
A Appendix

A.1 Forward simulation of programmable 3D snapshot microscope

3D sample

(pupil plane)

2D camera image

lens 1
lens 2

phase mask

f f f f

Figure 6: Diagram of a 4f optical model that is the basis for our simulated microscope Mϕ, showing
the Fourier plane in which we have the programmable and trainable 2D phase mask ϕ.

Here we describe our wave optics simulation of the microscope Mϕ, which we model as a 4f system
[36]. The 4f optical system consists of two lenses: the first spaced one focal length after the object
plane and the second spaced one focal length before the camera image plane (Figure 6). In between
these two lenses, we can place a phase mask to manipulate the light field before passing through the
second lens and forming an image on the camera sensor.

We are concerned here with fluorescence microscopy, meaning that the sources of light that we image
are individual fluorescent molecules, which we can model as point emitters. Because these molecules
emit incoherent light, the camera sensor in effect sums the contributions of each point emitter. In
order to model such an imaging system, we first need to address modeling a single point emitter’s
image on the camera.

We can analytically calculate the complex-valued light field one focal length after the first lens (which
we call the pupil plane) due to a point source centered at some plane z (where z is a distance from the
object plane z = 0). If the point source were centered (x = 0, y = 0) in the object focal plane z = 0,
we would have a plane wave at the pupil plane, but for the more general case of a point source at an
arbitrary plane z relative to the object plane z = 0, we can analytically calculate the complex-valued
light field entering the pupil plane:

upoint(k; z) = exp

[
i2πz

√(n
λ

)2

− ||k||22

]
(6)

where upoint is the incoming light field entering the pupil due to a point source centered in the plane at
z, k ∈ R2 denotes frequency space coordinates of the light field in the pupil plane, n is the refractive
index, and λ is the wavelength of light [36].

In this pupil plane, we can then apply a phase mask ϕ to the light field, which is modeled as a
multiplication of upoint(k; z) and eiϕ(k), the complex phase of the pupil function. The light field
exiting the pupil is therefore described by

upupil(k; z) = upoint(k; z)p(k) (7)
where p(k) is the pupil function, composed of an amplitude a(k) and phase ϕ(k):

p(k) = a(k)eiϕ(k) (8)

a(k) =

{
1 ||k||2 ≤

NA
λ

0 ||k||2 > NA
λ

(9)

where NA is the numerical aperture of the lens [36].

The light field at the camera plane can then be described by a Fourier transform [36]:
ucamera = F {upupil} (10)

14

The camera measures the intensity of this complex field:

s(x; z) = |ucamera(x; z)|2 (11)
where x ∈ R2 denotes spatial coordinates in the camera plane [36].

We can call this intensity s the point response function (PRF). If the shape of the PRF is translationally
equivariant in x, meaning that moving a point source in-plane creates the same field at the camera,
shifted by the corresponding amount, then we call this PRF a point spread function (PSF), which
we also refer to as an optical encoder. Note that axially translating the point source in z changes the
profile of the field at the camera, which allows our system to encode depth information through the
PSF [35].

In order to avoid edge effects during imaging, we simulate the PSF at a larger field of view, then crop
and taper the edges of the PSF:

staper = crop[s]⊙ t (12)

where t is a taper function created by taking the sigmoid of a distance transform divided by a
width factor controlling how quickly the taper goes to 0 at the edges and ⊙ denotes elementwise
multiplication. We intentionally simulate a larger field of view than the sample volume in order to
avoid edge artifacts. The purpose of the crop[·] is to restrict the PSF to the correct field of view. The
purpose of the tapering is to remove artifacts at the edges of the cropped PSF. After we compute
this cropped and tapered PSF, we also downsample staper to the size of the data v in order to save
memory.

Imaging is equivalent to the convolution of the incoming light field volume intensity v and the
cropped and tapered PSF staper for a given plane. At the camera plane, the light field intensity is
measured by the camera sensor. Therefore, we can describe the forward model as the following
convolution and integral over planes:

µc(x) =

∫∫
v(τx; z)staper(x− τx; z) dτx dz (13)

We then model shot noise of the camera sensor to produce the final image c, for which the appropriate
model is sampling from a Poisson distribution with a mean of µc [36]:

c ∼ Poisson (µc) (14)
However, because we cannot use the reparameterization trick to take pathwise derivatives through
the discrete Poisson distribution, we instead approximate the noise model with a rectified Gaussian
distribution:

ϵ ∼ N (0, 1) (15)
c ≈ max ([µc +

√
µcϵ] , 0) (16)

We now turn our attention to selecting the number of pixels used in the phase mask, i.e. the number
of parameters for Mϕ. We first need to determine the pixel size for Nyquist sampling the image
plane with an objective of a given NA (numerical aperture). For a given pixel size ∆x, we know that
in frequency space coordinates we will have a bandwidth of 1

∆x , spanning − 1
2∆x to 1

2∆x . Because
we must have

||k||2 ≤
NA

λ
(17)

we know that the Nyquist sampling pixel size is given by

∆x∗ =
λ

2NA
. (18)

Therefore, in the image plane, for a desired field of view L we must have at least

N∗ =
L

∆x∗ (19)

pixels. The discretization in the pupil plane will be the same, which means we will need to have at
least N∗ pixels in the pupil plane to achieve the appropriate light field in the image plane. For our
settings of NA = 0.8, λ = 0.532µm, and L = 823µm, we have ∆x∗ = 0.3325µm and N∗ = 2476
pixels. Thus, a reasonable choice is ∆x = 0.325µm and N = 2560 pixels. Note that these simulation
parameters are independent of the camera pixels; we have only determined how many pixels must

15

be used in the phase mask in order to ensure our PSF can occupy the full field of view. The camera
sensor can sample the field at the image plane at an independent pixel size.

A.2 Multiscale feature extraction using FourierUNets

� 3D snapshot microscopy

� FourierNet

� FourierUNet

3D reconstruction3D sample
2D image

upsample 2×
and concatenate

conv

crop ½×

reconstruction network
(computational decoder)

programmable microscope
(optical encoder)

phase mask

convs

convs

convs

convconvs

Fourier convolution

multiscale Fourier convolution

upsample 2×
and concatenate

crop ½×

Figure 7: Overview of our problem setup and our proposed network architectures. Top row (A)
shows the problem of 3D snapshot microscopy, where we computationally reconstruct a 3D volume
from a 2D image. Middle row (B) shows our proposed FourierNet architecture, which includes a
Fourier convolution layer that enables efficient computation of global features. Bottom row (C)
shows an extension of our proposed architecture, the FourierUNet, which mimics the multiscale
feature extraction of a standard UNet efficiently and with global features using a multiscale Fourier
convolution.

FourierUNet We propose a multi-scale variant of the FourierNet by bringing together elements
of the multi-scale UNet and the single-scale FourierNet. Here, we take advantage of the fact that
down-sampling in image space corresponds to a simple cropping operation in the Fourier domain,
resulting in a band-limited computation of a feature map. We efficiently implement multi-scale global
Fourier convolutions (Figure 1C) to replace the encoding/“analysis” pathway of a UNet. We then
use the standard decoding/“synthesis” pathway of the UNet to combine the multi-scale features into
a single 3D volume reconstruction (Appendix A.6, A.8). Thus we can study whether multi-scale
features or global context is more important for decoding non-local optical encoders.

Multi-scale Fourier domain convolutions It is well-known [38] that downsampling corresponds
to cropping in the Fourier domain. Thus the Fourier convolution can be extended to efficiently
produce multi-scale feature representations in one step (Figure 1C). We define our multi-scale Fourier
convolution as {

Re{F−1 {W1 ⊙ crop1 [c]}}, . . . ,Re{F−1 {Wn ⊙ cropn [c]}}
}

(20)
where subscript denotes scale level (higher subscript indicates lower spatial scale/more cropping in
Fourier space) and we precompute c := F {c} once.

A.3 Global receptive field is more important than multiscale features

UNets are effective because: (1) features are computed at multiple scales and (2) large receptive fields
are achieved in few layers. FourierUNets allowed us to decouple these two explanations because the
receptive field is global in a single layer. We see on both our microscopy dataset (which does not have
multiscale structure) and the lensless photography dataset (which does have multiscale structure) that

16

Table 4: Quality of natural image reconstruction on the DiffuserCam Lensless Mirflickr Dataset
(mean ± s.e.m., n = 999). Superscripts denote loss function: 1 MSE, 2 MSE+LPIPS.

Method MSE ↓ (×10−2) LPIPS ↓ MS-SSIM ↑ PSNR ↑ Time ↓ (ms)

FourierNet1 0.39 ± 0.007 0.20 ± 0.00 0.882 ± 0.001 24.8 ± 0.09 35.54
FourierNet2 0.54 ± 0.010 0.16 ± 0.00 0.868 ± 0.001 23.4 ± 0.09 35.54
FourierUNet1 0.43 ± 0.009 0.22 ± 0.00 0.875 ± 0.001 24.5 ± 0.09 83.63
FourierUNet2 0.66 ± 0.012 0.18 ± 0.00 0.853 ± 0.001 22.6 ± 0.09 83.63

Le-ADMM-U2 [25] 0.75 ± 0.021 0.19 ± 0.00 0.865 ± 0.002 22.1 ± 0.09 48.59
UNet2 [25] 1.68 ± 0.060 0.24 ± 0.00 0.818 ± 0.002 19.2 ± 0.11 06.97

Table 5: Quality of reconstructed volumes after optimizing microscope parameters to image zebrafish
on 256× 256 pixel camera (mean ± s.e.m., n = 10)

Microscope Reconstruction LHNMSE ↓ MS-SSIM ↑ PSNR ↑ Time ↓ (s)

FourierNet2D FourierNet3D 0.6093 ± 0.0209 0.955 ± 0.004 34.89 ± 0.88 0.38
FourierNet2D FourierUNet3D 0.5997 ± 0.0219 0.956 ± 0.003 34.87 ± 0.82 0.72
Wiener + UNet Wiener + UNet 0.7223 ± 0.0179 0.957 ± 0.003 34.49 ± 0.91 0.73
FourierNet2D UNet3D 0.7298 ± 0.0151 0.923 ± 0.008 30.16 ± 0.94 0.96
UNet2D UNet3D 0.7109 ± 0.0161 0.913 ± 0.009 29.17 ± 1.13 0.96

the FourierUNet does not improve upon the FourierNet. Thus we see that it is more important for
decoding from non-local optical encoders to have a global receptive field than multi-scale features.

A.4 Training PSFs and volume reconstruction networks

Given a simulation of imaging, we can define two modes of autoencoder training: (1) jointly training
the phase mask parameters ϕ and weak reconstruction networks in order to learn a good optical
encoder for a particular class of ROIs (i.e. samples with the same spatiotemporal statistics), and (2)
training a stronger reconstruction network only with a fixed, pre-trained ϕ.

Definition of terms For both cases of training, the general framework is to simulate imaging using
confocal volumes of pan-neuronal labeled larval zebrafish, reconstruct from the simulated image,
then update the reconstruction network and, if desired, the microscope parameters. We will define the
microscope parameters as ϕ and the reconstruction network parameters as θ for any reconstruction
network Rθ(c) where Rθ maps 2D images to 3D volume reconstructions. For our training algorithms
listed below, we also define: D our dataset, v a ground truth volume, v̂ a reconstructed volume,
L a computed loss, zs a list of z plane indices that will be imaged/reconstructed, αϕ the learning rate
for the microscope parameters, αθ the learning rate for the reconstruction network parameters, and
β the weight of the non-high pass filtered component of the loss. When selecting a random ground
truth volume, we also perform random shift, rotation, flip, and brightness augmentations.

Microscope simulation parameters When simulating the zebrafish imaging, we use a wavelength
of 0.532 µm for all simulations. The NA of our microscope is 0.8. The refractive index n is 1.33.
We downsample all volumes to (1.0 µm z, 1.625 µm y, 1.625 µm x). We use a taper width of 5 for
all simulations, and simulate the optical encoder (PSF) at 50% larger dimensions in x and y. The
resolution of the camera (for all zebrafish datasets) is also (1.625 µm y, 1.625 µm x).

Initialization of ϕ For Type A, B, and our small 256× 256 pixel experiments, we initialize ϕ to
produce an optical encoder (PSF) consisting of 6 pencil beams at different locations throughout the
depth of the volume, with the centers of these beams arranged in a hexagonal pattern in x and y.
Because our optimizations generally find optical encoders (PSFs) with many pencils, we find that
initializing with such a pattern helps to converge to a more optimal optical encoder (data not shown).

For Type C, we instead initialize with a single helix spanning the depth of the volume (the “Potato
Chip” from [35]), which seems to find a local minimum for ϕ that produces an optical encoder with
more pencils (and therefore views in the camera image).

17

100 μm

256 × 256 pixels 256 × 256 pixels
FourierNet2D microscope UNet2D microscope

256 × 256 pixels
Wiener + UNet microscope

3�10401�1040 2�1040

Figure 8: FourierNet successfully optimizes an optical encoder (PSF) to image and reconstruct
zebrafish where UNet fails. The FourierNet learned to produce multiple pencils in its optical encoder,
which create multiple views of the volume in the camera image. UNet learned only a single pencil
and fails to utilize the majority of pixels in the camera image to encode views of the volume. Wiener
+ UNet produced an optical encoder with multiple pencils, but they do not make as optimal use of
the camera pixels as the FourierNet optical encoder. Top row shows simulated camera image of a
zebrafish using each optical encoder, middle row shows xy max projection of the optical encoder, and
bottom row shows xz max projection of the optical encoder.

Data settings and augmentation for zebrafish data Using our total 58 training zebrafish volumes
and 10 testing zebrafish volumes (imaged through confocal microscopy), we crop in four different
ways to create four different datasets. For training volumes, we crop from random locations from
each volume as a form of augmentation. For testing, we crop from the same location. Physically,
these crops correspond to either placing a circular aperture before light hits the 4f system or changing
the illumination thickness in z, because samples would be illuminated from the side in a real
implementation of this microscope. We model these by cropping cylinders (or cubes if there is no
aperture) of different diameters and heights. We show details for all types Type A, B, C in Table 6,
where the diameter of the cylinder is labeled “Aperture Diameter” and the illumination thickness is
labeled “Height”. For our small initial experiments to compare UNets and FourierNets for optimizing
phase masks, we simulated a camera with 256× 256 pixels and during reconstruction each volume
had 96 planes, a field of view of (200 µm z, 416 µm y, 416 µm x), and a cylindrical cutout diameter
of 193 µm.

We augment our volumes during training by taking random locations from these volumes, randomly
flipping the volumes in both z and y, and also randomly rotating in pitch, yaw, and roll. Most
importantly, we also randomly scale the brightness of our samples and add random background
levels which serve to adjust the signal-to-noise ratio (SNR) of the resulting simulated images. The

18

200 μm

512 × 512 pixels, Type A 512 × 512 pixels, Type B 512 × 512 pixels, Type C
optimized and imaged on: optimized and imaged on: optimized and imaged on:

9�1030 2�1040 1�1040

Figure 9: Optimizing optical encoders (PSFs) for different ROIs result in PSFs tailored to each ROI.
Note that optical encoder optimized for Type A (left) has pencils with a span in z that matches Type
A. Optical encoder optimized for Type B (middle) has pencils that span the entire z depth. Optical
encoder optimized for Type C (right) has pencils spread farther apart to account for the larger ROI.
Top row shows simulated camera image of a Type A, B, or C example respectively, middle row shows
xy max projection of the optical encoder (PSF), and bottom row shows xz max projection of the
optical encoder.

radians

-π π0

UNet FourierNet Wiener + UNet

Figure 10: Phase masks (microscope parameters ϕ) for FourierNet versus UNet. Note that while both
phase masks are high-enough frequency to make viewing all pixels difficult after resizing for display
and cause their appearance to be gray, the UNet phase mask is much smoother (lower frequency) than
the FourierNet phase mask, resulting in a more local optical encoder.

19

Type A Type B Type C

radians
-π π0

Figure 11: Phase masks (microscope parameters ϕ) for microscopes optimized for Type A, B, C
ROIs, respectively. Note that all phase masks are higher frequency than can be displayed after resizing
for this figure, which results in the gray appearance of these phase masks.

only exception to these augmentations is Type C, where we set all the volumes to the same in-plane
vertical orientation (while still applying rotation augmentations in pitch and roll).

Table 6: Specifications of all zebrafish datasets Type A, B, C for reconstruction

Dataset Camera (px) Height (planes) Span (z, y, x) (µm) Aperture Diameter (µm)

Type A 512× 512 12 (25, 832, 832) 386

Type B 512× 512 128 (250, 832, 832) 386

Type C 512× 512 128 (250, 832, 832) -

Parallelizing imaging and reconstruction

We show our parallelization strategy for both imaging and reconstruction in Figure 12 as well as in the
following algorithms. Because this simulation can become too expensive in memory to fit on a single
device, we generally perform the simulation, reconstruction, and loss calculation in parallel for both
training modes. Therefore, any variable that has a s subscript refers to a list of chunks of that variable
that will be run on each device. A j superscript indicates a particular chunk for GPU j. For example
zs is a list of plane indices to be imaged/reconstructed, and zjs is the jth chunk of plane indices that
will be imaged/reconstructed on GPU j. We denote parallel for any operations that are performed
in parallel and scatter for splitting data into chunks and spreading across multiple GPUs. Imaging
can be cleanly parallelized: chunks of an optical encoder (PSF) and sample can be partially imaged
on multiple GPUs independently because the convolution occurs per plane, then finally all partial
images can be summed together onto a single GPU. The reconstructions can similarly take the final
image and reconstruct partial chunks (as well as calculate losses on partial chunks) of the volume
independently per device. We implicitly gather data to the same GPU when computing sums (

∑
)

or means (E). The functions parallel image and compute PSF follow the definitions above in
equations 13 and 11. In the algorithms shown here, parallel image applies the same convolution
described above in equation 13.

Sparse gradients and downsampling We additionally support training and reconstructing only some
of the planes for imaging and potentially a different partial group of planes during reconstruction, as
a way to sparsely compute gradients for optimization of θm and save memory. The planes not imaged
with gradients can still contribute to the image (without their gradients being tracked) in order to
make the problem more difficult for the reconstruction network. Over multiple iterations, this can
become equivalent to the more expensive densely computed gradient method, essentially trading
training time for memory. An additional memory saving measure not written in the algorithms is to
compute the optical encoder (PSF) at a high resolution, then downsample the optical encoder using a

20

3D reconstruction3D sample phase mask 2D image

decoder

scatter chunks to all devices
optical simulation
sum to same device
copy to all devices
concatenate chunks to same device

GPU 1

GPU 2

GPU n

=*

*

*

microscope

=

=

Figure 12: Overview of our parallelization strategy, visualizing Algorithm 1. Colored arrows describe
parallelization communication, reduction, or computation. The volume is split into chunks, which
are scattered to all compute devices (GPUs). Gray boxes demarcate each independent chunk being
processed in parallel on its own device. Optical encoder (PSF) computation is simulated for each
chunk in parallel, followed by parallel simulation of the imaging as a convolution of the optical
encoder and sample chunk. Then, the partial images are summed onto the same device (GPU 1).
After simulating shot noise on this single device, the final image is copied to all devices and each
chunk is reconstructed on each device in parallel. At this point the loss can be partially computed
in parallel for each chunk and then summed for the loss between the full volumes, or the chunked
reconstruction can be concatenated to the same device. We show the loss computation at once rather
than in parallel for simplification of visualization only. Contrasts for volumes and optical encoders in
chunks have been artificially boosted for visibility. Zoom in for best viewing.

2D sum pool to preserve total energy in order to reduce memory usage when performing the imaging
and reconstruction. We denote with no gradient tracking to show an operation without gradients.

A.5 Comparing number of optical encoder voxels in simulation to previous works

We compare our optical encoders (PSFs), which are simulated at a maximum size of 64×3840×3840
voxels in z, y, and x (prior to downsampling for the simulation of imaging) respectively to those of
deep learning optical encoder optimizations in localization microscopy and depth from defocus [6, 3].
We simulate at such high voxel counts in order to allow the phase mask (at a size of 3840 × 3840
voxels) to produce high frequencies, which are required for producing features in the optical encoder
near the edges of the field of view. For localization microscopy, the optical encoders are 51×329×329
voxels, which means our optical encoder has approximately 170× more voxels [6]. For a state of the
art depth from defocus implementation, the optical encoder is simulated with rotational symmetry,
which means the actual simulation can occur in only one dimension per depth plane [3]. Thus, the
depth from defocus optical encoder is simulated with 16× 8000 voxels in z and x, respectively [3].
The single dimension along x is then rotated to produce the full optical encoder at each of the 16
depth planes [3]. This means our optical encoder has approximately 7372× more unique voxels.

21

Algorithm 1: Parallel optical encoder (PSF) engineering by joint training of reconstruction
network and phase mask. Microscope Mϕ parameters are ϕ, reconstruction network Rθ

parameters are θ, dataset is D, learning rates for ϕ and θ are αϕ and αθ respectively, plane
indices to image and reconstruct from zs, and weight for LNMSE is β.
Input :Mϕ,ϕ, αϕ,Rθ,θ, αθ,D, zs, β

1 for v ∈ D do
// select plane indices to be imaged with and without gradients

2 zs,gradient, zs,no gradient ← select planes(zs)
// move sample planes to be imaged with gradients to multiple GPUs

3 vs,gradient ← scatter(v, zs,gradient)
// move sample planes to be imaged without gradients to multiple

GPUs
4 vs,no gradient ← scatter(v, zs,no gradient)

// compute PSF with gradients on multiple GPUs
5 ss,gradient ← parallel(compute PSF(Mϕ, zjs) for zjs in zs,gradient)

// compute partial image with gradients on multiple GPUs
6 cgradient ← parallel image(ss,gradient,vs,gradient)

// compute PSF without gradients on multiple GPUs
7 with no gradient tracking
8 ss,no gradient ← parallel(compute PSF(Mϕ, zjs) for zjs in zs,no gradient)
9 end

// compute partial image without gradients on multiple GPUs
10 with no gradient tracking
11 cno gradient ← parallel image(ss,no gradient,vs,no gradient)
12 end

// compute full image by summing partial images onto one GPU
13 c←

∑
[cgradient, cno gradient]

// select plane indices to be reconstructed
14 zs,reconstruct ← select planes(zs)

// move sample planes that will be reconstructed to multiple GPUs
15 vs,reconstruct ← scatter(v, zs,reconstruct)

// compute mean of high passed sample for loss normalization
16 µH(v) ← E(H(vs,reconstruct)

2)
// compute mean of sample for loss normalization

17 µv ← E(v2
s,reconstruct)

// move reconstruction networks to multiple GPUs
18 Rθ,s ← scatter(Rθ)

// compute reconstruction and loss on multiple GPUs
19 L← parallel reconstruct/loss(c,vs,reconstruct,Rθ,s, µH(v), µv, β)

// compute gradients for all parameters
20 gθ ← ∇θL
21 gϕ ← ∇ϕL

// update all parameters
22 θ←Adam(αθ,θ, gθ)
23 ϕ←Adam(αϕ,ϕ, gϕ)
24 end

A.6 Implementation details

Fourier convolution details Our Fourier convolution uses complex number weights, implemented
as two channels of real numbers. Furthermore, in order to prevent the convolution from wrapping
around the edges, we have to pad the input to double the size. The size of the weight must match
the size of this padded input. This means that the number of parameters for our Fourier convolution
implementation is 8× the number of parameters required for a global kernel in a spatial convolution
(though the Fourier convolution is significantly faster). We do this to save an extra padding and

22

Algorithm 2: Parallel training a reconstruction network given a pre-trained phase mask. Mi-
croscope Mϕ parameters are ϕ (phase mask), reconstruction network Rθ parameters are θ,
dataset is D, learning rates for ϕ and θ are αϕ and αθ respectively, plane indices to image and
reconstruct from are zs, and weight for LNMSE is β.
Input :Mϕ,ϕ, αϕ,Rθ,θ, αθ,D, zs, β
// compute PSF without gradients on multiple GPUs

1 with no gradient tracking
2 sno gradient ←parallel(compute PSF(Mϕ, zjs) for zjs in zs)
3 end
4 for v ∈ D do

// select plane indices to be imaged without gradients
5 zs,no gradient ← select planes(zs)

// move sample planes to be imaged without gradients to multiple
GPUs

6 vs,no gradient ← scatter(v, zs,no gradient)
// move necessary PSF planes to multiple GPUs

7 ss,no gradient ← scatter(sno gradient, zs,no gradient)
// compute image without gradients on multiple GPUs

8 with no gradient tracking
9 c← parallel image(ss,no gradient,vs,no gradient)

10 end
// select plane indices to be reconstructed

11 zs,reconstruct ← select planes(zs)
// move sample planes that will be reconstructed to multiple GPUs

12 vs,reconstruct ← scatter(v, zs,reconstruct)
// compute mean of high passed sample for loss normalization

13 µH(v) ← E[H(vs,reconstruct)
2]

// compute mean of sample for loss normalization
14 µv ← E[v2

s,reconstruct]
// move reconstruction networks to multiple GPUs

15 Rθ,s ← scatter(Rθ)
// compute reconstruction and loss on multiple GPUs

16 L← parallel reconstruct/loss(c,vs,reconstruct,Rθ,s, µH(v), µv, β)
// compute gradients for reconstruction networks only

17 gθ ← ∇θL
// update reconstruction network parameters only

18 θ←Adam(αθ,θ, gθ)
19 end

Algorithm 3: Parallel imaging. Optical encoder (PSF) planes on multiple GPUs are ss, sample
planes on multiple GPUs to be imaged are vs.
Input :ss,vs

Output :c
// compute images in parallel on multiple GPUs, then sum to single GPU

1 c←
∑

[parallel(convolve(sjs,v
j
s) for (sjs,v

j
s) in (ss,vs))]

2 return c

Fourier operation, trading memory for speed. Because the simulation of imaging requires more
memory than the reconstruction network, we found this to be an acceptable tradeoff.

Common network details All convolutions (including Fourier convolutions) use “same” padding.
For FourierUNets and vanilla UNets, downsampling and upsampling is performed only in the x and y
dimensions (we do not downsample or upsample in z because there could potentially not be enough
planes to do so). We train all networks using the ADAM optimizer with all default PyTorch parameters

23

Algorithm 4: Parallel reconstruction/loss calculation. Camera image is c, sample planes on
multiple GPUs are vs, reconstruction networks on multiple GPUs are Rθ,s, mean for LHNMSE

normalization is µH(v), mean for LNMSE normalization is µv, and weight for LNMSE is β.

Input :c,vs,Rθ,s, µH(v), µv, β
Output :L
// compute reconstruction and loss in parallel on multiple GPUs

1 v̂s ← concatenate(parallel(Rj
s(c) forRj

s inRθ,s))

2 Ls ← parallel(E[(H(vj
s)−H(v̂j

s))
2]

µH(v)
+ β

E[(vj
s−v̂j

s)
2]

µv
for (v̂j

s,v
j
s) in (v̂s,vs))

// compute mean of scattered losses on single GPU
3 L← E[Ls]
4 return L

except the learning rate, which we always set to 10−4 for the reconstruction network parameters θ
and 10−2 for the phase mask parameters ϕ.

Normalization We use input scaling during both training and inference in order to normalize out
differences in the brightness of the image and prevent instabilities in our gradients. This means
we divide out the median value of the input (scaled by some factor in order to bring the loss to
a reasonable range) and then undo this scaling after the output of the network. This effectively
linearizes our reconstruction networks, meaning a scaling of the image sent to the network will
exactly scale the output by that value. We also find this is a more effective and simpler alternative to
using a BatchNorm on our inputs. We continue to use BatchNorm between our convolution layers
within the reconstruction network [41], which is effectively InstanceNorm in our case where batch
size is 1 [42].

Planewise network training logic When we train optical encoders by optimizing ϕ, we train
separate reconstruction networks per plane. This allows us to flexibly compute sparse gradients
across different planes from iteration to iteration, as described in Appendix A.4. In order to do this,
we create placeholder networks on any number of GPUs, then copy the parameters stored on CPU for
each plane’s reconstruction network to a network on the GPU as needed during a forward pass. After
calculating an update with the optimizer, we copy the parameter values back to the corresponding
parameter on CPU.

Training times We optimize our smaller, 256× 256 pixel microscopy experiments on 4 RTX 2080
Ti GPUs when optimizing both ϕ and θ and 8 RTX 2080 Ti GPUs when optimizing only θ, except
the Wiener + UNet model which is trained on 8 RTX Quadro 8000 GPUs. For these, we can
compare training times for the different network architectures. One training iteration (including
microscope simulation, reconstruction, backpropagation, and parameter update) takes ∼0.6 seconds
for FourierNet2D, ∼1.3 seconds for UNet2D, and ∼0.8 seconds for Wiener + UNet when optimizing
both ϕ and θ. One training iteration takes ∼0.4 seconds for FourierNet3D, ∼0.7 seconds for
FourierUNet3D, and ∼0.8 seconds for UNet3D when only optimizing θ. Our larger Type A, B, C
experiments are always optimized on 8 RTX Quadro 8000 GPUs. More details are found in Tables 7
and 8.

Memory usage We show our training GPU memory usage for all kinds of snapshot microscopy
experiments training both optical encoders and training reconstruction networks only in Table 9.
Because we must synchronize some computations to a single GPU, there will be one GPU with higher
memory usage than the rest. Thus, we report both the highest memory usage of a single GPU (the
maximum memory usage across GPUs) as well as the memory usage of the remaining single GPUs
(the mode memory usage across GPUs).

A.7 Details for FourierNets outperform state-of-the-art for reconstructing natural images
captured by DiffuserCam lensless camera

We performed no augmentations for this set of trainings reconstructing RGB color images of natural
scenes from RGB diffused images taken through a DiffuserCam [25]. We modified our FourierNet2D
architecture to create the FourierNetRGB architecture and our FourierUNet2D architecture to create
the FourierUNetRGB architecture, outlined in Table 11 and Table 12 respectively. Training details are

24

Table 7: Small experiment training times

Network Optimizing # parameters # train steps Train step time (s) Total time (h)

FourierNet2D θ,ϕ ∼ 4.2× 107 106 ∼ 0.8 ∼ 222
FourierNet3D θ ∼ 6.3× 107 106 ∼ 0.4 ∼ 111
FourierUNet3D θ ∼ 8.4× 107 106 ∼ 0.7 ∼ 194

UNet2D θ,ϕ ∼ 4.0× 107 106 ∼ 1.3 ∼ 361
Wiener + UNet θ,ϕ ∼ 8.0× 107 5× 105 ∼ 0.8 ∼ 111
UNet3D θ ∼ 1.0× 108 106 ∼ 0.8 ∼ 222

Table 8: Type A, B, C experiment training times

Network Optimizing # parameters Type # train steps Train step time (s) Total time (h)

FourierNet2D θ,ϕ ∼ 1.7× 108 A 5.8× 105 ∼ 1.1 ∼ 177
FourierNet3D θ (fixed ϕ for A) ∼ 3.4× 108 A ∼ 2.6× 105 ∼ 1.6 ∼ 116
FourierNet3D θ (fixed ϕ for A) ∼ 3.4× 108 B ∼ 1.3× 105 ∼ 1.6 ∼ 58
FourierNet3D θ (fixed ϕ for A) ∼ 3.4× 108 C ∼ 1.3× 105 ∼ 1.6 ∼ 58

FourierNet2D θ,ϕ ∼ 1.7× 108 B 5.8× 105 ∼ 1.1 ∼ 177
FourierNet3D θ (fixed ϕ for B) ∼ 3.4× 108 A ∼ 1.2× 105 ∼ 1.6 ∼ 53
FourierNet3D θ (fixed ϕ for B) ∼ 3.4× 108 B 106 ∼ 1.6 ∼ 444
FourierNet3D θ (fixed ϕ for B) ∼ 3.4× 108 C ∼ 5.0× 105 ∼ 1.6 ∼ 222

FourierNet2D θ,ϕ ∼ 1.7× 108 C 5.8× 105 ∼ 1.1 ∼ 177
FourierNet3D θ (fixed ϕ for C) ∼ 3.4× 108 A ∼ 3.4× 105 ∼ 1.6 ∼ 151
FourierNet3D θ (fixed ϕ for C) ∼ 3.4× 108 B ∼ 3.4× 105 ∼ 1.6 ∼ 151
FourierNet3D θ (fixed ϕ for C) ∼ 3.4× 108 C ∼ 3.7× 105 ∼ 1.6 ∼ 164

Table 9: GPU memory usage for all snapshot microscopy experiment types

Network Optimizing Type # GPUs Max (MB) Mode (MB) Total (MB)

FourierNet2D θ,ϕ Small 4 4,815 4,783 19,164
UNet2D θ,ϕ Small 4 5,177 5,145 20,612
Wiener + UNet θ,ϕ Small 4 6,465 6,253 50,860

FourierNet3D θ Small 8 2,647 1,617 13,966
FourierUNet3D θ Small 8 2,725 1,631 14,142
UNet3D θ Small 8 2,751 1,603 13,972

FourierNet2D θ,ϕ A, B, C 8 8,513 8,267 66,382

FourierNet3D θ A, B, C 8 15,537 3,865 42,592

shown in Table 10. Because these reconstructions are of 2D images only and required no microscope
simulation, we were able to use a batch size of 4 images per iteration.

Table 10: DLMD experiment training times. Superscripts denote loss function: 1 MSE, 2

MSE+LPIPS.

Network Optimizing # parameters # train steps Train step time (s) Total time (h)

FourierNetRGB1 θ ∼ 1.6× 107 2.2× 105 ∼ 0.43 ∼ 26
FourierNetRGB2 θ ∼ 1.6× 107 1.1× 105 ∼ 0.47 ∼ 14
FourierUNetRGB1 θ ∼ 7.1× 107 2.5× 105 ∼ 3.3 ∼ 229

Le-ADMM-U2 [25] θ ∼ 4.0× 107 - - -
UNet2 [25] θ ∼ 1.0× 108 - - -

25

gr
ou

nd
 tr

ut
h

D
i�

us
er

Ca
m

im
ag

e
Le

-A
D

M
M

-U
(M

SE
 +

 L
PI

PS
)

U
N

et
(M

SE
 +

 L
PI

PS
)

Fo
ur

ie
rN

et
 (�

��
�)

(M

SE
 +

 L
PI

PS
)

Fo
ur

ie
rU

N
et

 (�
��
�)

(M

SE
 +

 L
PI

PS
)

Fo
ur

ie
rN

et
 (�

��
�)

(M

SE
)

1

1

1

1

1

1

2

2

1

1

2

2

1

1

Figure 13: Comparisons of our method (second and third rows) to state-of-the-art learned recon-
struction methods on lensless diffused images of natural scenes. Note that FourierNet trained with
MSE only shows comparable visual results to training with MSE + LPIPS. Regions labeled 1⃝
indicate missing details, either resolution or textures in backgrounds. Regions labeled 2⃝ indicate
hallucinated textures. Note that the previous state-of-the-art solutions [25] exhibit both issues more
often compared to our models.

Table 11: FourierNetRGB detailed architecture

Layer type Kernel size Stride Notes Shape (N, C, H, W)
FourierConv2D (270, 480) (2, 2) - (4, 3, 270, 480)
LeakyReLU - - slope: -0.01 (4, 20, 270, 480)
BatchNorm2D - - - (4, 20, 270, 480)
Conv2D (11, 11) (1, 1) - (4, 64, 270, 480)
BatchNorm2D - - - (4, 64, 270, 480)
LeakyReLU - - slope: -0.01 (4, 64, 270, 480)
Conv2D (11, 11) (1, 1) - (4, 64, 270, 480)
BatchNorm2D - - - (4, 64, 270, 480)
LeakyReLU - - slope: -0.01 (4, 64, 270, 480)
Conv2D (11, 11) (1, 1) - (4, 3, 270, 480)
ReLU - - - (4, 3, 270, 480)

A.8 Details for FourierNets outperform UNets for engineering non-local optical encoders and
3D snapshot microscopy volume reconstruction

For our experiments in Sections 3.2 and 3.3, we use 40 planes at 5 µm resolution in z and therefore 40
reconstruction networks to train PSFs, except the Wiener + UNet model which is trained in a single
stage. When training reconstruction networks only to produce the higher quality reconstructions, we
use 96 planes at 1 µm resolution in z (chosen so that the planes actually span 200 µm in z). Following
[3], the Wiener + UNet model is only trained in one stage (using knowledge of the current PSF,
which the other methods do not receive), and is always trained on 96 planes. We train in both settings

26

Table 12: FourierUNetRGB detailed architecture

Scale Repeat Layer type Kernel size Stride Notes Shape (N, C, H, W)
1 1 Multiscale

FourierConv2D
+ ReLU
+ BatchNorm2D

(270, 480) (2, 2) - (4, 64, 270, 480)

2 (135, 240) (2, 2) (4, 64, 135, 240)
3 (67, 120) (2, 2) (4, 64, 67, 120)
4 (33, 60) (2, 2) (4, 64, 33, 60)

3 1 Upsample2D - - - (4, 64, 67, 120)
3 2 Conv2D

+ ReLU
+ BatchNorm2D

(11, 11) (1, 1) - (4, 64, 67, 120)

2 1 Upsample2D - - - (4, 64, 135, 240)
2 2 Conv2D

+ ReLU
+ BatchNorm2D

(11, 11) (1, 1) - (4, 64, 135, 240)

1 1 Upsample2D - - - (4, 64, 270, 480)
1 2 Conv2D

+ ReLU
+ BatchNorm2D

(11, 11) (1, 1) - (4, 64, 270, 480)

1 1 Conv2D
+ ReLU

(1, 1) (1, 1) - (4, 3, 270, 480)

Table 13: FourierNet2D detailed architecture (1 per plane)

Layer type Kernel size Stride Notes Shape (C, D, H, W)
InputScaling - - scale: 0.01 (1, 1, 256, 256)
FourierConv2D (256, 256) (2, 2) - (8, 1, 256, 256)
LeakyReLU - - slope: -0.01 (8, 1, 256, 256)
BatchNorm2D - - - (8, 1, 256, 256)
Conv2D (11, 11) (1, 1) - (1, 1, 256, 256)
ReLU - - - (1, 1, 256, 256)
InputRescaling - - scale: 0.01 (1, 1, 256, 256)

Table 14: FourierNet3D detailed architecture (8 GPUs)

Layer type Kernel size Stride Notes Shape (C, D, H, W)
InputScaling - - scale: 0.01 (1, 1, 256, 256)
FourierConv2D (256, 256) (2, 2) - (60, 1, 256, 256)
LeakyReLU - - slope: -0.01 (60, 1, 256, 256)
BatchNorm2D - - - (60, 1, 256, 256)
Reshape2D3D - - - (5, 12, 256, 256)
Conv3D (11, 7, 7) (1, 1, 1) - (5, 12, 256, 256)
LeakyReLU - - slope: -0.01 (5, 12, 256, 256)
BatchNorm3D - - - (5, 12, 256, 256)
Conv3D (11, 7, 7) (1, 1, 1) - (1, 12, 256, 256)
ReLU - - - (1, 12, 256, 256)
InputRescaling - - scale: 0.01 (1, 12, 256, 256)

without any sparse planewise gradients, meaning we image and reconstruct all 40 or all 96 planes,
respectively. We show details of all datasets used for training reconstructions in Table 6.

We show the details of our FourierNet2D architecture for training PSFs in Table 13 and our Fourier-
Net3D architecture for training reconstruction networks in Table 14. We also show details for training
times for both training PSFs and for training more powerful reconstruction networks in Table 7. We

27

ground truth

50 μm

FourierNet2D
FourierNet3D

FourierNet2D
FourierUNet3D

FourierNet2D
UNet3D

UNet2D
UNet3D

256 × 256 px camera

Wiener + UNet
Wiener + UNet

30 756 30 446 30 419 30 346 30 302 30 516

Figure 14: Slab views of a small example volume reconstruction, showing our methods (Fourier-
Net/FourierUNet) do the best job of reconstructing throughout the volume. Note that the UNet
reconstructions are blurry across all slabs, with few exceptions, while the Wiener + UNet reconstruc-
tion is not blurry in some slabs, but not consistent across all slabs. Colored boxes show which sample
planes a particular slab comes from, corresponding to boxes in xz projection view at top. Annotation
Mϕ shows which network architecture was used for phase mask optimization; annotation Rθ shows
which architecture was used for reconstruction.

trained all networks for small 256× 256 pixel experiments for the same number of iterations (more
than necessary for PSFs to meaningfully converge)2.

The architecture of FourierUNet3D is 4 scales, with a cropping factor of 2 per scale in the encoding
path and an upsampling factor of 2 in the decoding path. For each scale, we perform a Fourier
convolution in the encoding path producing 480 feature maps, which are concatenated with the

2Training times are approximate, and actual total time was longer due to checkpoint-
ing/snapshotting/validation of data and/or differences in load on the clusters being used.

28

Table 15: FourierUNet3D detailed architecture (8 GPUs)

Scale Repeat Layer type Kernel size Stride Notes Shape (C, D, H, W)
1 1 InputScaling - - scale: 0.01 (1, 1, 256, 256)
1 1 Multiscale

FourierConv2D
+ ReLU
+ BatchNorm2D

(256, 256) (2, 2) - (60, 1, 256, 256)

2 (128, 128) (2, 2) (60, 1, 128, 128)
3 (64, 64) (2, 2) (60, 1, 64, 64)
4 (32, 32) (2, 2) (60, 1, 32, 32)

4 1 Reshape2D3D - - - (5, 12, 32, 32)
3 1 Upsample2D - - - (5, 12, 64, 64)
3 2 Conv3D

+ ReLU
+ BatchNorm3D

(11, 7, 7) (1, 1, 1) - (5, 12, 64, 64)

2 1 Upsample2D - - - (5, 12, 128, 128)
2 2 Conv3D

+ ReLU
+ BatchNorm3D

(11, 7, 7) (1, 1, 1) - (5, 12, 128, 128)

1 1 Upsample2D - - - (5, 12, 256, 256)
1 2 Conv3D

+ ReLU
+ BatchNorm3D

(11, 7, 7) (1, 1, 1) - (5, 12, 256, 256)

1 1 Conv3D
+ ReLU

(1, 1, 1) (1, 1, 1) - (1, 12, 256, 256)

1 1 InputRescaling - - scale: 0.01 (1, 12, 256, 256)

incoming feature maps of the decoding convolutions at the corresponding scale (just as in a normal
UNet). In the decoding path, we use 3D convolutions with kernel size (3, 5, 5), producing 12 3D
feature maps each. There are two such convolutions per scale. Note that this requires we reshape
the 2D feature maps from the Fourier convolutions to 3D. This is followed by a 1x1 convolution
producing the 3D reconstruction output. We show a diagram of this architecture in Figure 1C, and
details of this architecture in Table 15.

For our UNet2D, each encoding convolution produced 24 feature maps (except the first scale, for
which the first convolution produced 12 feature maps and the second convolution produced 24 feature
maps). Each decoding convolution produced 24 feature maps, but took an input of 48 feature maps
where 24 feature maps were concatenated from the corresponding encoding convolution at that scale.
At the end of the UNet2D, a (1, 1) convolution reduced the 24 final feature maps to 1 feature map.
This single feature map is interpreted as the final output of the network, i.e. the reconstructed plane.
UNet2D requires many more feature maps per plane and more layers than FourierNet, because these
are necessary in order for the network to be able to integrate information from a larger field of view.
The effective field of view is 4, 539× 4, 539 pixels. We show the details of our UNet2D architecture
in Table 16.

The Wiener + UNet model first performs a Wiener deconvolution on the image using the PSF
computed from the phase mask, then applies a UNet with a different 3D architecture, following that
of [27] which was designed to refine a Wiener filter. We show the details of this Wiener + UNet
architecture in Table 18.

The architecture of the vanilla UNet3D is also 4 scales, with a max pooling factor of 2 per scale in
the encoding path and an upsampling factor of 2 in the decoding path. Each scale of the encoding
path produces 480 2D feature maps. These are concatenated to the incoming feature maps of the
decoding convolutions at the corresponding scale, again with a reshape from 2D to 3D. Each scale
of the decoding path produces 48 3D feature maps. Again, this is followed by a 1x1 convolution
producing the 3D reconstruction output. All convolutions are in 3D with a kernel size of (5, 7, 7),
with the z dimension being ignored for the encoding path because the input is 2D. UNet3D has a

29

Table 16: UNet2D detailed architecture (1 per plane)

Scale Repeat Layer type Kernel size Stride Notes Shape (C, D, H, W)
1 1 InputScaling - - scale: 0.01 (1, 1, 256, 256)
1 1 Conv2D

+ ReLU
+ BatchNorm2D

(7, 7) (1, 1) - (12, 1, 256, 256)

1 1 Conv2D
+ ReLU
+ BatchNorm2D

(7, 7) (1, 1) - (24, 1, 256, 256)

2 1 MaxPool2D (2, 2) (2, 2) - (24, 1, 128, 128)
2 2 Conv2D

+ ReLU
+ BatchNorm2D

(7, 7) (1, 1) - (24, 1, 128, 128)

n 1 MaxPool2D (2, 2) (2, 2) - (24, 1, 256
2n−1 , 256

2n−1)
n 2 Conv2D

+ ReLU
+ BatchNorm2D

(7, 7) (1, 1) - (24, 1, 256
2n−1 , 256

2n−1)

8 1 MaxPool2D (2, 2) (2, 2) - (24, 1, 2, 2)
8 2 Conv2D

+ ReLU
+ BatchNorm2D

(7, 7) (1, 1) - (24, 1, 2, 2)

7 1 Upsample2D - - - (24, 1, 4, 4)
7 2 Conv2D

+ ReLU
+ BatchNorm2D

(7, 7) (1, 1) - (24, 1, 4, 4)

n 1 Upsample2D - - - (24, 1, 256
2n−1 , 256

2n−1)
n 2 Conv2D

+ ReLU
+ BatchNorm2D

(7, 7) (1, 1) - (24, 1, 256
2n−1 , 256

2n−1)

1 1 Upsample2D - - - (24, 1, 256, 256)
1 2 Conv2D

+ ReLU
+ BatchNorm2D

(7, 7) (1, 1) - (24, 1, 256, 256)

1 1 Conv2D
+ ReLU

(1, 1) (1, 1) - (1, 1, 256, 256)

1 1 InputRescaling - - scale: 0.01 (1, 1, 256, 256)

global receptive field of 279× 279 pixels. We show the details of our UNet3D architecture in Table
17.

A.9 Details for engineered optical encoding depends on region of interest

For our experiments in Section 3.4, we use 64 planes at 1 µm resolution in z and therefore 64
reconstruction networks to train PSFs. When training reconstruction networks only to produce the
higher quality reconstructions, we use 128 planes at 1 µm resolution in z (chosen so that the planes
actually span 250 µm in z). We train in the reconstruction only setting without any sparse planewise
gradients, meaning we image and reconstruct all 128 planes. However, when training a PSF we image
and reconstruct 40 planes at a time with gradient per iteration (spread across 8 GPUs). These 40
planes are chosen randomly at every iteration from the 64 total possible planes, making potentially
separate draws of planes for imaging and reconstruction. We show details of all datasets used for
training reconstructions in Table 6.

We show the details of our FourierNet2D architecture for training PSFs at the larger field of view in
Type A, B, C in Table 19 and our FourierNet3D architecture for training reconstruction networks at
the larger field of view in Type A, B, C in Table 20. There are no other networks used for these larger
field of view experiments. We also show details for training times for both training PSFs and for

30

Table 17: UNet3D detailed architecture (8 GPUs)

Scale Repeat Layer type Kernel size Stride Notes Shape (C, D, H, W)
1 1 InputScaling - - scale: 0.01 (1, 1, 256, 256)
1 1 Conv2D

+ ReLU
+ BatchNorm2D

(7, 7) (1, 1) - (30, 1, 256, 256)

1 1 Conv2D
+ ReLU
+ BatchNorm2D

(7, 7) (1, 1) - (60, 1, 256, 256)

2 1 MaxPool2D (2, 2) (2, 2) - (60, 1, 128, 128)
2 2 Conv2D

+ ReLU
+ BatchNorm2D

(7, 7) (1, 1) - (60, 1, 128, 128)

3 1 MaxPool2D (2, 2) (2, 2) - (60, 1, 64, 64)
3 2 Conv2D

+ ReLU
+ BatchNorm2D

(7, 7) (1, 1) - (60, 1, 64, 64)

4 1 MaxPool2D (2, 2) (2, 2) - (60, 1, 32, 32)
4 2 Conv2D

+ ReLU
+ BatchNorm2D

(7, 7) (1, 1) - (60, 1, 32, 32)

4 1 Reshape2D3D - - - (5, 12, 32, 32)
3 1 Upsample2D - - - (5, 12, 64, 64)
3 2 Conv3D

+ ReLU
+ BatchNorm3D

(11, 7, 7) (1, 1, 1) - (5, 12, 64, 64)

2 1 Upsample2D - - - (5, 12, 128, 128)
2 2 Conv3D

+ ReLU
+ BatchNorm3D

(11, 7, 7) (1, 1, 1) - (5, 12, 128, 128)

1 1 Upsample2D - - - (5, 12, 256, 256)
1 2 Conv3D

+ ReLU
+ BatchNorm3D

(11, 7, 7) (1, 1, 1) - (5, 12, 256, 256)

1 1 Conv3D
+ ReLU

(1, 1, 1) (1, 1, 1) - (1, 12, 256, 256)

1 1 InputRescaling - - scale: 0.01 (1, 12, 256, 256)

training more powerful reconstruction networks in Table 8. All PSFs in these networks were trained
for the same number of iterations. However, reconstruction networks for some of these experiments
were only trained for as long as necessary to converge (with some exceptions where we attempted
longer training to check for performance gains with long training periods). Generally, we observed
that performance for such reconstruction networks does not meaningfully change with many more
iterations of training3.

A.10 Details for engineered optical encoders implemented on a programmable microscope

The experimental data presented in this manuscript was acquired with a prototype programmable
microscope. Light was collected by a 16X, 0.8 NA microscope objective (N16XLWD-PF, Nikon)
and relayed onto an image plane by a 200 mm tube lens (TL200CLS2, Thorlabs). A polarizing beam
splitter (PBS251, Thorlabs) transmitted horizontally polarized light. A set of tube lenses relayed
the back pupil of the objective lens onto a spatial light modulator (P1920-532, Meadowlark), which
was used to modulate the phase of the collected fluorescence with the optimized phase mask. The
modulated light was imaged onto an sCMOS camera (Orca-Flash4.0 C11440, Hamamatsu). The total

3Training times are approximate, and actual total time was longer due to checkpoint-
ing/snapshotting/validation of data and/or differences in load on the clusters being used.

31

Table 18: Wiener + UNet detailed architecture (8 GPUs)

Scale Repeat Layer type Kernel size Stride Notes Shape (C, D, H, W)
1 1 InputScaling - - scale: 0.01 (1, 1, 256, 256)
1 1 WienerFilter - - - (12, 1, 256, 256)
1 1 Reshape2D3D - - - (1, 12, 256, 256)
1 1 Conv3D

+ LeakyReLU
(3, 3, 3) (1, 1) - (32, 12, 256, 256)

1 1 Conv3D
+ LeakyReLU

(3, 3, 3) (1, 1) - (32, 12, 256, 256)

2 1 Conv3D (2, 2, 2) (2, 2, 2) - (32, 6, 128, 128)
2 2 Conv3D

+ LeakyReLU
(3, 3, 3) (1, 1) - (64, 6, 128, 128)

3 1 Conv3D (2, 2, 2) (2, 2, 2) - (64, 3, 64, 64)
3 2 Conv3D

+ LeakyReLU
(3, 3, 3) (1, 1) - (128, 3, 64, 64)

4 1 Conv3D (2, 2, 2) (2, 2, 2) - (128, 1, 32, 32)
4 2 Conv3D

+ LeakyReLU
(3, 3, 3) (1, 1) - (256, 1, 32, 32)

5 1 Conv3D (2, 2, 2) (2, 2, 2) padding
(1, 0, 0)

(256, 1, 16, 16)

5 2 Conv3D
+ LeakyReLU

(3, 3, 3) (1, 1) - (256, 1, 16, 16)

4 1 ConvTranspose3D (1, 2, 2) (2, 2, 2) - (256, 1, 32, 32)
4 2 Conv3D

+ LeakyReLU
(3, 3, 3) (1, 1) - (128, 1, 32, 32)

3 1 ConvTranspose3D (2, 2, 2) (2, 2, 2) output
padding
(1, 0, 0)

(64, 3, 64, 64)

3 2 Conv3D
+ LeakyReLU

(3, 3, 3) (1, 1) - (64, 3, 64, 64)

2 1 ConvTranspose3D (2, 2, 2) (2, 2, 2) - (64, 6, 128, 128)
2 2 Conv3D

+ LeakyReLU
(3, 3, 3) (1, 1) - (32, 6, 128, 128)

1 1 ConvTranspose3D (2, 2, 2) (2, 2, 2) - (32, 12, 256, 256)
1 2 Conv3D

+ LeakyReLU
(3, 3, 3) (1, 1) - (1, 12, 256, 256)

1 1 InputRescaling - - scale: 0.01 (1, 12, 256, 256)

magnification between the focal plane of the objective and the sensor plane was 18.35X, resulting in
an object space pixel size of 0.354 µm. To experimentally characterise the optical encoder (point
spread function), an artificial point source was generated by focusing a collimated laser diode (532
nm, CPS532, Thorlabs) to a diffraction limited spot using a second, higher NA, microscope objective
(60X 0.9 NA LUMPLFLN60XW, Olympus) facing the primary microscope objective lens. This
artificial point source was displaced about the focal plane of the primary microscope objective in 5
µm steps over a total range of 250 µm. 100 images were acquired at each plane, averaged, and dark
frame subtracted.

32

ground truth (Type A) optimized for Type A optimized for Type B optimized for Type C

50 μm
512 × 512 px camera

30 512 30 470 30 405 30 312

Figure 15: Slab views of an example Type A volume show that the phase mask optimized for Type A
results in the best reconstructions. Note that the reconstruction with a phase mask optimized for Type
A is almost identical to the ground truth, while the other phase masks create blurrier reconstructions.
Slabs are xy max projections in thinner chunks as opposed to projecting through the entire volume.
Colored boxes show which sample planes a particular slab comes from, corresponding to boxes in xz
projection view at top.

Table 19: FourierNet2D detailed architecture (1 per plane)

Layer type Kernel size Stride Notes Shape (C, D, H, W)
InputScaling - - scale: 0.01 (1, 1, 512, 512)
FourierConv2D (512, 512) (2, 2) - (5, 1, 512, 512)
LeakyReLU - - slope: -0.01 (5, 1, 512, 512)
BatchNorm2D - - - (5, 1, 512, 512)
Conv2D (11, 11) (1, 1) - (1, 1, 512, 512)
ReLU - - - (1, 1, 512, 512)
InputRescaling - - scale: 0.01 (1, 1, 512, 512)

The phase mask (microscope parameters ϕ) was optimized for this spatial light modulator (SLM)
by choosing a number of pixels for the phase mask such that the desired pupil size would fit on the
physical pixels of the SLM. In order to simulate high frequencies accurately, we upsample this phase
mask to the number of pixels used for all our other simulations. This phase mask was optimized for
Type B samples.

For visualization in Figure 5, we clipped any values of the measured optical encoder that were below
0 after dark frame subtraction to 0, then simulated imaging. We simulated the optical encoder using
the same wavelength as the laser point source (532 nm) for the measured optical encoder. For both the

33

ground truth (Type B) optimized for Type A optimized for Type B optimized for Type C

50 μm

512 × 512 px camera

30 747 30 415 30 466 30 413

Figure 16: Slab views of an example Type B volume show that the phase mask optimized for Type B
results in the best reconstructions; other phase masks result in blurrier reconstructions. Colored boxes
show which sample planes a particular slab comes from, corresponding to boxes in xz projection
view at top.

simulated and measured optical encoders, we scale the values to range from 0 to 1. We then simulated

34

Table 20: FourierNet3D detailed architecture (8 GPUs)

Layer type Kernel size Stride Notes Shape (C, D, H, W)
InputScaling - - scale: 0.01 (1, 1, 512, 512)
FourierConv2D (512, 512) (2, 2) - (80, 1, 512, 512)
LeakyReLU - - slope: -0.01 (80, 1, 512, 512)
BatchNorm2D - - - (80, 1, 512, 512)
Reshape2D3D - - - (5, 16, 512, 512)
Conv3D (11, 7, 7) (1, 1, 1) - (5, 16, 512, 512)
LeakyReLU - - slope: -0.01 (5, 16, 512, 512)
BatchNorm3D - - - (5, 16, 512, 512)
Conv3D (11, 7, 7) (1, 1, 1) - (1, 16, 512, 512)
ReLU - - - (1, 16, 512, 512)
InputRescaling - - scale: 0.01 (1, 16, 512, 512)

imaging using the same sample from our Type B dataset. The simulation for the measured optical
encoder used a Type B sample interpolated to a resolution that matched the Orca-Flash camera.

35

ground truth (Type C) optimized for Type A optimized for Type B optimized for Type C

50 μm

512 × 512 px camera

30 740 30 348 30 421 30 526

Figure 17: Slab views of an example Type C volume show that phase mask optimized for Type C
provides most consistent reconstruction. Colored boxes have same meaning as Figures 15, 16.

36

