter Tuning

For BrainGB, BrainGNN, FBNetGen, we use the authors’ open-source codes. For SAN and
Graphormer, we folk their repositories and modified them for the brain network dataset. For
BrainNetCNN and VanillaTF, we implement them by ourselves. We use the grid search for some
important hyper-parameters for these baselines based on the provided best setting. To be specific, for
BrainGB, we search different readout functions {mean, max, concat} with different message-passing
functions {Edge weighted, Node edge concat, Node concat}. For BrainGNN, we search different
learning rates {0.01, 0.005, 0.001} with different feature dimensions {100, 200}. For FBNetGen,
we search different encoders {1D-CNN, GRU} with different hidden dimensions {8, 12, 16}. For
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BrainNetCNN, we search different dropout rates {0.3, 0.5, 0.7}. For VanillaTF, we search the number
of transformer layers {1, 2, 3} with the number of headers {2, 4, 6}. For SAN, we test LPE hidden
dimensions {4, 8, 16}, the number of LPE and GT transformer layers {1, 2} and the number of
headers {2, 4} with 50 epochs training. For Graphormer, we test encoder layers {1, 2} and embed
dimensions {256, 512}. Furthermore, since the rebuttal time is pretty short, we do not have enough
time to dig two new baselines, BrainnetGNN and DGM, which may be why their performance is
worse than others.

G Software Version

Table 6: The dependency of BRAINNETTF.

Dependency Version

python 3.9
cudatoolkit 11.3
torchvision 0.13.1

pytorch 1.12.1
torchaudio 0.12.1

wandb 0.13.1
scikit-learn 1.1.1

pandas 1.4.3
hydra-core 1.2.0

H The Difference between Various Initialization Methods

To show orthonormal initialization can produce more discriminative P between classes than random
initialization, we calculate the difference score d based on the formula

d =

K∑
i

V∑
j

|P female
ij − Pmale

ij |
KV

, (42)

where V is the number of nodes and K is the number of clusters. After running the t-test, we found
the margins between random and orthonormal on both ABIDE and ABCD are significant, which is
consistent with our conclusion.

Table 7: The difference score between different initialization methods.

Method Difference score on ABIDE Difference score on ABCD

Random 0.067±0.016 0.125±0.010
Orthonormal 0.085±0.015 0.142±0.014
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