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Abstract

Recently, Transformer-like deep architectures have shown strong performance on
tabular data problems. Unlike traditional models, e.g., MLP, these architectures
map scalar values of numerical features to high-dimensional embeddings before
mixing them in the main backbone. In this work, we argue that embeddings for
numerical features are an underexplored degree of freedom in tabular DL, which
allows constructing more powerful DL models and competing with gradient boosted
decision trees (GBDT) on some GBDT-friendly benchmarks (that is, where GBDT
outperforms conventional DL models). We start by describing two conceptually
different approaches to building embedding modules: the first one is based on a
piecewise linear encoding of scalar values, and the second one utilizes periodic
activations. Then, we empirically demonstrate that these two approaches can
lead to significant performance boosts compared to the embeddings based on
conventional blocks such as linear layers and ReLU activations. Importantly, we
also show that embedding numerical features is beneficial for many backbones, not
only for Transformers. Specifically, after proper embeddings, simple MLP-like
models can perform on par with the attention-based architectures. Overall, we
highlight embeddings for numerical features as an important design aspect with
good potential for further improvements in tabular DL. The source code is available
athttps://github.com/Yurab52/tabular-dl-num-embeddings.

1 Introduction

Tabular data problems are currently a final frontier for deep learning (DL) research. While the most
recent breakthroughs in NLP, vision, and speech are achieved by deep models [12], their success
in the tabular domain is not convincing yet. Despite a large number of proposed architectures for
tabular DL [2} 3, [13} [17, 21} 24} [311 39} 40], the performance gap between them and the “shallow”
ensembles of decision trees, like GBDT, often remains significant [[13}36].

The recent line of works [13 24} 139] reduce this performance gap by successfully adapting the
Transformer architecture [45] for the tabular domain. Compared to traditional models, like MLP
or ResNet, the proposed Transformer-like architectures have a specific way to handle numerical
features of the data. Namely, they map scalar values of numerical features to high-dimensional
embedding vectors, which are then mixed by the self-attention modules. Beyond transformers,
mapping numerical features to vectors was also employed in different forms in the click-through rate
(CTR) prediction problems [} 14, !40]. Nevertheless, the literature is mostly focused on developing
more powerful backbones while keeping the design of embedding modules relatively simple. In
particular, the existing architectures [[13} 1424} |39} 140] construct embeddings for numerical features
using quite restrictive parametric mappings, e.g., linear functions, which can lead to suboptimal
performance. In this work, we demonstrate that the embedding step has a substantial impact on the
model effectiveness, and its proper design can significantly improve tabular DL models.
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Specifically, we describe two different building blocks suitable for constructing embeddings for
numerical features. The first one is a piecewise linear encoding that produces alternative initial repre-
sentations for the original scalar values and is based on feature binning, a long-existing preprocessing
technique [[11]. The second one relies on periodic activation functions, which is inspired by their
usage in implicit neural representations [28 138} 42]], NLP [41} 45] and CV tasks [25]]. The first
approach is simple, interpretable and non-differentiable, while the second demonstrates better results
on average. We observe that DL models equipped with our embedding schemes successfully compete
with GBDT on GBDT-friendly benchmarks and achieve the new state-of-the-art on tabular DL.

As another important finding, we demonstrate that the step of embedding the numerical features is
universally beneficial for different deep architectures, not only for Transformer-like ones. In particular,
we show, that after proper embeddings, simple MLP-like architectures often provide the performance
comparable to the state-of-the-art attention-based models. Overall, our work demonstrates the large
impact of the embeddings of numerical features on the tabular DL performance and shows the
potential of investigating more advanced embedding schemes in future research.

To sum up, our contributions are as follows:

1. We demonstrate that embedding schemes for numerical features are an underexplored
research question in tabular DL. Namely, we show that more expressive embedding schemes
can provide substantial performance improvements over prior models.

2. We show that the profit from embedding numerical features is not specific for Transformer-
like architectures, and proper embedding schemes benefit traditional models as well.

3. On a number of public benchmarks, we achieve the new state-of-the-art on tabular DL.

2 Related work

Tabular deep learning. During several recent years, the community has proposed a large number of
deep models for tabular data [12, [3} |13} 15} [17, 121} 24} 131} 139, 140} [46]. However, when systematically
evaluated, these models do not consistently outperform the ensembles of decision trees, such as GBDT
(Gradient Boosting Decision Tree) [7) [19] [32], which are typically the top-choice in various ML
competitions [[13}36]]. Moreover, several recent works have shown that the proposed sophisticated
architectures are not superior to properly tuned simple models, like MLP and ResNet |13} [18]]. In this
work, unlike the prior literature, we do not aim to propose a new backbone architecture. Instead, we
focus on more accurate ways to handle numerical features, and our developments can be potentially
combined with any model, including traditional MLPs and more recent Transformer-like ones.

Transformers in tabular DL. Due to the tremendous success of Transformers for different domains
[L1O}45], several recent works adapt their self-attention design for tabular DL as well [13} 17124} [39].
Compared to existing alternatives, applying self-attention modules to the numerical features of tabular
data requires mapping the scalar values of these features to high-dimensional embedding vectors.
So far, the existing architectures perform this “scalar” — “vector” mapping by relatively simple
computational blocks, which, in practice, can limit the model expressiveness. For instance, the
recent FT-Transformer architecture [[13]] employs only a single linear layer. In our experiments, we
demonstrate that such embedding schemes can provide suboptimal performance, and more advanced
schemes often lead to substantial profit.

CTR Prediction. In CTR prediction problems, objects are represented by numerical and categorical
features, which makes this field highly relevant to tabular data problems. In several works, numerical
features are handled in some non-trivial way while not being the central part of the research [8, 40].
Recently, however, a more advanced scheme has been proposed in Guo et al. [[14]. Nevertheless, it is
still based on linear layers and conventional activation functions, which we found to be suboptimal in
our evaluation.

Feature binning. Binning is a discretization technique that converts numerical features to categorical
features. Namely, for a given feature, its value range is split into bins (intervals), after which the
original feature values are replaced with discrete descriptors (e.g. bin indices or one-hot vectors) of
the corresponding bins. We point to the work by Dougherty et al. [11], which performs an overview
of some classic approaches to binning and can serve as an entry point to the relevant literature on the
topic. In our work, however, we utilize bins in a different way. Specifically, we use their edges to
construct lossless piecewise linear representations of the original scalar values. It turns out that this



simple and interpretable representations can provide substantial benefit to deep models on several
tabular problems.

Periodic activations. Recently, periodic activation functions have become a key component in
processing coordinates-like inputs, which is required in many applications. Examples include
NLP [45], CV [25], implicit neural representations [28, 38} 142]]. In our work, we show that periodic
activations can be used to construct powerful embedding modules for numerical features in tabular data
problems. Contrary to some of the aforementioned papers, where components of the multidimensional
coordinates are mixed (e.g. with linear layers) before passing them to periodic functions [38| 42|, we
find it crucial to embed each feature separately before mixing them in the main backbone.

3 Embeddings for numerical features

In this section, we describe the general framework for what we call "embeddings for numerical
features" and the main building blocks used in the experimental comparison in

Notation. For a given supervised learning problem on tabular data, we denote the dataset as
{(27, y) }?:1 where y7 € Y represents the object’s label and 27 = (z7("um) | gilcat)) € X repre-

sents the object’s features (numerical and categorical). a:f (”um), in turn, denotes the i-th numerical

feature of the j-th object. Depending on the context, the 5 index can be omitted. The dataset is split
into three disjoint parts: 1,1 = Jirqin U Jyai U Jiest, Where the “train” part is used for training, the
“validation” part is used for early stopping and hyperparameter tuning, and the “test” part is used for
the final evaluation.

3.1 General framework

We formalize the notion of "embeddings for numerical features" as z; = fi((xz(-"um)) € R,
where f;(x) is the embedding function for the i-th numerical feature, z; is the embedding of the
i-th numerical feature and d; is the dimensionality of the embedding. Importantly, the proposed
framework implies that embeddings for all features are computed independently of each other. Note
that the function f; can depend on parameters that are trained as a part of the whole model or in
some other fashion (e.g. before the main optimization). In this work, we consider only embedding
schemes where the embedding functions for all features are of the same functional form. We never
share parameters of embedding functions of different features.

The subsequent use of the embeddings depends on the model backbone. For MLP-like architectures,
they are concatenated into one flat vector (see[Appendix A|for illustrations). For Transformer-based
architectures, no extra step is performed and the embeddings are passed as is, so the usage is defined
by the original architectures.

3.2 Piecewise linear encoding

While vanilla MLP is known to be a universal approximator [9} [16]], in practice, due to optimization
peculiarities, it has limitations in its learning capabilities [34]. However, the recent work by Tancik
et al. [42] uncovers the case where changing the input space alleviates the above issue. This
observation motivates us to check if changing the representations of the original scalar values of
numerical features can improve the learning capabilities of tabular DL models.

At this point, we try to start simple and turn to "classical" machine learning techniques. Namely,
we take inspiration from the one-hot encoding algorithm that is widely and successfully used for
representing discrete entities such as categorical features in tabular data problems or tokens in NLP.
We note that the one-hot representation can be seen as an opposite solution to the scalar representation
in terms of the trade-off between parameter efficiency and expressivity. To check whether the one-
hot-like approach can be beneficial for tabular DL. models, we design a continuous alternative to the
one-hot encoding (since the vanilla one-hot encoding is barely applicable to numerical features).

Formally, for the i-th numerical feature, we split its value range into the disjoint set of 7" intervals

t, ..., B&, which we call bins: B} = [bi_,,b}). The splitting algorithm is an important imple-
mentation detail that we discuss later. From now on, we omit the feature index ¢ for simplicity. Once
the bins are determined, we define the encoding scheme as in[Equation T
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Figure 1: The piecewise linear encoding
= (PLE) in action for T' = 4 (see .
Note that:

» PLE produces alternative initial representations for the numerical features and can be viewed as
a preprocessing strategy. These representations are computed once and then used instead of the
original scalar values during the main optimization.

* For T' = 1, the PLE-representation is effectively equivalent to the scalar representation.

» Contrary to categorical features, numerical features are ordered; we express that by setting to 1
the components corresponding to bins with the right boundaries lower than the given feature
value (this approach resembles how labels are encoded in ordinal regression problems).

* The cases (x < bg) and (x > br) are also covered by [Equation 1|(which leads to (e; < 0) and
(er > 1) respectively).

» The choice to make the representation piecewise linear is itself a subject for discussion. We

analyze some alternatives in [subsection 5.2]
* PLE can be viewed as feature preprocessing, which is additionally discussed in

A note on attention-based models. While the described PLE-representations can be passed to MLP-
like models as is, attention-based models are inherently invariant to the order of input embeddings, so
one additional step is required to add the information about feature indices to the obtained encodings.
Technically, we observe that it is enough to place one linear layer after PLE(without sharing weights
between features). Conceptually, however, this solution has a clear semantic interpretation. Namely,
it is equivalent to allocating one trainable embedding v; € R¢ for each bin B; and obtaining the
final feature embedding by aggregating the embeddings of its bins with e, as weights, plus bias vg.

Formally: f; () = vo + Zthl et - vy = Linear (PLE ().

In the following two sections, we describe two simple algorithms for building bins suitable for PLE.
Namely, we rely on the classic binning algorithms [[L 1] and one of the two algorithms is unsupervised,
while another one utilizes labels for constructing bins.

3.2.1 Obtaining bins from quantiles

A natural baseline way to construct the bins for PLE is by splitting value ranges according to the
uniformly chosen empirical quantiles of the corresponding individual feature distributions. Formally,

for the 4-th feature: b; = Q.. ({xg(num,) }i€Jirasn > Where Q is the empirical quantile function. Trivial
bins of zero size are removed. In[subsection D.I| we demonstrate the usefulness of the proposed

scheme on the synthetic GBDT-friendly dataset described in section 5.1 in Gorishniy et al. [13]].

3.2.2 Building target-aware bins

In fact, there are also supervised approaches that employ training labels for constructing bins [[11]].
Intuitively, such target-aware algorithms aim to produce bins that correspond to relatively narrow
ranges of possible target values. The supervised approach used in our work is identical in its spirit to
the "C4.5 Discretization" algorithm from Kohavi and Sahami [23]]. In a nutshell, for each feature, we
recursively split its value range in a greedy manner using target as guidance, which is equivalent to
building a decision tree (which uses for growing only this one feature and the target) and treating the
regions corresponding to its leaves as the bins for PLE (see the illustration in [Figure 4). Additionally,

i i J i , J
we define by = minje ,, .., T; and b = max;ey,, .. Ti.



3.3 Periodic activation functions

Recall that in the work by Tancik et al. [42] was used as a starting point of our
motivation for developing PLE. Thus, we also try to adapt the original work itself for tabular data
problems. Our variation differs in two aspects. First, we take into account the fact the embedding
framework described in forbids mixing features during the embedding process (see
[subsection D.7] for additional discussion). Second, we train the pre-activation coefficients instead
of keeping them fixed. As a result, our approach is rather close to Li et al. [25] with the number of
“groups” equal to the number of numerical features. We formalize the described scheme in[Equation 2]

fi(z) = Periodic(z) = concat[sin(v), cos(v)], v=[2rciz, ..., 2wcRa) )

where ¢; are trainable parameters initialized from N(0,c). We observe that o is an important
hyperparameter. Both o and k£ are tuned using validation sets.

3.4 Simple differentiable layers

In the context of Deep Learning, embedding numerical features with conventional differentiable
layers (e.g. linear layers, ReLU activation, etc.) is a natural approach. In fact, this technique is
already used on its own in the recently proposed attention-based architectures [[13] 24} [39] and in
some models for CTR prediction problems [14}40]. However, we also note that such conventional
modules can be used on top of the components described in [subsection 3.2|and [subsection 3.3| In
we find that such combinations often lead to better results.

4 Experiments

In this section, we empirically evaluate the techniques discussed in [section 3|and compare them with
Gradient Boosted Decision Trees to check the status quo of the “DL vs GBDT” competition.

4.1 Datasets

Table 1: Dataset properties. “RMSE” denotes root-mean-square error, “Acc.” denotes accuracy.

GE CH CA HO AD OT HI FB SA CO MI

#objects 9873 10000 20640 22784 48842 61878 98049 197080 200000 581012 1200192
#num. features 32 10 8 16 6 93 28 50 200 54 136
#cat. features 0 1 0 0 8 0 0 1 0 0 0
metric Acc. Acc. RMSE RMSE Acc. Acc. Acc. RMSE Acc. Acc. RMSE
#classes 5 2 - - 2 9 2 - 2 7 -
majority class 29% 79% - - 76% 26% 52% - 89%  48% -

We use eleven public datasets mostly from the previous works on tabular DL and Kaggle competitions.
Importantly, we focus on the middle and large scale tasks, and our benchmark is biased towards
GBDT-friendly problems, since, as of now, closing the gap with GBDT models on such tasks is one
of the main challenges for tabular DL. The main dataset properties are summarized in[Table T|and the

used sources and additional details are provided in[Appendix C|

4.2 Implementation details

We mostly follow Gorishniy et al. [[13]] in terms of the hyperparameter tuning, training and evaluation
protocols. Nevertheless, for completeness, we list all the details in|Appendix El In the next paragraph,
we describe the implementation details specific to embeddings for numerical features.

Embeddings for numerical features. If linear layers are used, we tune their output dimensions. The
PLE hyperparameters are the same for all features. For quantile-based PLE, we tune the number of
quantiles. For target-aware PLE, we tune the following parameters for decision trees: the maximum
number of leaves, the minimum number of items per leaf, and the minimum information gain required
for making a split when growing the tree. For the Periodic module (see[Equation 2), we tune o and
k (these hyperparameters are the same for all features).



4.3 Model names

In the experiments, we consider differ-

ent combinations of backbones and em- Table 2: Embedding names. See [subsection 4.3
beddings. For convenience, we use the Name | Embedding function (f;)
“Backbone-Embedding” pattern to name .

« 5 L Linear
the models, where “Backbone” denotes the IR ReLU o Linear
backbone (e.g. MLP, ResNet, Transformer) LRLR ReLU o Linear o ReLU o Linear
and “Embedding” denotes the embedding q PLE,

: . Q-L Linear o PLE,
g{pe. Sec:,1 for 2;111 (.:0n51dered embed 0-1n ReLU o Linear o PLE.
ing modules. Note that: Q-LRLR ReLU o Linear o ReLU o Linear o PLE,
* Periodic is defined in[Equation 2] T PLE,
* PLE, denotes the quantile-based PLE. T-L Linear o PLE,
T-LR ReLU o Linear o PLE;

PLE. denotes the target-aware PLE. . .
. . . T-LRLR ReLU o Linear o ReLU o Linear o PLE;
* Linear_ denotes bias-free linear layer. b Periodic
LReLU denotes leaky ReLU. AutoDis PL Linear o Periodic
was proposed in Guo et al. [[14] PLR ReLU o Linear o Periodic
e “Transformer-L is equivalent to FT- PLRL..R ' ReLUo Linear o'ReLU oLinear o Pe'rlodlc
AutoDis | Linear o SoftMax o Linear_ oLReLUo Linear_

Transformer [13]].

4.4 Simple differentiable embedding modules

Table 3: Results for MLP equipped with simple embedding modules (see . The
metric values averaged over 15 random seeds are reported. The standard deviations are provided
in We consider one result to be better than another if its mean score is better and its
standard deviation is less than the difference. For each dataset, top results are in bold. Notation: |
corresponds to RMSE, 1 corresponds to accuracy

GE? CHT CA| HO| ADT OT{ HI{ FB| SA{ COT MI|

MLP 0.632 0.856 0.495 3.204 0.854 0.818 0.720 5.686 0.912 0.964 0.747
MLP-L 0.639 0.861 0.475 3.123 0.856 0.820 0.723 5.684 0.916 0.963 0.748
MLP-LR 0.642 0.860 0.471 3.084 0.857 0.819 0.726 5.625 0.923 0.963 0.746

We start by evaluating embedding modules consisting of “conventional” differentiable layers (linear
layers, ReLU activations, etc.). The results are summarized in[Table 3]
The main takeaways:

* first and foremost, the results indicate that MLP can benefit from embedding modules. Thus, we
conclude that this backbone is worth attention when it comes to evaluating embedding modules.
* the simple LR module leads to modest, but consistent improvements when applied to MLP.

Interestingly, the “redundant” MLP-L configuration also tends to outperform the vanilla MLP.
Although the improvements are not dramatic, the special property of this architecture is that the linear
embedding module can be fused together with the first linear layer of MLP after training, which
completely removes the overhead. As for LRLR and AutoDis, we observe that these heavy modules
do not justify the extra costs (see the results in[Appendix F).

4.5 Piecewise linear encoding

In this section, we evaluate the encoding scheme described in The results are
summarized in
The main takeaways:

» The piecewise linear encoding is often beneficial for both types of architectures (MLP and
Transformer) and the profit can be significant (for example, see the CA and AD datasets).

» Adding differentiable components on top of the PLE can improve the performance. Though, the
most expensive modifications such as Q-LRLR and T-LRLR are not worth it (see [Appendix F).



Note that the benchmark is biased towards GBDT-friendly problems, so the typical superiority of
tree-based bins over quantile-based bins, which can be observed in[Table 4] may not generalize to
more DL-friendly datasets. Thus, we do not make any general claims about the relative advantages of
the two schemes here.

Table 4: Results for MLP and Transformer with embedding modules based on the piecewise linear

encoding (subsection 3.2). Notation follows [Table 3| and [Table 2] The best results are defined

separately for the MLP and Transformer backbones.

GE1 CHT CA]l HO| ADT OT{ HIt FB| SAT COT MIJ

MLP 0.632 0.856 0.495 3.204 0.854 0.818 0.720 5.686 0.912 0.964 0.747
MLP-Q 0.653 0.854 0.464 3.163 0.859 0.816 0.721 5.766 0.922 0.968 0.750
MLP-T 0.647 0.861 0.447 3.149 0.864 0.821 0.720 5.577 0.923 0.967 0.749
MLP-Q-LR 0.646 0.857 0.455 3.184 0.863 0.811 0.720 5.394 0.923 0.969 0.747
MLP-T-LR 0.640 0.861 0.439 3.207 0.868 0.818 0.724 5.508 0.924 0.968 0.747

Transformer-L 0.632 0.860 0.465 3.239 0.858 0.817 0.725 5.602 0.924 0.971 0.746
Transformer-Q-L  0.659 0.856 0.451 3.319 0.867 0.812 0.729 5.741 0.924 0.973 0.747
Transformer-T-L.  0.663 0.861 0.454 3.197 0.871 0.817 0.726 5.803 0.924 0.974 0.747
Transformer-Q-LR 0.659 0.857 0.448 3.270 0.867 0.812 0.723 5.683 0.923 0.972 0.748
Transformer-T-LR 0.665 0.860 0.442 3.219 0.870 0.818 0.729 5.699 0.924 0.973 0.747

4.6 Periodic activation functions

Table 5: Results for MLP and Transformer with embedding modules based on periodic activations

(subsection 3.3). Notation follows [Table 3|and [Table 2] The best results are defined separately for the

MLP and Transformer backbones.

GET CHT CA|l HO| AD{ OT{ HIt FB| SA{ COT MIJ

MLP 0.632 0.856 0.495 3.204 0.854 0.818 0.720 5.686 0.912 0.964 0.747
MLP-P 0.631 0.860 0.489 3.129 0.869 0.807 0.723 5.845 0.923 0.968 0.747
MLP-PL 0.641 0.859 0.467 3.113 0.868 0.819 0.727 5.530 0.924 0.969 0.746
MLP-PLR 0.674 0.857 0.467 3.050 0.870 0.819 0.728 5.525 0.924 0.970 0.746

Transformer-L ~ 0.632 0.860 0.465 3.239 0.858 0.817 0.725 5.602 0.924 0.971 0.746
Transformer-PLR 0.646 0.863 0.464 3.162 0.870 0.814 0.730 5.760 0.924 0.972 0.746

In this section, we evaluate embedding modules based on periodic activation functions as described
in The results are reported in

The main takeaway: on average, MLP-P is superior to the vanilla MLP. However, adding a
differentiable component on top of the Periodic module should be the default strategy (which is
in line with Li et al. [25]). Indeed, MLP-PLR and MLP-PL provide meaningful improvements over
MLP-P (e.g. see GE, CA, HO) and even “fix” MLP-P where it is inferior to MLP (OT, FB).

Although MLP-PLR is usually superior to MLP-PL, we note that in the latter case the last linear layer
of the embedding module is “redundant” in terms of expressivity and can be fused with the first linear
layer of the backbone after training, which, in theory, can lead to a more lightweight model. Finally,
we observe that MLP-PLRLR and MLP-PLR do not differ significantly enough to justify the extra

cost of the PLRLR module (see[Appendix F).

4.7 Comparing DL models and GBDT

In this section, we perform a big comparison of different approaches to identify the best embedding
modules and backbones, as well as to check if embeddings for numerical features allow DL models to
compete with GBDT on more tasks than before. Importantly, we compare ensembles of DL models
against ensembles of GBDT, since Gradient Boosting is essentially an ensembling technique, so such
comparison will be fairer. Note that we focus only on the best metric values without taking efficiency
into account, so we only check if DL models are conceptually ready to compete with GBDT.



We consider three backbones: MLP, ResNet, and Transformer, since they are reported to be repre-
sentative of what baseline DL backbones are currently capable of [[13 |18} 124} 39]. Note that we do
not include the attention-based models that also apply attention on the level of objects [24,135]139],
since this non-parametric component is orthogonal to the central topic of our work. The results are
summarized in

Table 6: Results for ensembles of GBDT, the baseline DL models and their modifications using
different types of embeddings for numerical features. Notation follows [Table 3|and [Table 2} Due to
the limited precision, some different values are represented with the same figures.

GET CHT CA]l HO| ADT OT+ HIT FBl SAT COT MI| |Avg Rank

CatBoost 0.692 0.861 0.430 3.093 0.873 0.825 0.727 5.226 0.924 0.967 0.741|3.6 £2.9
XGBoost 0.683 0.859 0.434 3.152 0.875 0.827 0.726 5.338 0.919 0.969 0.742 4.6 £2.7
MLP 0.665 0.856 0.486 3.109 0.856 0.822 0.727 5.616 0.913 0.968 0.746 |8.5 £ 2.6
MLP-LR 0.679 0.861 0.463 3.012 0.859 0.826 0.731 5.477 0.924 0.972 0.744 |5.5 £ 2.7
MLP-Q-LR 0.682 0.859 0.433 3.080 0.867 0.818 0.724 5.144 0.924 0.974 0.745|5.1£1.9
MLP-T-LR 0.673 0.861 0.435 3.099 0.870 0.821 0.727 5.409 0.924 0.973 0.746 |5.1 £ 1.7
MLP-PLR 0.700 0.858 0.453 2.975 0.874 0.830 0.734 5.388 0.924 0.975 0.743 |3.0+ 2.4
ResNet 0.690 0.861 0.483 3.081 0.856 0.821 0.734 5.482 0.918 0.968 0.745 6.7 &+ 3.3
ResNet-LR 0.672 0.862 0.450 2.992 0.859 0.822 0.733 5.415 0.923 0.971 0.743 |5.6 £2.7
ResNet-Q-LR 0.674 0.859 0.427 3.066 0.868 0.815 0.729 5.309 0.923 0.976 0.746 (4.7 £2.0
ResNet-T-LR 0.683 0.862 0.425 3.030 0.872 0.822 0.731 5.471 0.923 0.975 0.744 |4.1£1.9
ResNet-PLR 0.691 0.861 0.443 3.040 0.874 0.825 0.734 5.400 0.924 0.975 0.743 |3.2+1.3
Transformer-L 0.668 0.861 0.455 3.188 0.860 0.824 0.727 5.434 0.924 0.973 0.743 5.9 £2.2
Transformer-LR 0.666 0.861 0.446 3.193 0.861 0.824 0.733 5.430 0.924 0.973 0.743 |5.2+2.2
Transformer-Q-LR  0.690 0.857 0.425 3.143 0.868 0.818 0.726 5.471 0.924 0.975 0.744 |4.4+2.2
Transformer-T-LR  0.686 0.862 0.423 3.149 0.871 0.823 0.733 5.515 0.924 0.976 0.744 3.7 £2.2
Transformer-PLR ~ 0.686 0.864 0.449 3.091 0.873 0.823 0.734 5.581 0.924 0.975 0.743 3.9+ 2.5

The main takeaways for DL models:

* For most datasets, embeddings for numerical features can provide noticeable improvements for
three different backbones. Although the average rank is not a good metric for making subtle
conclusions, we highlight the impressive difference in average ranks between the MLP and
MLP-PLR models.

» The simplest LR embedding is a good baseline solution: although the performance gains are not
dramatic, its main advantage is consistency (e.g. see MLP vs MLP-LR).

e The PLR module provides the best average performance. Empirically, we observe o (see
[Equation 2) to be an important hyperparameter that should be tuned.

* Piecewise linear encoding (PLE) allows building well performing embeddings (e.g. T-LR, Q-LR).
In addition to that, PLE itself is worth attention because of its simplicity, interpretability and
efficiency (no computationally expensive periodic functions).

* Importantly, after the MLP-like architectures are coupled with embeddings for numerical
features, they perform on par with the Transformer-based models.

The main takeaway for the “DL vs GBDT” competition: embeddings for numerical features is a
significant design aspect that has a great potential for improving DL models and closing the gap with
GBDT on GBDT-friendly tasks. Let us illustrate this claim with several observations:

* The benchmark is initially biased to GBDT-friendly problems, which can be observed by
comparing GBDT solutions with the vanilla DL models (MLP, ResNet, Transformer-L).

» However, for the vast majority of the “backbone & dataset” pairs, proper embeddings are the
only thing needed to close the gap with GBDT. Exceptions (rather formal) include the MI
dataset and the following pairs: “ResNet & GE”, “Transformer & FB”, “Transformer & GE”,
“Transformer & OT”.

» Additionally, to the best of our knowledge, it is the first time when DL models perform on par
with GBDT on the well-known California Housing and Adult datasets.

That said, compared to GBDT models, efficiency can still be an issue for the considered DL architec-
tures. In any case, the trade-off completely depends on the specific use case and requirements.



5 Analysis

5.1 Comparing model sizes

To quantify the effect of embeddings for numerical features on model sizes, we report the parameter
counts in Overall, introducing embeddings for numerical features can cause non-negligible
overhead in terms of model size. Importantly, the overhead in terms of size does not translate to the
same overhead in terms of training times and throughput. For example, the almost 2000-fold increase
in the parameter count for MLP-LR on the CH dataset results in only 1.5-fold increase in training
times. Finally, in practice, we observe that coupling MLP and ResNet with embedding modules leads
to architectures that are still faster than Transformer-based models.

Table 7: Parameter counts for MLP with different embedding modules. All the models are tuned and
the corresponding backbones are not identical in their sizes, so we take into account the fact that
different approaches require a different number of parameters to realize their full potential.

GE CH CA HO AD oT HI FB SA CcO MI

MLP 2.0M 1.5K 43.5K 3.6M 5.3M 479.9K 25.8K 937.3K 5.8M 3.2M 276.5K
MLP-LR  x2.52 x1931.03 x25.05 x1.28 x0.35 x12.53 x68.16 x4.76 x1.58 x0.72 x15.79
MLP-T x1.58 x14.13 x7.97 x0.43 x0.04 x2.27 x5.85 x0.47 x0.59 x0.74 x3.85
MLP-T-LR x1.61 x463.55 x6.80 x0.23 x0.16 x2.52 x113.22 x3.43 x0.41 x0.35 x8.47
MLP-PLR x1.73 x250.24 x12.94 x1.07 x0.66 x8.05 x110.57 x4.93 x0.64 x0.44 x9.57

5.2 Ablation study

Table 8: Comparing piecewise linear encoding (PLE) with the two variations described in

Notation follows [Table 3|and [Table 2]

GE1T CHT CAJl HO|l AD{1 OT{ HIT FBJ
MLP-Q (piecewise linear) 0.653 0.854 0.464 3.163 0.859 0.816 0.721 5.766

MLP-Q (binary) 0.652 0.815 0.462 3.200 0.860 0.810 0.720 5.748
MLP-Q (one-blob) 0.613 0.851 0.461 3.187 0.857 0.808 0.719 5.645
MLP-T (piecewise linear) 0.647 0.861 0.447 3.149 0.864 0.821 0.720 5.577
MLP-T (binary) 0.639 0.855 0.464 3.163 0.869 0.813 0.718 5.572
MLP-T (one-blob) 0.622 0.858 0.464 3.158 0.870 0.809 0.724 5.475

In this section, we compare two alternative binning-based encoding schemes with PLE (see
tion 3.2). The first one ("thermometer” [6]]) sets the value 1 instead of the piecewise linear term (see
Equation I). The second one is a generalized version of the one-blob encoding [29] (see [subsec]
tion E. 1| for details). The tuning and evaluation protocols are the same as in The
results in table [Table §|indicate that making the binning-based encoding piecewise linear is a good
default strategy.

5.3 Piecewise linear encoding as a feature preprocessing technique

It is known that data preprocessing, such as standardization or quantile transformation, is often crucial
for DL models for achieving competitive performance. Moreover, the performance can significantly
vary between different types of preprocessing. At the same time, PLE-representations contain only
values from [0, 1] and they are invariant to shifting and scaling, which makes PLE itself a general
feature preprocessing technique potentially suitable for DL models without the need to use traditional
preprocessing first.

To illustrate that, for datasets where the quantile transformation was used in we reevaluate
the tuned configurations of MLP, MLP-Q, and MLP-T with different preprocessing policies and
report the results in (note that standardization is equivalent to no preprocessing for models
with PLE).



Table 9: Results for MLP and MLP with PLE for different types of data preprocessing. Solutions
using PLE are significantly less sensitive to data preprocessing. Notation follows[Table 3| and [Table 2}

GET CHT CA| HO| AD?T HIT FB| SA?T COT MIJ|

MLP (none) 0.565 0.796 1.118 5.328 0.808 0.707 13.125 0.911 0.948 0.844
MLP (standard)  0.629 0.855 0.509 3.303 0.855 0.721 5.919 0.912 0.963 0.754
MLP (quantile)  0.632 0.856 0.495 3.204 0.854 0.720 5.686 0.912 0.964 0.747

MLP-Q (none) 0.654 0.851 0.463 3.162 0.860 0.721 5.889 0.922 0.968 0.754
MLP-Q (quantile) 0.653 0.854 0.464 3.163 0.859 0.721 5.766 0.922 0.968 0.750

MLP-T (none) 0.644 0.860 0.447 3.175 0.865 0.721 5.598 0.923 0.968 0.749
MLP-T (quantile) 0.647 0.861 0.447 3.149 0.864 0.720 5.577 0.923 0.967 0.749

First, the vanilla MLP often becomes unusable without preprocessing. Second, for the vanilla MLP,
it can be important to choose one specific type of preprocessing (CA, HO, FB, MI), which is less
pronounced for MLP-Q and not the case for MLP-T (though, this specific observation can be the
property of the benchmarks, not of MLP-T). Overall, the results indicate that models using PLE are
less sensitive to the initial preprocessing compared to the vanilla MLP. This is an additional benefit of
PLE-representations for practitioners since the aspect of preprocessing becomes less critical with PLE.

5.4 The “feature engineering” perspective

Table 10: The comparison of the effects of Periodic-based modules for XGBoost and MLP

CA] HO| HI?T

XGBoost 0.436 3.160 0.724
XGBoost with Periodic 0.441 3.184 0.724
MLP 0.495 3.204 0.720
MLP-PL 0.467 3.113 0.727

At first sight, feature embeddings may resemble feature engineering and should be suitable for all
kinds of models. However, the proposed embedding schemes are motivated by DL-specific aspects of
training (see the motivational parts of |subsection 3.2] and [subsection 3.3)). While our methods are
likely to transfer well to models with similar training properties (e.g. to linear models since those are
a special case of deep models), it is not the case in general. To illustrate that, we try adopting the
Periodic module for XGBoost by fixing the random coefficients from [Equation 2] We also keep the
original features instead of dropping them. The tuning and evaluation protocols are the same as in

The results in show that this technique, while being useful for DL models,

does not provide any benefits for XGBoost.

6 Conclusion & Future work

In this work, we have demonstrated that embeddings for numerical features are an important design
aspect of tabular DL architectures. Namely, it allows existing DL backbones to achieve noticeably
better results and significantly reduce the gap with Gradient Boosted Decision Trees. We have
described two approaches illustrating this phenomenon, one using the piecewise linear encoding of
original scalar values, and another using periodic functions. We have also shown that traditional
MLP-like models coupled with embeddings can perform on par with attention-based models.

Nevertheless, we have only scratched the surface of the new direction. For example, it is still to
be explained how exactly the discussed embedding modules help optimization on the fundamental
level. Additionally, we have considered only schemes where the same functional transformation was
applied to all features, which may be a suboptimal choice.
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