
A Proofs

A.1 Proof of Theorem 5.4

Proof. We lay out the proof in two major steps. Firstly, we characterize the performance difference
between J(qt) and J(πt−1), which can be done by applying Lemma B.3. Specifically, we set π1, π2
in Lemma B.3 to qt, πt−1 and set f as the reference model f̃t. Then we obtain

J(qt)− J(πt−1)

= ∆(t)− γ

2(1− γ)

(
Eρqt

[∥∥f̃t(s, a)− f∗(·|s, a)∥∥1]+ Eρπt−1

[∥∥f̃t(s, a)− f∗(·|s, a)∥∥1]),
(A.1)

where ∆(t) := Es∼ζ

[
V f̃t
qt (s) − V f̃t

πt−1
(s)

]
≥ 0 due to the optimality of qt under f̃t, i.e., qt =

argmaxq V
f̃t
q .

Recall that the reference model is the least squares estimate, i.e.,

f̃t = f̂LS
t = argmin

f∈F

∑
(s,a,s′)∈Ht−1

∥∥f(s, a)− s′∥∥2
2
,

whereHt−1 is the trajectory in the real environment when following policy πt−1.

From the simulation property of continuous distribution, we have the following equivalence between
the direct and indirect ways of drawing samples:

s′ ∼ f∗(·|s, a) ≡ s′ = f∗(s, a) + ϵ, ϵ ∼ p(ϵ),

where p(ϵ) is some noise distribution.

Therefore, according to the Gaussian noise assumption, we obtain from the least squares generalization
bound in Lemma B.4 that

Eρπt−1

[∥∥f̃t(s, a)− f∗(·|s, a)∥∥1] ≤ 22C2 ln(|F|/δ)
H

, (A.2)

where ϵapprox = 0 in the generalization bound as the realizability is guaranteed since f̂LS
t and f∗ are

from the same function class F .

Similarly, we have for the intermediate policy qt that

Eρqt

[∥∥f̃t(s, a)− f∗(·|s, a)∥∥1] ≤ Eρπt−1

[∥∥f̃t(s, a)− f∗(·|s, a)∥∥1] ·{Eρπt−1

[(dρqt
dρπt−1

(s)
)2

]}1/2

≤ κ · 22C
2 ln(|F|/δ)
H

. (A.3)

Now we can bound (A.1) by

J(qt)− J(πt−1) ≥ ∆(t)− (1 + κ) · 22γC
2 ln(|F|/δ)

(1− γ)H
. (A.4)

The second step of the proof is to characterize the performance difference between J(πt) and J(qt).

From the Performance Difference Lemma B.2, we obtain

J(qt)− J(πt) =
1

1− γ
· E(s,a)∼ρqt

[
Af∗

πt
(s, a)

]
=

1

1− γ
· Es∼νqt

[
Ea∼qt

[
Af∗

πt
(s, a)

]]
=

1

1− γ
· Es∼νqt

[
Ea∼qt

[
Af∗

πt
(s, a)

]
− Ea∼πt

[
Af∗

πt
(s, a)

]]
, (A.5)

15

where recall that ι := maxs,a |Af∗

π (s, a)| and the third equality holds due to Ea∼πt

[
Af∗

πt
(s, a)

]
= 0

for any s.

By the definition of the total variation distance, we can further bound the absolute difference as

|J(qt)− J(πt)| ≤
2ηι

1− γ
, (A.6)

Thus, we have J(πt)− J(qt) ≥ −2ηι/(1− γ) and similarly J(qt−1)− J(πt−1) ≥ −2ηι/(1− γ).
Combining with (A.4) gives us the iterative improvement bound as follows:

J(πt)− J(πt−1) = J(πt)− J(qt) + J(qt)− J(πt−1)

≥ ∆(t)− (1 + κ) · 22γC
2 ln(|F|/δ)

(1− γ)H
− 2ηι

1− γ
. (A.7)

A.2 Proof of Theorem 5.8

Proof. We are interested in the expected regret defined as BayesRegret(T, π, ϕ) := E[
∑T

t=1 Rt],
where Rt = V f∗

π∗ − V f∗

πt
.

Recall the definition of the reactive policy πt in CDPO (i.e. (4.2)) and the imagined best-performing
policy πft under a sampled model ft, i.e., πft = maxπ V

ft
π .

From the Posterior Sampling Lemma, we know that if ψ is the distribution of f∗, then for any
sigma-algebra σ(Ht)-measurable function g,

E[g(f∗) |Ht] = E[g(ft) |Ht]. (A.8)

The PS Lemma together with the law of total expectation gives us

E[V f∗

π∗ − V ft
πft

] = 0, (A.9)

where the equality holds since the true f∗ and the sampled ft are identically distributed when
conditioned onHt. Therefore, we obtain the expected regret for CDPO as

BayesRegret(T, π, ϕ) =

T∑
t=1

E[V ft
πft
− V ft

πt
+ V ft

πt
− V f∗

πt
]

=

T∑
t=1

E[V ft
πft
− V f̃t

πft
+ V f̃t

πft
− V ft

πt
+ V ft

πt
− V f∗

πt
]

≤
T∑

t=1

E[V ft
πft
− V f̃t

πft
+ V f̃t

qt − V
ft
qt + V ft

πt
− V f∗

πt
], (A.10)

where the inequality follows from the greediness of qt and the optimality of πt within a trust-region
centered around qt,i.e., V f̃t

πft
≤ V f̃t

qt for any πft and V ft
πt
≥ V ft

qt .

From the Simulation Lemma B.1, we have the bound of E
[∣∣V ft

π − V f̃t
π

∣∣] for any policy π as follows:

E
[∣∣V ft

π − V f̃t
π

∣∣] = γE
[∣∣E(s,a)∼ρ̃π

[(ft(·|s, a)− f̃t(·|s, a)) · V ft
π (s, a)]

∣∣]
≤ γE

[∣∣∣E(s,a)∼ρ̃π

[
Lt · ∥ft(s, a)− f̃t(s, a)∥2

]∣∣∣], (A.11)

where the first equation follows from Lemma B.1 and ρ̃π is the state-action visitation measure under
model f̃t, the second inequality follows the simulation property of continuous distribution and the
Lipschitz value function assumption.

16

We define the event A =

{
f̃t ∈

⋂
t
Ft, ft ∈

⋂
t
Ft

}
. Recall that the model is bounded by ∥f∥2 ≤ C.

Then we can reduce the expected regret to a sum of set widths:

E
[
V ft
π − V f̃t

π

]
≤ γE

[∣∣∣E(s,a)∼ρ̃π

[
E[Lt|A]ωt(s, a) +

(
1− P(A)

)
C
]∣∣∣]. (A.12)

We can further know from the construction of the confidence set (c.f. Lemma B.5) that P
(
f∗ ∈⋂

t
Ft

)
≥ 1− 2δ and P(A) ≥ 1− 2δ since ft, f∗ are identically distributed and P

(
f̃t ∈ Ft

)
= 1 as

Ft is centered at the least squares model for all t.

Besides, we have for

E[Lt|A] ≤
Lt

P (A)
≤ Lt

1− 2δ
. (A.13)

Plugging into (A.21), we have

E
[
V ft
π − V f̃t

π

]
≤ γE

[∣∣∣E(s,a)∼ρ̃π

[
Lt/(1− 2δ)ωt(s, a) + 2δC

]∣∣∣]
≤ γE

[
Lt

1− 2δ
·
∣∣∣E(s,a)∼ρ̃π

[
ωt(s, a)

]∣∣∣]+ 2γδC. (A.14)

Summing over T iterations gives us
T∑

t=1

E
[
V ft
π − V f̃t

π

]
≤ γ

T∑
t=1

E
[

Lt

1− 2δ
·
∣∣∣E(s,a)∼ρ̃π

[
ωt(s, a)

]∣∣∣]+ 2γδCT. (A.15)

By setting δ = 1/(2T), we obtain
T∑

t=1

E
[
V ft
π − V f̃t

π

]
≤ γLT

T − 1

T∑
t=1

Eρ̃π
[ωt(s, a)] + γC

≤ γLT

T − 1
·
(
1 +

1

1− γ
CdE + 4

√
TdEβT (1/(2T), α)

)
+ γC, (A.16)

where the last inequality follows from Lemma B.6 to bound the sum of the set width. We denote
dE := dimE(F , T−1) for notation simplicity.

Since (A.16) holds for all policy π, we have the bound for E[V ft
πft
−V f̃t

πft
] and the bound for E[V f̃t

qt −
V ft
qt]. What remains in the expected regret (A.19) is the E[V ft

πt
− V f∗

πt
] term, which can be bounded

similarly.

Specifically, we define another event B =

{
f∗ ∈

⋂
t
Ft, ft ∈

⋂
t
Ft

}
. Since by construction

P
(
f∗ ∈

⋂
t
Ft

)
≥ 1− 2δ and P

(
ft ∈

⋂
t
Ft

)
≥ 1− 2δ, we have P(B) ≥ 1− 4δ via a union bound.

This implies the following bound

T∑
t=1

E
[
V ft
π − V f∗

π

]
≤ γ

T∑
t=1

E
[

Lt

1− 4δ
·
∣∣∣E[ωt(s, a)

]∣∣∣]+ 4γδCT

≤ γLT

T − 2

T∑
t=1

Eρπ
[ωt(s, a)] + 2γC

≤ γLT

T − 2
·
(
1 +

1

1− γ
CdE + 4

√
TdEβT (1/(2T), α)

)
+ 2γC, (A.17)

17

where the second inequality follows from the choice of δ, i.e., δ = 1/(2T).

Plugging (A.16) and (A.17) into (A.19), we obtain the expected regret as

BayesRegret(T, π, ϕ) ≤
T∑

t=1

E[V ft
πft
− V f̃t

πft
+ V f̃t

qt − V
ft
qt + V ft

πt
− V f∗

πt
]

≤
(2γLT
T − 1

+
γLT

T − 2

)
·
(
1 +

1

1− γ
CdE + 4

√
TdEβT (1/(2T), α)

)
+ 4γC

=
γT (3T − 5)L

(T − 1)(T − 2)
·
(
1 +

1

1− γ
CdE + 4

√
TdEβT (1/(2T), α)

)
+ 4γC.

(A.18)

By setting α = 1/(T 2) and δ = 1/(2T) in Lemma B.5, we have the following confidence parameter
that can guarantee that f∗ is contained in the confidence set with high probability:

βT (1/(2T), 1/(T
2)) = 8σ2 log

(
2N

(
F , 1/(T 2), ∥·∥2

)
T
)
+ 2

(
8C +

√
8σ2 log(8T 3)

)
/T,

where recall that N
(
F , α, ∥·∥2

)
is the α-covering number of F with respect to the ∥ · ∥2-norm.

A.3 Proof of Theorem 5.1

Proof. Denote the imagined optimal policy πft under a sampled model ft as πft = maxπ V
ft
π . For

PSRL, its expected regret can be decomposed as

BayesRegret(T, πPSRL, ϕ) =

T∑
t=1

E[V f∗

π∗ − V f∗

πt
]

=

T∑
t=1

E[V f∗

π∗ − V f∗

πft
]

=

T∑
t=1

E[V ft
πft
− V f∗

πft
], (A.19)

where the second equality holds since the PSRL policy πt := πft for a sampled ft. The third equality
follows from (A.9), obtained by the Posterior Sampling Lemma and the law of total expectation.

Similar with the proof in A.2, we obtain from the Simulation Lemma B.1 that

E
[∣∣V ft

πft
− V f∗

πft

∣∣] = γE
[∣∣E(s,a)∼ρπ

[(ft(·|s, a)− f∗(·|s, a)) · V π(s, a)]
∣∣]

≤ γE
[∣∣∣E(s,a)∼ρπ

[
Lt · ∥ft(s, a)− f∗(s, a)∥2

]∣∣∣], (A.20)

where the equality follows from Lemma B.1 and the inequality follows the simulation property of
continuous distributions and the Lipschitz value function assumption.

Define the event E =

{
f∗ ∈

⋂
t
Ft, ft ∈

⋂
t
Ft

}
. The expected regret can be reduced to the sum of

set widths:

E
[
V ft
π − V f̃t

π

]
≤ γE

[∣∣∣E(s,a)∼ρπ

[
E[Lt|E]ωt(s, a) +

(
1− P(E)

)
C
]∣∣∣]

≤ γE
[∣∣∣E(s,a)∼ρπ

[
Lt/(1− 4δ)ωt(s, a) + 4δC

]∣∣∣]
≤ γE

[
Lt

1− 4δ
·
∣∣∣E(s,a)∼ρπ

[
ωt(s, a)

]∣∣∣]+ 4γδC, (A.21)

where the second inequality follows from the construction of confidence set that P
(
f∗ ∈

⋂
t
Ft

)
≥

1− 2δ and thus P(E) ≥ 1− 4δ.

18

Therefore, the PSRL expected regret can be bounded by

BayesRegret(T, πPSRL, ϕ) ≤ γ L

1− 4δ

T∑
t=1

E
[
ωt

]
+ 4TγδC, (A.22)

From the proof in A.2, the expected regret of CDPO is bounded by

BayesRegret(T, πCDPO, ϕ) ≤ γ L

1− 4δ

T∑
t=1

3E
[
ωt

]
+ 8TγδC, (A.23)

The claim is thus established.

B Useful Lemmas

Lemma B.1 (Simulation Lemma). For any policy π and transition f1, f2, we have

V f1
π − V f2

π = γ(I − γfπ2)−1(f1 − f2)V f1
π . (B.1)

Proof. Denote the expected reward under policy π as rπ. Let fπ be the transition matrix on state-
action pairs induced by policy π, defined as fπ(s,a),(s′,a′) := P (s′|s, a)π(a′|s′).

Then we have

Vπ = rπ + γfπVπ.

Since γ < 1, it is easy to verify that I − γfπ is full rank and thus invertible. Therefore, we can write

Vπ = (I − γfπ)−1rπ. (B.2)

Therefore, we conclude the proof by

V f1
π − V f2

π = V f1
π − (I − γfπ2)−1rπ

= (I − γfπ2)−1 ·
(
(I − γfπ2)− (I − γfπ1)

)
V f1
π

= γ(I − γfπ2)−1(fπ1 − fπ2)V f1
π

= γ(I − γfπ2)−1(f1 − f2)V f1
π ,

where the second equality follows from the Bellman equation.

Lemma B.2 (Performance Difference Lemma). For all policies π, π∗ and distribution µ over S , we
have

J(π)− J(π′) =
1

1− γ
· E(s,a)∼σπ

[Aπ′
(s, a)]. (B.3)

Proof. This lemma is widely adopted in RL. Proof can be found in various previous works, e.g.
Lemma 1.16 in [3].

Let Pπ(τ |s0 = s) denote the probability of observing trajectory τ starting at state s0 and then
following π. Then the value difference can be written as

V f∗

π (s)− V f∗

π′ (s) = Eτ∼Pπ(·|s0=s)

[∞∑
h=0

γhr(sh, ah)
]
− V f∗

π′ (s)

= Eτ∼Pπ(·|s0=s)

[∞∑
h=0

γh
(
r(sh, ah) + V f∗

π′ (sh)− V f∗

π′ (sh)
)]
− V f∗

π′ (s)

= Eτ∼Pπ(·|s0=s)

[∞∑
h=0

γh
(
r(sh, ah) + γV f∗

π′ (sh+1)− V f∗

π′ (sh)
)]

19

Following the law of iterated expectations, we obtain

V f∗

π (s)− V f∗

π′ (s) = Eτ∼Pπ(·|s0=s)

[∞∑
h=0

γh
(
r(sh, ah) + γE[V f∗

π′ (sh+1)|sh, ah]− V f∗

π′ (sh)
)]

= Eτ∼Pπ(·|s0=s)

[∞∑
h=0

γh
(
Qf∗

π′ (sh, ah)− V f∗

π′ (sh)
)]

= Eτ∼Pπ(·|s0=s)

[∞∑
h=0

γhAf∗

π′ (sh, ah)
]
, (B.4)

where the third equation rearranges terms in the summation via telescoping, and the fourth equality
follows from the law of total expectation.

From the definition of objective J(π) in (2.3), we obtain

J(π)− J(π′) = Es0∼ζ [V
f∗

π (s0)− V f∗

π′ (s0)]

=
1

1− γ
E(s,a)∼σπ

[Aπ′
(s, a)]. (B.5)

Lemma B.3 (Performance Difference and Model Error). For any two policies π1 and π2, it holds that

J(π1)− J(π2) = Es∼ζ

[
V f
π1
(s)− V f

π2
(s)

]
− γ

2(1− γ)

(
Eρπ1

[∥∥f(·|s, a)− f∗(·|s, a)∥∥
1

]
+ Eρπ2

[∥∥f(·|s, a)− f∗(·|s, a)∥∥
1

])
.

Proof. The proof can be established by combining the Performance Difference Lemma and the
Simulation Lemma. We refer to Corollary 3.1 in [48] or Lemma A.3 in [59] for a detailed proof.

Lemma B.4 (Least Squares Generalization Bound). Given a datasetH = {xi, yi}ni=1 where xi ∈ X
and xi, yi ∼ ν, and yi = f∗(xi)+ϵi. Suppose |yi| ≤ Y and ϵi is independently sampled noise. Given
a function class F : X → [0, Y], we assume approximate realizable, i.e., minf∈F Ex∼ν

[
|f∗(x)−

f(x)|2
]
≤ ϵapprox. Denote f̂ as the least square solution, i.e., f̂ = argminf∈F

∑n
i=1

(
f(xi) − yi

)2
.

With probability at least 1− δ, we have

Ex∼ν

[(
f̂(x)− f∗(x)

)2] ≤ 22Y 2 ln(|F|/δ)
n

+ 20ϵapprox. (B.6)

Proof. The result is standard and can be proved by using the Bernstein’s inequality and union bound.
Detailed proof can be found at Lemma A.11 in [3].

Lemma B.5 (Confidence sets with high probability). If the control parameter βt(δ, α) is set to

βt(δ, α) = 8σ2 log(N(F , α, ∥·∥2)/δ) + 2αt
(
8C +

√
8σ2 log(4t2/δ)

)
, (B.7)

then for all δ > 0, α > 0 and t ∈ N, the confidence set Ft = Ft(βt(δ, α)) satisfies:

P
(
f∗ ∈

⋂
t

Ft

)
≥ 1− 2δ. (B.8)

Proof. See [43] Proposition 5 for a detailed proof.

Lemma B.6 (Bound of Set Width Sum). If {βt|t ∈ N} is nondecreasing with Ft = Ft(βt) and
∥f∥2 ≤ C for all f ∈ F , then finite-horizon MDP we have

T∑
t=1

H∑
h=1

ωt(sh, ah) ≤ 1 +HC dimE(F , T−1) + 4
√
dimE(F , T−1)βTT , (B.9)

where ωt(s, a) = supf,f∼Ft
∥f(s, a)− f(s, a)∥2.

Proof. See [43] Proposition 6 for a detailed proof.

20

C Limitations of Eluder Dimension

In Theorem 5.8, the eluder dimension dE appears in the Bayes expected regret bound to capture how
effectively the observed samples can extrapolate to unobserved transitions.

For some specific function classes, Osband et al. [43] provide the corresponding eluder dimension
bound, e.g., for (generalized) linear function classes, quadratic function class, and for finite MDPs,
c.f. Proposition 1-4 in [43].

However, for non-linear models, Dong et al. [13] show that the ε-eluder dimension of one-layer neural
networks is at least exponential in model dimension. Similar results are also established in [33]. We
refer to Section 5 in [13] or Section 4 in [33] for details and more explanations.

D Additional Related Work

Some MBRL work also concerns iterative policy improvement. SLBO [35] provides a trust-region
policy optimization framework based on OFU. However, the conditions for monotonic improvement
cannot be satisfied by most parameterized models [35, 13], which leads to a greedy algorithm in
practice. Prior work that shares similarities with ours contains DPI [59] and GPS [31, 39] as dual
policy optimization procedures are adopted. Both DPI and GPS leverage a locally accurate model
and use different objectives for imitating the intermediate policy within a trust-region. However,
the policy imitation procedure updates the policy parameter in a supervised manner, which poses
additional challenges for effective exploration, resulting in unknown convergence results even with a
simple model class. In contrast, CDPO by taking the epistemic uncertainty into consideration can be
shown to achieve global optimality. In fact, greedy model exploitation is provably optimal only in
very limited cases, e.g., linear-quadratic regulator (LQR) settings [36].

OFU-RL has shown to achieve an optimal sublinear regret when applied to online LQR [1], tabular
MDPs [19] and linear MDPs [22]. Among them, HUCRL [10] is a deep algorithm proposed to
deal with the joint optimization intractability in (3.1). Besides, Russo and Van Roy [49, 50] unify
the bounds in various settings (e.g., finite or linear MDPs) by introducing an additional model
complexity measure — eluder dimension. Other complexity measure include witness rank [60], linear
dimensionality [66] and sequential Rademacher complexity [13].

E Algorithm Instantiations

The model-based policy optimization solver MBPO(π, {f},J) in Algorithm 1 can be instantiated
as one of the following algorithms, Dyna-style policy optimization in Algorithm 2, model-based
back-propagation in Algorithm 3, and model predictive control policy optimization in Algorithm 4. By
default, MBPO is instantiated as the Dyna solver (i.e. Algorithm 2) in our MuJoCo experiments and as
the policy iteration solver in our N -Chain MDPs experiments. We note that the instantiations are not
restricted to the listed algorithms, and many other MBPO algorithms that augment policy learning with
a predictive model can also be leveraged, e.g., model-based value expansion [15, 6]. In the Referential
Update step where no input policy exists in MBPO(·, f̂LS

t , (4.1), we initialize policy π = πt−1, i.e. the
reactive policy from the last iteration.

Dyna. Dyna involves model-generated data and optimizing the policy with any model-free RL method,
e.g., REINFORCE or actor-critic [28]. The state-action value can be estimated by learning a critic
function or unrolling the model. In Constrained Conservative Update, the input objective function
J is (4.2), which is with constraints. Thus, the Lagrangian multiplier is introduced, similar to the
model-free trust-region algorithms [53, 54, 2].

Back-Propagation Through Time. BPTT [30, 64] is a first-order model-based policy optimization
framework based on pathwise gradient (or reparameterization gradient) [58]. There are also several
variants including Stochastic Value Gradients (SVG) [18], Model-Augmented Actor-Critic (MAAC)
[9], and Probabilistic Inference for Learning COntrol (PILCO) [12]. Specifically, the policy parameters
are updated by directly computing the derivatives of the performance with respect to the parameters.
When the optimization of objective function is constrained, the accumulating step (Algorithm 3

21

Algorithm 2 Dyna Model-Based Policy Optimization
Input: Policy π, model set {f}, objective function J .

1: Initialize a simulation data buffer D̂
2: Sample a batch of initial states from the initial distribution ζ
3: ▷ Data simulation
4: for initial state sample s0 do
5: for model f in model set {f} do
6: for timestep h = 1, ...,H do
7: Sample action âh ∼ π(·|ŝh)
8: Sample simulation state ŝh+1 ∼ f(ŝh, âh)
9: Append simulation data to buffer D̂ = D̂ ∪ (ŝh, âh, rh, ŝh+1)

10: end for
11: end for
12: end for
13: ▷ Policy optimization with any model-free algorithm ModelFree
14: Objective optimization of policy on the simulated data π ← ModelFree(D̂, π)

Line 9) can be L← L+ γhr(ŝh, âh)− λDKL, where λ is the Lagrangian multiplier and DKL is the
corresponding KL constraint.

Algorithm 3 Model-Based Back-Propagation Policy Optimization
Input: Policy π, model set {f}, objective function J .

1: Initialize a simulation data buffer D̂
2: Start from initial state s0
3: Reset L← 0
4: ▷ Data simulation
5: for model f in model set {f} do
6: for timestep h = 1, ...,H do
7: Sample action âh ∼ π(·|ŝh)
8: Sample simulation state ŝh+1 ∼ f(ŝh, âh)
9: Accumulate reward and constraint to L

10: end for
11: end for
12: ▷ Policy optimization
13: Compute policy gradient with back-propagation through time
14: Objective optimization of policy π ← PolicyGradient

Model Predictive Control Policy Optimization. MPC is a planning framework that directly gener-
ates optimal action sequences under the model. Different from the above model-augmented policy
optimization methods, MPC policy optimization directly generates optimal action sequences under
the model and then distills the policy. Specifically, the pseudocode in Algorithm 4 begins with initial
actions generated by the policy. Then with a shooting method, e.g., the cross-entropy method (CEM),
the actions are refined and the policy that generates these optimal actions are distilled. Below, the
algorithm to obtain the refined actions EliteActions can be CEM with action noise added to the
action or policy parameter, i.e., POPLIN-A and POPLIN-P in [63]. The policy can be updated by
UpdatePolicy using behavior cloning.

Policy Iteration for Tabular MDPs. In tabular settings where the state space S and action space
A are discrete and countable, we can perform policy iteration under each model in the model set
{f}. Here, the model is the tabular representation instead of function approximators. Based on the
state-action values under various models, the optimal action at each state is the one that maximizes
the weighted average of the values within the constraint of total variation distance.

22

Algorithm 4 Model Predictive Control Policy Optimization
Input: Policy π, model set {f}, objective function J , algorithm to update actions EliteActions,
algorithm to update policy UpdatePolicy.

1: Start from initial state s0
2: Reset J ← 0
3: ▷ Model-based planning
4: for model f in model set {f} do
5: for timestep h = 1, ...,H do
6: Sample action âh ∼ π(·|ŝh)
7: Sample simulation state ŝh+1 ∼ f(ŝh, âh)
8: Accumulate reward and constraint to J
9: end for

10: end for
11: a← EliteActions(J, â1:N)
12: ▷ Policy distillation
13: π ← UpdatePolicy(a)

F Experimental Settings and Results in N -Chain MDPs

F.1 Settings of MuJoCo Experiments

In the MuJoCo experiments, we use a 5-layer neural network to approximate the dynamical model.
We use deterministic ensembles [8] to capture the model epistemic uncertainty. Specifically, different
ensembles are learned with independent transition data to construct the 1-step ahead confidence
interval at every timestep. Each ensemble is separately trained using Adam [26]. And the number of
ensemble heads can be set to 3, 4, or, 5, each of which is shown to be able to provide considerable
performance in our experiments. All the experiments are repeated with 6 random seeds.

Since neural networks are not calibrated in general, i.e., the model uncertainty set is not guaranteed
to contain the real dynamics, we follow HUCRL [10] to re-calibrate [29] the model. Our MuJoCo
code is also built upon the HUCRL GitHub repository.

When using the Dyna model-based policy optimization, the number of gradient steps for each
optimization procedure in an iteration is set to 20. And we empirically find that the KL divergence
(or total variance) constraint makes the algorithm more efficient when computing the argmax in the
optimization step, since optimizing from πt−1 at iteration t needs fewer policy gradient steps if the
policy update is constrained within a certain trust region.

The task-specific and task-common settings and parameters are listed below in Table 1.

Table 1: Experimental parameters.
Inverted Pendulum Pusher Half-Cheetah

episode length H 200 150 1000
dimension of state 4 23 18

dimension of action 1 7 6
action penalty 0.001 0.1 0.1
hidden nodes (200, 200, 200, 200, 200)

activation function Swish
optimizer Adam

learning rate 10−3

F.2 Experiments in N -Chain MDPs

Besides the experiments in MuJoCo, we also conduct tabular experiments in theN -Chain environment
that is proposed in [37]. Specifically, there are in total 2 actions and N states in an MDP. The initial
state is s1 and the agent can choose to go left or right at each of the N states. The left action always
succeeds and moves the agent to the left state, giving reward r ∼ N (0, δ2). Taking the right action at

23

state s1, . . . , sN−1 gives reward r ∼ N (−δ, δ2) and succeeds with probability 1− 1/N , moving the
agent to the right state and otherwise moving the agent to the left state. Taking the right action at sN
gives reward r ∼ N (1, δ2) and moves the agent back to s1 with probability 1− 1/N .

We set δ = 0.1 exp (−N/4), such that going right is the optimal action at least up to N = 40. As the
number of statesN is increasing, the agent needs deep exploration (e.g. guided by uncertainty) instead
of dithering exploration (e.g. epsilon-greedy exploration), such that the agent can keep exploring
despite receiving negative rewards [45].

Figure 6: Illustration of the N -Chain MDP. Blue arrows correspond to action right (optimal) and red
arrows correspond to action left (suboptimal). The figure is copied from [37].

For this reason, we evaluate the proposed algorithm CDPO and compare it with other Bayesian RL
algorithms, including Bayesian Q-Learning (BQL) [11], Posterior Sampling for RL (PSRL) [42], the
Uncertainty Bellman Equation (UBE) [46] and Moment Matching (MM) approach [37]. For CDPO,
the dual optimization steps are solved by policy iteration, and the conservative update is performed
within the total variation distance η = 0.2 (c.f. Policy Iteration for Tabular MDPs in Appendix E). We
choose conjugate priors to represent the posterior distribution: we use a Categorical-Dirichlet model
for discrete transition distribution at each (s, a), and a Normal-Gamma (NG) model for continuous
reward distribution at each (s, a, s′).

Figure 7: Posterior evolution of CDPO algorithm in the 8-Chain MDP.

Evolution of Posterior. Figure 7 demonstrates the evolution of the posterior of the CDPO algorithm
in an 8-Chain MDP. As training progresses the posteriors concentrate on the true optimal state-action
values and the behavior policy converges on the optimal one. The fast reduction of uncertainty is
central to achieving principled and efficient exploration.

Compared to the posterior evolution of the PSRL algorithm corresponding to the optimal actions,
i.e. the bottom row of curves in Figure 8, the expected value estimates of CDPO are closer to the
ground-truth, and the variance is also smaller. Notably, the variance of CDPO might be higher for
suboptimal actions, e.g., s = 8, a = left (the last image of the first row in Figure 7). It is due to the
conservative nature of CDPO that it only cares about the expected value, instead of the value of a
sampled (imperfect) model as in PSRL. In other words, as long as the uncertainty is large, the PSRL
agents can take suboptimal actions to explore the uninformative regions, which causes the inefficient
over-exploration issue.

24

Figure 8: Posterior evolution of PSRL algorithm in the 8-Chain MDP.

Cumulative Regret. We compare CDPO and previous algorithms on the N -Chain MDPs with
various state sizes N by measuring the cumulative regret of an oracle agent following the optimal
policy. The results are shown in Figure 9. To make the performances comparable on the same scale,
we also provide the normalized regret in Figure 10.

We observe that when the size of state space N is relatively smaller, e.g. N ≤ 5, CDPO, PSRL,
BQL, and MM algorithms achieve sublinear regret. The performances of these algorithms are also
comparable, showing the necessity of deep exploration. On the contrary, Q-Learning which only relies
on dithering exploration mechanisms fail to find the optimal strategy. However, as N is increasing,
where the exploration must be effective for the agent to continually explore despite receiving negative
rewards, the CDPO agents offer significantly lower cumulative regret and faster convergence.

(a) 5-Chain. (b) 10-Chain. (c) 15-Chain.

Figure 9: Comparison of cumulative regret.

Figure 10: Performance comparison in terms of regret to the oracle.

25

G Algorithmic Comparisons between MBRL Algorithms

We provide algorithmic comparisons of four MBRL frameworks, including greedy model exploitation
algorithms, OFU-RL, PSRL, and the proposed CDPO algorithm.

The differences mainly lie in the model selection and policy update procedures. The high-level
pseudocode is given in Algorithm 5, 6, 7 and 8. Among them, the greedy model exploitation algorithm
is a naive instantiation, where other instantiations can include the ones that augment Algorithm 5 with
e.g., a dual framework that involves a locally accurate model and a supervised imitating procedure
[59, 31]. In Algorithm 5, f̃t can either be a probabilistic model or a deterministic model (with additive
noise), which can be estimated via Maximum Likelihood Estimation (MLE) or minimizing the Mean
Squared Error (MSE), respectively.

Algorithm 5 Naive Greedy Model Exploitation

1: for iteration t = 1, ..., T do
2: Estimate model f̃t via MLE or MSE
3: Compute πt = argmaxπ V

f̃t
π

4: Execute πt in the real MDP
5: Ht+1 = Ht ∪ {sh,t, ah,t, sh+1,t}h
6: end for
7: return policy πT

Algorithm 6 OFU-RL Algorithm

1: for iteration t = 1, ..., T do
2: Construct confidence set Ft

3: Compute πt = argmaxπ,f∼Ft
V ft
π

4: Execute πt in the real MDP
5: Ht+1 = Ht ∪ {sh,t, ah,t, sh+1,t}h
6: end for
7: return policy πT

Algorithm 7 PSRL Algorithm

1: for iteration t = 1, ..., T do
2: Sample ft ∼ ϕ(· | Ht)
3: Compute πt = argmaxπ V

ft
π

4: Execute πt in the real MDP
5: Ht+1 = Ht ∪ {sh,t, ah,t, sh+1,t}h
6: end for
7: return policy πT

Algorithm 8 CDPO Algorithm

1: for iteration t = 1, ..., T do
2: Referential Update qt following (4.1)
3: Conservative Update πt following (4.2)
4: Execute πt in the real MDP
5: Ht+1 = Ht ∪ {sh,t, ah,t, sh+1,t}h
6: end for
7: return policy πT

H Societal Impact

For real-world applications, interactions with the system imply energy or economic costs. With
practical efficiency, CDPO reduces the training investment and is aligned with the principle of
responsible AI. However, as an RL algorithm, CDPO is unavoidable to introduce safety concerns,
e.g., self-driving cars make mistakes during RL training. Although CDPO does not explicitly address
them, it may be used in conjunction with safety controllers to minimize negative impacts, while
drawing on its powerful MBRL roots to enable efficient learning.

26

	Proofs
	Proof of Theorem 5.4
	Proof of Theorem 5.8
	Proof of Theorem 5.1

	Useful Lemmas
	Limitations of Eluder Dimension
	Additional Related Work
	Algorithm Instantiations
	Experimental Settings and Results in N-Chain MDPs
	Settings of MuJoCo Experiments
	Experiments in N-Chain MDPs

	Algorithmic Comparisons between MBRL Algorithms
	Societal Impact

