
SketchBoost: Fast Gradient Boosted Decision Tree for
Multioutput Problems, Supplementary Material

Leonid Iosipoi
Sber AI Lab and HSE University, Moscow, Russia

iosipoileonid@gmail.com

Anton Vakhrushev
Sber AI Lab, Moscow, Russia

btbpanda@gmail.com

1 Additional Information on Sketched Split Scoring Methods.

This section provides additional information on sketched split scoring methods from Section 3. Let
us recall that the scoring function S(R) for a leaf R is given by

SG(R) =

∥∥G⊤vR
∥∥2

|R|+ λ
, where G =

g11 g21 . . . gd1
...

...
. . .

...
g1n g2n . . . gdn

 and vR =

[x1 ∈ R]
...

[xn ∈ R]

 .

Here G ∈ Rn×d is the matrix whose i-th row consists of gradient values (g1i , . . . , g
d
i) =

∇al(yi, a)|a=Ft−1(xi), i = 1, . . . , n, and vR is the indicator vector of leaf R (its i-th component
equals 1 if xi ∈ R and 0 otherwise). To reduce the complexity of computing SG(R) in d, we
approximate SG(R) with SGk

(R) for some sketch matrix Gk ∈ Rn×k with k ≪ d. The error of this
approximation is measured by

Error(SG, SGk
) = sup

R

∣∣SG(R)− SGk
(R)

∣∣. (1)

The supremum here is taken over all possible leaves R, so that we aim at the optimization of the worst
case. The reason for this is that we want the proposed approximation to be universal and uniformly
accurate for all splits we will possibly iterate over.

Given the two matrices G and Gk, the optimization problem from (1) is an instance of Integer
Programming problem and hence is NP-complete. To obtain a closed-form solution, one needs to
iterate through all possible leaves R (that is, through all possible vectors vR with 0/1 entries). Since
the brute force is not an option in our case, we will replace this problem with a relaxed one and will
look for nearly-optimal solutions. We will show that reasonably good upper bounds on the error are
obtained when GG⊤ is well approximated with GkG

⊤
k in the operator norm; see Lemma 1.1. This

observation links our problem to Approximate Matrix Multiplication (AMM). In the next sections,
we review some deterministic and random methods from AMM and apply them to construct nearly
optimal sketches Gk.

Auxiliary Lemma. First let us state an auxiliary lemma which bounds the approximation error
from (1) with the distance between GG⊤ and GkG

⊤
k is the operator norm.

Lemma 1.1. Let G ∈ Rn×d and Gk ∈ Rn×k be any two matrices. Then

Error(SG, SGk
) ≤

∥∥GG⊤ −GkG
⊤
k

∥∥. (2)

Proof. A direct computation yields

sup
R

∣∣SG(R)− SGk
(R)

∣∣ = sup
R

∣∣∣∣∥G⊤vR∥2 − ∥G⊤
k vR∥2

|R|+ λ

∣∣∣∣
≤ sup

R

∥GG⊤ −GkG
⊤
k ∥∥vR∥2

|R|+ λ
.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Since λ > 0 and ∥vR∥2 ≤ |R| (vR has |R| non-zero entries equal to 1), the assertion follows.

Note that in practice we do not need to compute GG⊤. Lemma 1.1 only provides a theoretical bound
which will be used further. This bound is universal for all possible leafs R and involves only the
gradient matrix G and its sketch Gk.

1.1 Truncated SVD

We start with the Truncated SVD algorithm since, by the matrix approximation lemma (the Eckart-
Young-Mirsky theorem), it provides the optimal deterministic solution to AMM. The following
proposition summarizes its performance.
Proposition 1.2. Let G ∈ Rn×d be any matrix. Let also Gk ∈ Rn×k be the best k-rank approxima-
tion of G provided by the Truncated SVD. Then

Error(SG, SGk
) ≤ σ2

k+1(G),

where σ2
k+1(G) is (k + 1) largest singular value of G.

Proof. Let G = UΣV ⊤ be the full SVD of G. Let also Gk = UkΣk be the k-rank Truncated SVD of
G where we keep only largest k singular values and corresponding columns in U . Using Lemma 1.1,
we get

sup
R

∣∣SG(R)− SGk
(R)

∣∣ ≤ ∥∥GG⊤ −GkG
⊤
k

∥∥ =
∥∥UΣ2U⊤ − UkΣ

2
kU

⊤
k

∥∥.
Now the Eckart–Young–Mirsky theorem (for the spectral norm) yelds∥∥UΣ2U⊤ − UkΣ

2
kU

⊤
k

∥∥ = σ2
s+1(G),

which finishes the proof.

This proposition asserts that to speed up the split search, the gradient matrix G with d columns can
be replaced by its Truncated SVD estimate with k columns. As a result, the scoring function SG will
not change significantly provided that (k + 1) largest singular value of G is small. The parameter k
here can be chosen adaptively depending of the spectrum of G and values on SG.

We haven’t discussed Truncated SVD in the paper due to its computational complexity which is
O(min{nd2, n2d}); see [Golub and Van Loan, 1996]. As it was discussed in the Introduction, the
computational complexity of GBDT scales linearly in the output dimension d. Consequently, the
application of Truncated SVD will only increase this complexity. Further, we discuss methods with
less computational costs.

1.2 Top Outputs

Top Outputs is a straightforward method which constructs the sketch Gk by keeping k columns of
the gradient matrix G with the largest Euclidian norm.
Proposition 1.3. Let G ∈ Rn×d be any matrix. Let also Gk ∈ Rn×k be the sketch of G given by Top
Outputs. Then

Error(SG, SGk
) ≤

d∑
j=k+1

∥gij∥2.

Proof. Lemma 1.1 implies that

sup
R

∣∣SG(R)− SGk
(R)

∣∣ ≤ ∥∥GG⊤ −GkG
⊤
k

∥∥.
We rewrite GG⊤ and GkG

⊤
k as an outer product of their columns,

GG⊤ =

d∑
i=1

gig
⊤
i and GkG

⊤
k =

k∑
j=1

gijg
⊤
ij .

2

see Section 3.2 for notation. By construction, we have∥∥GG⊤ −GkG
⊤
k

∥∥ =

∥∥∥∥∥
d∑

j=k+1

gijg
⊤
ij

∥∥∥∥∥ ≤
d∑

j=k+1

∥∥gij∥∥2,
and the proof is complete.

This proposition shows that the approximation error is small when we cut out columns of G with a
small norm. Top Outputs method is less preferable than Truncated SVD in terms of the approximation
error. Nevertheless, here the sketch Gk can be computed in time O(nd) which is linear in d contrary
to the Truncated SVD.

1.3 Random Sampling

In Random Sampling, we sample columns of G according to probabilities proportional to their
Euclidian norm. Before we proceed, let us denote the stable rank of G by

sr(G) =
∥G∥2Fr

∥G∥2
,

where ∥ · ∥ denotes the spectral norm. The stable rank is a relaxation of the exact notion of rank.
Indeed, one always has sr(G) ≤ rank(G). But as opposed to the exact rank, it is stable under
small perturbations of the matrix. Both exact and stable ranks are usually referred to as the intrinsic
dimensionality of a matrix (in data-driven applications matrices tend to have small ranks).
Proposition 1.4. Let G ∈ Rn×d be any matrix. Let also Gk ∈ Rn×k be a sketch obtained by Random
Sampling. Then for any δ ∈ (0, 1), with probability at least 1− δ,

Error(SG, SGk
) ≤ CG,δ

∥G∥2√
k

,

where CG,δ is a constant depending on G and δ and is given by

CG,δ = 2

√
sr(G) log

(
4 sr(G)

δ

)
.

Proof. Lemma 1.1 yields

sup
R

∣∣SG(R)− SGk
(R)

∣∣ ≤ ∥∥GG⊤ −GkG
⊤
k

∥∥.
Using Theorem 4.2 from [Holodnak and Ipsen, 2015], we obtain that for any ε, δ ∈ (0, 1) with
probability at least 1− δ,

∥GG⊤ −GkG
⊤
k ∥ ≤ ε∥G∥2

provided that k ≥ 3 sr(G) ln(4rδ)/ε
2. Solving the latter inequality with respect to ε, we establish the

assertion.

This proposition states that the approximation error is, with high probability, of order ∥G∥2/
√
k

when the stable rank of G is small. There is no definite answer whether this bound is better than the
bounds obtained for other methods. The answer depends on the spectrum of G. Moreover, this bound
is of probabilistic nature. Nevertheless, Random Sampling has the computational complexity O(nd)
and is as fast as Top Outputs.

1.4 Random Projections

Random Projections samples k random linear combinations of columns of G to construct Gk.
Proposition 1.5. Let G ∈ Rn×d be any matrix. Let also Π ∈ Rd×k be a random matrix filled with
independently sampled N (0, k−1) entries. Set Gk = GΠ. Then for any δ ∈ (0, 1), with probability
at least 1− δ,

Error(SG, SGk
) ≤ CG,δ

∥G∥2√
k

,

3

where CG,δ is a constant depending on G and δ and is given by

CG,δ = c

√
sr(G) + ln

(
1

δ

)
.

for some absolute constant c > 0.

Proof. Using Lemma 1.1, we get

sup
R

∣∣SG(R)− SGk
(R)

∣∣ ≤ ∥∥GG⊤ −GkG
⊤
k

∥∥.
Now Theorem 1 from [Kyrillidis et al., 2014] implies that for any ε, δ ∈ (0, 1) with probability at
least 1− δ,

∥GG⊤ −GkG
⊤
k ∥ ≤ ε∥G∥2

provided that k ≥ c
(
sr(G) + ln ln(1ε) + ln(1δ)

)
/ε2. If we set

ε = c′
√

(sr(G) + ln(1δ))
/
k

for another absolute constant c′, the assertion follows.

Comparing to Proposition 1.4, this bound is slightly better in terms of CG,δ . But the sketch Gk here
can be computed only in time O(ndk) since it requires multiplication of G and Π. To speed up it,
one can use Fast JL transform [Ailon and Chazelle, 2009] or Sparse JL transform [Dasgupta, Kumar,
and Sarlos, 2010], [Kane and Nelson, 2014].

2 Experiment Details

We remind the reader that our Python-based GPU implementation of GBDT called Py-Boost is
available on GitHub1. The code to reproduce the experiments is also available on GitHub2.

2.1 About Py-Boost

As was mentioned in the original paper, Py-Boost is written in Python and follows the classic
scheme described in [Chen and Guestrin, 2016]. Meanwhile, it is a simplified version of gradient
boosting, and hence it has a few limitations. Some of these limitations have been made to speed up
computations, some — to remove unnecessary for our purposes features presented in modern gradient
boosting toolkits (for example, categorical data handling). The complete list of these limitations is the
following. Py-Boost supports: (a) computations only on GPU, (b) only the depth-wise tree growth
policy, (c) only numeric features (with possibly NaN values), and (d) only histogram algorithm for
split search (maximum number of bins for each feature is limited to 256).

Py-Boost uses GPU Python libraries such as CuPy, Numba, and CuML to speed up computations.
XGBoost and CatBoost frameworks are also evaluated in the GPU mode where possible (CatBoost
is evaluated on CPU on multilabel classification and multioutput regression tasks since it does not
support them on GPU).

2.2 Experiment design

In our numerical experiments, we compare SketchBoost Full, SketchBoost with sketching strategies
(Top Outputs, Random Sampling, Random Projections), XGBoost (v1.6.0) which uses the one-vs-all
strategy, and CatBoost (v1.0.5) which uses the single-tree strategy, and a popular deep learning model
for tabular data TabNet (v3.1.1). In this section, we discuss experiment design for GBDTs; details
for TabNet are given in Section 2.4 below. The experiments are conducted on 9 real-world publicly
available datasets from Kaggle, OpenML, and Mulan website for multiclass/multilabel classification
and multitask regression. Datasets details are given in Table 1.

1https://github.com/sb-ai-lab/Py-Boost
2https://github.com/sb-ai-lab/SketchBoost-paper

4

https://github.com/sb-ai-lab/Py-Boost
https://github.com/sb-ai-lab/sketchboost-paper
https://github.com/sb-ai-lab/Py-Boost
https://github.com/sb-ai-lab/SketchBoost-paper

Table 1: Dataset statistics.
Dataset Task Rows Features Classes/Labels/Targets Source Download

Otto multiclass 61 878 93 9 Kaggle Link
SF-Crime multiclass 878 049 10 39 Kaggle Link
Helena multiclass 65 196 27 100 OpenML Link
Dionis multiclass 416 188 60 355 OpenML Link

Mediamill multilabel 43 907 120 101 Mulan Link
MoA multilabel 23 814 876 206 Kaggle Link
Delicious multilabel 16 105 500 983 Mulan Link

RF1 multitask 9125 64 8 Mulan Link
SCM20D multitask 8966 61 16 Mulan Link

We remind the reader that if there is no official train/test split, we split the data into train and test
sets with ratio 80%-20%. Datasets taken from Kaggle have the official train/test split, but since the
platform hides the test set, we split the train test into the new train and test sets. Some of the datasets
required data preprocessing since they contained categorical and datetime features (they cannot be
handled by all of the GBDT implementations on the fly). The code for data preprocessing step is also
provided in the Supplementary Material.

Experiments are performed on the server under OS Ubuntu 18.04 with 4 NVidia Tesla V100 32 GB
GPUs, 48 cores CPU Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz and 386 GB RAM. We run
all the tasks on 8 CPU threads and single GPU if needed.

The experiments are divided into two the following parts:

• Parameter tuning. Here we optimize hyperparameters for XGBoost and CatBoost. For Sketch-
Boost we use the same hyperparameters as for CatBoost (to speed up the parameter tuning process;
we do not expect that hyperparameters will vary much since we use the same tree building strategy).
At this stage, parameters are estimated by 5-fold cross-validation using only the train set.

• Model evaluation. After the best parameters are found, we refit all the models using a longer
training time. The models are trained again by 5-fold cross-validation, but their quality is estimated
on the test set. The final score and time metrics are computed as the average of 5 values given by 5
models from the cross-validation loop.

During the parameter tuning, we use a slightly different setup (higher learning rate and less maximum
number of rounds) to evaluate more trials and find a better hyperparameter set. Table 2 provides the
associate details.

Table 2: Setup for the parameter tuning and model evaluation stages.
Stage Learning Rate Max Number of Rounds Early Stopping Rounds Quality Estimation

Parameter tuning 0.05 5000 200 cross-validation
Models evaluation 0.015 20000 500 test set

Since all the models are trained using cross-validation, the optimal number of boosting rounds is
determined adaptively by early stopping on the validation fold. In this setup, the test set is used only
for quality evaluation. As the primary quality measure, we use the cross-entropy for classification and
RMSE for regression. But for the sake of completeness, we also report the accuracy for classification
and R-squared for regression, see Section 2.5.

2.3 Hyperparameter tuning

It is quite challenging to perform a fair test among all the frameworks. Evaluation results depend
not only on the sketching method or the strategy used to handle a multioutput problem (one-vs-all or
single-tree), but also on hyperparameter setting and implementation details. To make our comparison
as fair as possible, we perform a hyperparameter optimization for XGBoost and CatBoost using

5

https://www.kaggle.com/c/otto-group-product-classification-challenge
https://www.kaggle.com/c/sf-crime
https://www.openml.org/d/41167
https://www.openml.org/d/41169
http://mulan.sourceforge.net/datasets-mlc.html
https://www.kaggle.com/c/lish-moa
http://mulan.sourceforge.net/datasets-mlc.html
http://mulan.sourceforge.net/datasets-mtr.html
http://mulan.sourceforge.net/datasets-mtr.html

the Optuna3 framework that performs a sequential model-based optimization by the Tree-structured
Parzen Estimator (TPE) method; see [Bergstra, Bardenet, Bengio, and Kégl, 2011]. The list of
optimized hyperparameters is given in Table 3.

Table 3: Optimized hyperparameters.
Parameter Framework Type Default value Search space Log

Maximal Tree Depth All Int 6 [3:12] False
Min Child Weight XGBoost Float 1e-5 [1e-5:10] True
Min Data In Leaf CatBoost Int 1 [1: 100] True
L2 leaf regularization All Float 1 [0.1: 50] True
Rows Sampling Rate All Float 1.0 [0.5: 1] False

Note: Minimal data in leaf and Minimal child weight both control the leaf size but in different
frameworks. It is the reason why they have different scales in the table.

The optimal number of rounds is determined by early stopping for the fixed learning rate; see
Section 2.2 for the details. There are some other parameters of GBDT that are not optimized since not
all the frameworks allow to change them. For example, the columns sampling rate cannot be changed
in CatBoost in the GPU mode, and only the depth-wise grow policy is supported in SketchBoost.

The tuning process is organized in the following way:

• Safe run. First, we perform a single run with a set of parameters that are listed in Table 3 as default.
These hyperparameters are close to the framework’s default settings and can be considered as a
safe option in the case when a good set of parameters is not found in the time limit.

• TPE search. Then we perform 30 iterations of parameters search with the Optuna framework. As
it was mentioned, the training time may be quite long for the multioutput tasks, so we limit the
search time to 24 hours in order to finish it in a reasonable amount of time.

• Selection. Finally, we determine the best parameters as the ones that achieve the best performance
between all trials (both safe and TPE).

The best hyperparameters and the number of successful (finished in time) trials are given in Table 4.

2.4 Details on TabNet

Here we provide additional details on TabNet [Arik and Pfister, 2021]. We consider PyTorch (v1.7.0)-
based implementation pytorch-tabnet library (v3.1.1). The evaluation is performed on the same
datasets, under the same experiment setup including train/validation/test splits, and using the same
hardware as described in Section 2.2. TabNet hyperparameters are taken from the original paper
[Arik and Pfister, 2021] except the learning rate, batch size, and the number of epochs for train and
early stopping. These hyperparameters are tuned in the following way:

• The optimal learning rate is tuned using the Optuna framework from the range (1e− 5; 1e− 1) in
the log scale in the same way at it is described in Section 2.3 (one single safe run with learning
rate 2e− 2 and then TPE search for 10 trials with time limit of 24 hours). The best trial is selected
based on the cross-validation score and then it is evaluated on the test set.

• The optimal number of epochs is selected via early stopping with 16 epochs with no improve.
Maximal number of epochs is limited to 500.

• The batch size is selected depending on the dataset size: 256 for data with less than 50k rows, 512
for 50-100k rows, and 1024 for more then 100k rows.

The proposed values are quite typical for tabular data according to [Gorishniy, Rubachev, Khrulkov,
and Babenko, 2021], [Fiedler, 2021], and [Arik and Pfister, 2021]. The unsupervised pretrain
proposed in the paper is also used on each cross-validation iteration. The selected hyperparameters
are listed in the Table 5 below.

3https://github.com/optuna/optuna

6

https://github.com/optuna/optuna

Table 4: Results for hyperparameter optimization.
Dataset Framework Min Min Rows sampling Max L2 leaf Completed

data in leaf child weight rate depth regularization trials

Otto CatBoost 47 – 0.89 10 3.83 31
XGBoost – 0.00001 0.58 12 23.57 31

SF-Crime CatBoost 2 – 0.94 11 2.65 31
XGBoost – 1.25682 0.92 12 8.37 24

Helena CatBoost 2 – 0.55 6 12.77 31
XGBoost – 0.33734 0.50 6 23.33 31

Dionis CatBoost 1 – 1.0 6 1.0 6
XGBoost – 0.00001 1.0 6 1.0 3

Mediamill CatBoost 10 – 0.76 8 11.16 8
XGBoost – 1.90469 0.68 12 39.30 31

MoA CatBoost 30 – 0.88 4 1.03 10
XGBoost – 0.00342 0.93 3 0.37 31

Delicious CatBoost 76 – 0.62 12 13.05 5
XGBoost – 0.06235 0.72 11 33.22 10

RF1 CatBoost 1 – 0.85 10 9.96 31
XGBoost – 0.00431 0.68 5 12.22 31

SCM20D CatBoost 5 – 0.99 12 6.57 31
XGBoost – 9.93770 0.80 6 1.44 31

Table 5: Results for hyperparameter optimization for TabNet.
Dataset Learning Batch Completed

rate size trials

Otto 0.0394 512 11

SF-Crime 0.0200 1024 3

Helena 0.0080 512 9

Dionis 0.0110 1024 7

Mediamill 0.0315 256 11

MoA 0.0200 256 10

Delicious 0.0231 256 11

RF1 0.0200 256 11

SCM20D 0.0200 256 11

7

2.5 Additional experimental results

Figure 1: Dependence of test errors (cross-entropy for classification and RMSE for regression)
on sketch dimension k for all datasets.

Figure 2: Training time per fold in seconds for the best sketching dimension k.

8

Table 6: Test errors (cross-entropy for classification and RMSE for regression) ± their standard deviation.
Dataset

Algorithm Otto SF-Crime Helena Dionis Mediamill MoA Delicious RF1 SCM20D
XGBoost 0.4599 2.2208 2.5889 0.3502 0.0758 0.0166 0.0620 0.9250 89.1045

±0.0027 ±0.0008 ±0.0031 ±0.0019 ±1.1e-04 ±2.1e-05 ±3.3e-05 ±0.0307 ±0.4950
CatBoost 0.4658 2.2036 2.5698 0.3085 0.0754 0.0161 0.0614 0.8975 90.9814

±0.0032 ±0.0005 ±0.0025 ±0.0010 ±1.1e-04 ±2.6e-05 ±5.2e-05 ±0.0383 ±0.3652
TabNet 0.5363 2.4819 2.7197 0.4753 0.0859 0.0193 0.0664 3.7948 87.3655

±0.0063 ±0.0199 ±0.0235 ±0.0126 ±3.3e-03 ±3.0e-04 ±8.0e-04 ±1.5935 ±1.3316
SketchBoost Full 0.4697 2.2067 2.5865 0.3114 0.0747 0.0160 0.0619 1.1687 91.0142

±0.0029 ±0.0003 ±0.0025 ±0.0008 ±1.3e-04 ±9.0e-06 ±5.5e-05 ±0.0835 ±0.3396

Top Outputs k = 1 0.4975 2.2282 2.5923 0.3339 0.0745 0.0169 0.0624 1.3151 90.7613
±0.0030 ±0.0004 ±0.0024 ±0.0017 ±1.3e-04 ±4.1e-05 ±6.3e-05 ±0.0721 ±0.3988

k = 2 0.4964 2.2284 2.5938 0.3217 0.0745 0.0168 0.0624 1.2823 89.5284
±0.0041 ±0.0001 ±0.0025 ±0.0019 ±1.4e-04 ±2.0e-05 ±5.1e-05 ±0.1363 ±0.8352

k = 5 0.4715 2.2183 2.5974 0.3155 0.0745 0.0168 0.0623 1.1860 88.7442
±0.0035 ±0.0005 ±0.0018 ±0.0013 ±1.1e-04 ±1.6e-05 ±6.3e-05 ±0.1365 ±0.6345

k = 10 – 2.2116 2.5987 0.3151 0.0746 0.01660 0.0622 – 89.8727
– ±0.0025 ±0.0019 ±0.0014 ±1.0e-04 ±2.5e-05 ±5.5e-05 – ±0.3126

k = 20 – 2.2070 2.5945 0.3146 0.0747 0.0163 0.0622 – –
– ±0.0005 ±0.0020 ±0.0010 ±1.1e-04 ±2.2e-05 ±6.2e-05 – –

Random Sampling k = 1 0.4677 2.2140 2.5693 0.3175 0.0745 0.0163 0.0622 1.1495 87.9358
±0.0019 ±0.0003 ±0.0022 ±0.0009 ±1.3e-04 ±2.0e-05 ±6.4e-05 ±0.0674 ±0.4111

k = 2 0.4636 2.2083 2.5710 0.3089 0.0745 0.0162 0.0621 0.9965 86.7842
±0.0025 ±0.0003 ±0.0032 ±0.0012 ±9.1e-05 ±1.5e-05 ±5.5e-05 ±0.1011 ±0.5546

k = 5 0.4642 2.2052 2.5730 0.3055 0.0745 0.0161 0.0620 0.9944 86.2964
±0.0020 ±0.0005 ±0.0024 ±0.0012 ±9.8e-05 ±1.5e-05 ±5.6e-05 ±0.1014 ±0.4398

k = 10 – 2.2041 2.5757 0.3051 0.0745 0.0161 0.0619 – 86.6865
– ±0.0005 ±0.0018 ±0.0009 ±1.0e-04 ±1.5e-05 ±5.2e-05 – ±0.2829

k = 20 – 2.2037 2.5759 0.3040 0.0745 0.0160 0.0619 – –
– ±0.0004 ±0.0023 ±0.0013 ±1.1e-04 ±1.0e-05 ±5.9e-05 – –

Random Projection k = 1 0.4566 2.2096 2.5674 0.2848 0.0743 0.0160 0.0621 0.9058 86.1442
±0.0023 ±0.0005 ±0.0039 ±0.0012 ±1.1e-04 ±1.0e-05 ±5.9e-05 ±0.0442 ±0.4824

k = 2 0.4583 2.2076 2.5673 0.2850 0.0743 0.0160 0.0621 0.9056 85.8061
±0.0028 ±0.0006 ±0.0026 ±0.0011 ±1.2e-04 ±2e-05 ±5.9e-05 ±0.0581 ±0.5533

k = 5 0.4607 2.2052 2.5681 0.2866 0.0743 0.0160 0.0620 0.9193 85.8565
±0.0031 ±0.0006 ±0.0019 ±0.0013 ±1.2e-04 ±1.9e-05 ±5.6e-05 ±0.0781 ±0.3116

k = 10 – 2.2043 2.5713 0.2881 0.0743 0.0160 0.0620 - 86.3126
– ±0.0003 ±0.0024 ±0.0010 ±1.1e-04 ±1.3e-05 ±5.9e-05 - ±0.3710

k = 20 – 2.2038 2.5730 0.2907 0.0743 0.0160 0.062 – –
– ±0.0004 ±0.0030 ±0.0009 ±1.2e-04 ±6.0e-06 ±6.2e-05 – –

Table 7: Test errors (accuracy for classification and R-squared for regression) ± their standard deviation.
Dataset

Algorithm Otto SF-Crime Helena Dionis Mediamill MoA Delicious RF1 SCM20D
XGBoost 0.8238 0.3326 0.3770 0.9193 0.9746 0.9971 0.9826 0.9997 0.9257

±0.0010 ±0.0003 ±0.0012 ±0.0007 ±4.3e-05 ±8.0e-06 ±6.0e-06 ±3.2e-05 ±0.0007
CatBoost 0.8213 0.3352 0.3808 0.9234 0.9744 0.9971 0.9825 0.9997 0.9224

±0.0012 ±0.0008 ±0.0017 ±0.0003 ±7.6e-05 ±5.0e-06 ±1.7e-05 ±4.1e-05 ±0.0006
TabNet 0.7972 0.2550 0.3503 0.8936 0.9709 0.9967 0.9816 0.9932 0.9281

±0.0030 ±0.0037 ±0.0060 ±0.0032 ±1.0e-03 ±5.3e-05 ±9.5e-05 ±0.0037 ±0.0022
SketchBoost Full 0.8223 0.3343 0.3783 0.9227 0.9747 0.9971 0.9824 0.9995 0.9224

±0.0021 ±0.0007 ±0.0011 ±0.0004 ±6.8e-05 ±6.0e-06 ±1.4e-05 ±5.5e-05 ±0.0007

Top Outputs k = 1 0.8172 0.3275 0.3773 0.9192 0.9747 0.9970 0.9823 0.9992 0.9228
±0.0022 ±0.0006 ±0.0014 ±0.0006 ±4.9e-05 ±7.0e-06 ±2.0e-05 ±6.1e-05 ±0.0006

k = 2 0.8171 0.3275 0.3772 0.9214 0.9747 0.9970 0.9823 0.9993 0.9249
±0.0016 ±0.0008 ±0.0021 ±0.0004 ±4.7e-05 ±4.0e-06 ±2.0e-05 ±1.2e-04 ±0.0013

k = 5 0.8210 0.3315 0.3760 0.9229 0.9747 0.9970 0.9823 0.9994 0.9262
±0.0016 ±0.0003 ±0.0019 ±0.0004 ±5.8e-05 ±1.2e-05 ±1.9e-05 ±9.2e-05 ±0.0010

k = 10 – 0.3333 0.3757 0.9229 0.9747 0.997 0.9824 – 0.9243
– ±0.0003 ±0.0013 ±0.0003 ±2.8e-05 ±5.0e-06 ±1.5e-05 – ±0.0005

k = 20 – 0.3349 0.3766 0.9227 0.9747 0.9971 0.9824 – –
– ±0.0006 ±0.0008 ±0.0007 ±6.5e-05 ±9.0e-06 ±1.6e-05 – –

Random Sampling k = 1 0.8228 0.3320 0.3821 0.9224 0.9746 0.9971 0.9824 0.9995 0.9276
±0.0011 ±0.0002 ±0.0009 ±0.0005 ±5.6e-05 ±5e-06 ±2.0e-05 ±5.4e-05 ±0.0007

k = 2 0.8236 0.3338 0.3827 0.9243 0.9746 0.9971 0.9824 0.9996 0.9293
±0.0025 ±0.0003 ±0.0015 ±0.0003 ±4.8e-05 ±5.0e-06 ±8.0e-06 ±6.3e-05 ±0.0009

k = 5 0.8231 0.3348 0.3795 0.9250 0.9746 0.9971 0.9824 0.9996 0.9301
±0.0018 ±0.0002 ±0.0022 ±0.0002 ±4.0e-05 ±1.2e-05 ±1.3e-05 ±6.0e-05 ±0.0007

k = 10 – 0.3351 0.3793 0.9250 0.9746 0.9972 0.9824 – 0.9295
– ±0.0004 ±0.0018 ±0.0002 ±4.1e-05 ±1.2e-05 ±8.0e-06 – ±0.0004

k = 20 – 0.3353 0.3795 0.9251 0.9746 0.9972 0.9824 – –
– ±0.0005 ±0.0017 ±0.0005 ±5.6e-05 ±9.0e-06 ±1.7e-05 – –

Random Projection k = 1 0.8258 0.3338 0.3834 0.9285 0.9747 0.9971 0.9824 0.9997 0.9304
±0.0010 ±0.0003 ±0.0033 ±0.0004 ±1.7e-05 ±6.0e-06 ±1.6e-05 ±3.7e-05 ±0.0008

k = 2 0.8255 0.3344 0.3836 0.9287 0.9748 0.9971 0.9824 0.9997 0.9309
±0.0023 ±0.0005 ±0.0019 ±0.0002 ±5.6e-05 ±3.0e-06 ±1.8e-05 ±4.4e-05 ±0.0008

k = 5 0.8251 0.3351 0.3835 0.9281 0.9748 0.9971 0.9824 0.9997 0.9308
±0.0023 ±0.0005 ±0.0018 ±0.0002 ±4.0e-05 ±1.1e-05 ±7.0e-06 ±5.4e-05 ±0.0005

k = 10 – 0.3355 0.3824 0.9279 0.9748 0.9971 0.9824 - 0.9301
– ±0.0003 ±0.0022 ±0.0002 ±4.0e-05 ±6.0e-06 ±9.0e-06 - ±0.0006

k = 20 – 0.3357 0.3805 0.9275 0.9747 0.9971 0.9824 – –
– ±0.0004 ±0.0025 ±0.0002 ±2.9e-05 ±5.0e-06 ±1.2e-05 – –

9

Table 8: Training time per fold in seconds for all sketching dimensions k.
Dataset

Algorithm Otto SF-Crime Helena Dionis Mediamill MoA Delicious RF1 SCM20D
XGBoost 1244 4016 1036 18635 2074 376 15795 315 1432
CatBoost 73 659 436 18600 10164 9398 20120 804 798
TabNet 903 2563 1196 1853 1231 672 2902 207 296
SketchBoost Full 131 1146 355 23919 1777 696 19553 413 597

Top Outputs k = 1 129 174 154 783 251 40 213 351 458
k = 2 126 207 151 810 276 45 229 364 476
k = 5 113 270 146 1003 313 59 274 369 499
k = 10 – 425 138 1293 386 69 375 – 551
k = 20 – 705 156 1889 529 103 575 – –

Random Sampling k = 1 104 198 180 835 263 61 230 347 485
k = 2 102 219 180 880 273 75 243 354 491
k = 5 116 299 185 1087 319 104 314 396 528
k = 10 – 422 198 1404 399 135 432 – 590
k = 20 – 676 213 2038 559 189 664 – –

Random Projection k = 1 89 136 109 419 235 26 212 331 466
k = 2 87 159 113 464 243 29 235 340 479
k = 5 107 233 116 629 294 39 295 393 528
k = 10 – 365 128 895 369 55 436 – 594
k = 20 – 612 149 1417 527 87 1259 – –

Table 9: Number of boosting iterations to convergence (for GBDTs).
(Although the number of iterations for XGBoost is small, it uses the one-vs-all strategy,

and therefore the actual amount of trees in the ensemble equals this number multiplied by the output size d.)
SketchBoost Baseline

Dataset Top Outputs Random Sampling Random Projection SketchBoost Full CatBoost XGBoost
(for the best k) (for the best k) (for the best k) (multioutput) (multioutput) (one-vs-all)

Multiclass classification
Otto (9 classes) 4799 5424 5201 4424 5534 2142
SF-Crime (39 classes) 3790 3726 3611 3754 3993 1212
Helena (100 classes) 15042 16975 11670 13492 11238 1563
Dionis (355 classes) 17039 17990 11509 18519 19858 2681

Multilabel classification
Mediamill (101 labels) 18623 19961 17826 17927 8983 1878
MoA (206 labels) 2606 5542 2093 2240 4239 471
Delicious (983 labels) 7063 8015 7541 6911 3956 1611

Multitask regression
RF1 (8 tasks) 16102 17076 16815 17001 19999 19994
SCM20D (16 tasks) 19992 19991 19993 19992 19998 19998

10

2.6 Comparison with GBDT-MO

Here we provide details on comparison of SketchBoost and CatBoost with GBDT-MO and GBDT-
MO (sparse) introduced in [Zhang and Jung, 2021]. The GBDT-MO implementation4 is evaluated
on CPU utilizing 8 threads per run (as it was done before). The experiment design and datasets
are taken from original paper [Zhang and Jung, 2021]. For all the evaluated algorithms, we use
hyperparameters provided in the original paper. For GBDT-MO, we use the best sparsity parameter
K which is also provided in the original paper. The only difference in our experiments is model
training and evaluation which is done using 5-fold cross-validation (see Section 2.2) instead of using
the test set for both early stopping and performance evaluation (as was done in the experiments for
GBDT-MO5). We argue the latter method leads to the effect of quality overestimation. We also note
that in the original paper results for GBDT-MO (sparse) are provided only for 4 datasets out of 6
datasets considered (and we also use only these 4 datasets). As it is done in the original paper, we use
accuracy as the performance measure. The experimental results are given below.

Table 10: Comparison with GBDT-MO. Test scores (accuracy for classification and
RMSE for regression) and their standard deviation for all sketching dimensions k.

Dataset

Algorithm MNIST Caltech NUS-WIDE MNIST-REG
(10 classes) (101 classes) (81 labels) (24 tasks)

CatBoost 0.9684±0.004 0.5049±0.0167 0.9893±0.0001 0.2708±0.0023

GBDT-MO Full 0.976±0.004 0.4469±0.059 0.9891±0.0002 0.2723±0.0026
GBDT-MO (sparse) 0.9758±0.0048 0.4796±0.0375 0.9892±0.0006 0.2736±0.0017

SketchBoost Full 0.973±0.0028 0.5549±0.008 0.9893±0.0002 0.266±0.0019

Random Sampling k = 1 0.973±0.0045 0.5704±0.0273 0.9892±0.0003 0.2671±0.0011
k = 2 0.975±0.0034 0.5704±0.0174 0.9891±0.0003 0.2678±0.0015
k = 5 0.9755±0.0042 0.5599±0.0146 0.9887±0.0002 0.2671±0.0012
k = 10 0.9753±0.0007 0.5623±0.0165 0.989±0.0002 0.2661±0.0019
k = 20 – 0.5691±0.0127 0.9889±0.0001 0.2665±0.0014

Random Projection k = 1 0.9737±0.0023 0.5623±0.0159 0.9897±0.0003 0.2657±0.0018
k = 2 0.9722±0.0037 0.5537±0.0064 0.9893±0.0004 0.2661±0.002
k = 5 0.974±0.0032 0.5605±0.0137 0.9896±0.0003 0.2658±0.0013
k = 10 0.9722±0.0045 0.5358±0.0157 0.9893±0.0004 0.2663±0.0007
k = 20 – 0.5488±0.0332 0.9892±0.0004 0.2654±0.0012

Table 11: Comparison with GBDT-MO. Training time per fold in seconds
for all sketching dimensions k.

Dataset

Algorithm MNIST Caltech NUS-WIDE MNIST-REG
(10 classes) (101 classes) (81 labels) (24 tasks)

CatBoost 156 136 13857 964

GBDT-MO Full 362 776 2606 210
GBDT-MO (sparse) 399 1312 3660 163

SketchBoost Full 46 13 87 90

Random Sampling k = 1 66 15 36 110
k = 2 99 42 145 85
k = 5 102 40 148 98
k = 10 88 41 151 120
k = 20 – 40 158 78

Random Projection k = 1 45 16 72 38
k = 2 70 13 71 38
k = 5 66 15 73 51
k = 10 70 14 49 44
k = 20 – 14 48 45

4https://github.com/zzd1992/GBDTMO
5https://github.com/zzd1992/GBDTMO-EX

11

https://github.com/zzd1992/GBDTMO
https://github.com/zzd1992/GBDTMO-EX

2.7 Experiment with synthetic dataset

The aim of this experiment is to illustrate the dependence of the time cost for training 100 trees on
the number of outputs for popular GBDT frameworks on GPU. To do this, we train each framework
twice on each task for 100 and 200 iterations and then calculate the difference in time. This allows
us to estimate the time costs of 100 boosting iterations regardless the constant time costs such as
features quantization and data transfer.

In more detail, since our goal is not to measure model quality and since we need alike datasets
that vary only in the output dimension, we consider synthetic datasets generated (with the same
feature parameters) by the algorithm proposed in [Guyon, 2003] and implemented in the scikit-learn
library (v1.0.2)6. The dataset features are generated with 2000k rows and 100 features (10 features ar
informative, 20 features are their linear combinations, and others are redundant). At each iteration,
the number of classes is changed over the grid {5, 10, 25, 50, 100, 250, 500}. After the dataset is
generated, we compute and report the time difference between 100 and 200 iterations for XGBoost,
CatBoost, and SketchBoost with Random Projections (sketch dimension k = 5). The hardware used
in this experiment is the same as described in Section 2.2. The main hyperparameters are chosen
to be similar for all boosting frameworks. Namely, (1) trees are grown with depth-wise policy with
maximal depth limited to 6, (2) row and column sampling is disabled, (3) learning rate is set to 0.01,
and (4) L2 regularization term is set to 1, L1 regularization is disabled.

References
Nir Ailon and Bernard Chazelle. The Fast Johnson–Lindenstrauss Transform and Approximate

Nearest Neighbors. SIAM Journal on Computing, 39:302–322, 2009.

Sercan Ö. Arik and Tomas Pfister. Tabnet: Attentive Interpretable Tabular Learning. Proceedings of
the AAAI Conference on Artificial Intelligence, 35(8):6679–6687, 2021.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for Hyper-Parameter
Optimization. In Proceedings of the 24th International Conference on Neural Information Pro-
cessing Systems, NIPS’11, pages 2546–2554. Curran Associates Inc., 2011.

Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pages 785–794. Association for Computing Machinery, 2016.

Anirban Dasgupta, Ravi Kumar, and Tamás Sarlos. A Sparse Johnson: Lindenstrauss Transform. In
Proceedings of the Forty-Second ACM Symposium on Theory of Computing, STOC ’10, pages
341–350. Association for Computing Machinery, 2010.

James Fiedler. Simple Modifications to Improve Tabular Neural Networks, 2021.

Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University Press,
third edition, 1996.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting Deep Learning
Models for Tabular Data. Advances in Neural Information Processing Systems, 34:18932–18943,
2021.

Isabelle Guyon. Design of experiments of the NIPS 2003 variable selection benchmark. In NIPS
2003 workshop on feature extraction and feature selection, volume 253, page 40, 2003.

John T. Holodnak and Ilse C. F. Ipsen. Randomized Approximation of the Gram Matrix: Exact
Computation and Probabilistic Bounds. SIAM Journal on Matrix Analysis and Applications, 36:
110–137, 2015.

Daniel M. Kane and Jelani Nelson. Sparser Johnson-Lindenstrauss Transforms. Journal of the ACM,
61(1), 2014.

6See the Scikit-learn documentation.

12

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html

Anastasios Kyrillidis, Michail Vlachos, and Anastasios Zouzias. Approximate Matrix Multiplication
with Application to Linear Embeddings. 2014 IEEE International Symposium on Information
Theory, pages 2182–2186, 2014.

Zhendong Zhang and Cheolkon Jung. GBDT-MO: Gradient-Boosted Decision Trees for Multiple
Outputs. IEEE Transactions on Neural Networks and Learning Systems, 32:3156–3167, 2021.

13

	Additional Information on Sketched Split Scoring Methods.
	Truncated SVD
	Top Outputs
	Random Sampling
	Random Projections

	Experiment Details
	About Py-Boost
	Experiment design
	Hyperparameter tuning
	Details on TabNet
	Additional experimental results
	Comparison with GBDT-MO
	Experiment with synthetic dataset

