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Abstract

Spiking neural network (SNN) has been viewed as a potential candidate for the next
generation of artificial intelligence with appealing characteristics such as sparse
computation and inherent temporal dynamics. By adopting architectures of deep
artificial neural networks (ANNs), SNNs are achieving competitive performances
in benchmark tasks such as image classification. However, successful architectures
of ANNs are not necessary ideal for SNN and when tasks become more diverse
effective architectural variations could be critical. To this end, we develop a spike-
based differentiable hierarchical search (SpikeDHS) framework, where spike-based
computation is realized on both the cell and the layer level search space. Based
on this framework, we find effective SNN architectures under limited computation
cost. During the training of SNN, a suboptimal surrogate gradient function could
lead to poor approximations of true gradients, making the network enter certain
local minima. To address this problem, we extend the differential approach to
surrogate gradient search where the SG function is efficiently optimized locally.
Our models achieve state-of-the-art performances on classification of CIFAR10/100
and ImageNet with accuracy of 95.50%, 76.25% and 68.64%. On event-based
deep stereo, our method finds optimal layer variation and surpasses the accuracy
of specially designed ANNs meanwhile with 26× lower energy cost (6.7mJ),
demonstrating the advantage of SNN in processing highly sparse and dynamic
signals. Codes are available at https://github.com/Huawei-BIC/SpikeDHS.

1 Introduction

Inspired from biological neural networks, spiking neural network (SNN) [41] has been viewed as a
potential candidate for the next generation of artificial intelligence, with appealing characteristics
such as asynchronous computation, sparse activation and inherent temporal dynamics. However, the
training of deep SNNs is challenging due to the binary spike which is incompatible with gradient-
based backpropagation. To solve this problem, various surrogate gradient (SG) methods were
proposed [5, 65, 48] where soft relaxed functions were used to approximate the original discontinuous
gradient. Based on these methods, SNNs have achieved high level performances on benchmark image
classification tasks such as CIFAR and ImageNet [58, 66, 74, 54, 76]. However, the accuracy of SNN
often drops when directly adopting ANN architectures , such as ResNet [21] and VGG networks
[59]. With recent improved SNN training methods [35, 15, 13] the performance gap is decreasing but
remains. This gap is more evident in tasks where the network architecture requires more variation,
such as dense image prediction [81, 20, 25].

Directly inheriting sophisticated ANN architectures might not be ideal for SNN and there is a lack
of study of optimal architectures for spiking neurons given a particular task. Intuitively, topology
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in cortex should offer us some inspiration. Neuroscience has studied macro structures such as
columnar organization [44] and micro dynamics such as interaction between lateral and feedback
connections [36]. However, on the network level the relation between connections of neural circuits
and functionalities remains largely unknown. In this work, we develop a spike-based differentiable
hierarchical search (SpikeDHS) framework in order to find optimal task-specific network architectures
under limited computation cost. Based on traditional differentiable architecture search (DARTS)
framework [40], we redesign the search space and information flow in the principle of spike-based
computation. For both the cell and the layer search space, we study how to realize this principle
towards a fully spiking network.SG provides an approximation of the non-existing gradient in SNN
and its selection is not unique. To explore optimal SG functions for the training of SNN, we propose a
differentiable SG search method to efficiently adapt the function locally, and demonstrate its efficiency
on both static and event-based benchmark machine learning tasks. In summary, our contributions are
following:

• We develop a differentiable hierarchical search framework for spiking neurons, realizing
spike-based computation on both the cell and the layer level search space, based on which
optimal SNN architectures can found under limited computation cost.

• To improve gradient approximation of deep SNNs, we propose a differentiable SG search
method to efficiently optimize SG functions locally, which is easy to scale and also effective
for binary networks.

• Extensive experiments show that our methods outperform SNNs based on sophisticated
ANN architectures on image classification of CIFAR10, CIFAR100 and ImageNet datasets.

• On event-based deep stereo task, to the best of our knowledge we show the first time SNN
surpasses specially designed ANNs on the Multi Vehicle Stereo Event Camera (MVSEC)
[80] dataset in terms of accuracy, network sparsity and computation cost, demonstrating its
advantage in processing highly sparse and dynamic signals with extremely low power and
latency.

2 Related work

2.1 Architecture search

Designing high performance network architectures for specific tasks often requires expert experience
and trial-and-error experiments. Neural architecture search (NAS) [14] aims to automate this manual
process and has recently achieved highly competitive performance in tasks such as image classification
[82, 83, 38, 55, 52], object detection [83, 8, 64, 19] and semantic segmentation [39, 75, 49, 37], etc.
However, searching over a discrete set of candidate architectures often results in a massive number of
potential combinations, leading to explosive computation cost. The recently proposed differentiable
architecture search (DARTS) method [40] and its variations [67, 7, 10] address this problem using a
continuous relaxation of the search space which enables learning a set of architecture coefficients by
gradient descent, and has achieved competitive performances with the state-of-the-art using orders of
magnitude fewer computation resources [40, 39, 9]. Recently, [46] studied pooling operations for
downsampling in SNNs and applied NAS to reduce the the overall number of spikes. [26] applied
NAS to improve SNN initialization and explore backward connections. However, both works only
searched for different SNN cells or combinations of them under fixed network backbone and their
application is limited to image classification.

2.2 Training of SNN

The success of deep ANNs in solving benchmark machine learning tasks has motivated efforts to
make SNNs realize similar capabilities, either based on bio-inspired mechanisms [51, 47, 33, 45,
32, 27] or approximating ANN learning algorithms [5, 65, 48, 3]. Currently, two approaches have
demonstrated their efficiency, showing the ability to solve hard problems at similar levels as their
artificial counterparts, namely, ANN-to-SNN conversion [57, 6, 34] and directly training SNNs
with SG [58, 66, 74, 35, 15, 13]. The theoretical soundness of the SG approach for training binary
activation networks has been studied and justified [4, 69]. Experiments show that the training of SNN
is robust to the shape of SG function as long as it meets certain criteria, such as the overall scale [71].
[20] shows that a suitable SG function is critical when the SNN goes deeper. [35] further improved
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the performance of SNN by optimizing the width (or temperature) of a continuous SG function,
through the guidance of an approximated gradient measured with finite difference gradient (FDG).
However, a suitable hyperparameter setting of FDG is largely empirical. In terms of computation, it
iterates over each element of the weight and is sequential across layers, making a global application
of this method computationally impractical.

2.3 Event-based task with SNN

Inspired by biological retina, event camera [18] captures instantaneous changes of pixel intensity at
microsecond resolution. Compared to traditional frame-based cameras, it covers a higher dynamical
range (120dB) and offers a low power solution for vision tasks in high-speed scenario. Further
combining it with neuromorphic processors [50, 56, 11, 42, 17, 30] can create a fully neuromorphic
system, realizing extremely low power and low latency sensing. However, learning from highly sparse
and asynchronous events is challenging. Given its inherited asynchronous dynamics, SNN is an ideal
candidate for such task and recently a number of works have applied it for event-based problems
such as classification [29, 34], tracking [68], detection [24], semantic segmentation [25] and optical
flow estimation [31, 20], etc. Multi-view event-based deep stereo solves the problem of 3D scene
reconstruction based on pixel differences of the same physical point from event streams obtained by
multiple views. Given the problem’s complexity, it has been addressed by specially designed deep
ANNs. Several works use additional information such as camera motion to produce sparse depth
maps [79, 78]. Estimating dense disparity images from sparse event inputs is more challenging. A
recent work [62] addresses this problem by an event queue method which encodes events into event
images through 3D convolution, followed by an hourglass network to estimate disparity. Based on
[62], [1] further enhances local contours of the estimated disparity using image reconstruction.[43]
creates feature pyramids with multi-scale correlation learned from a cycle of gray-scale images and
event inputs. Inspired from biological neuron models, [73] developed discrete time convolution to
encode events with temporal dynamic feature maps and proposed a dual-path encoder with spatially
adaptive modulation to strengthen events representation. A very recent work [53] applies SNN to
this problem with a handcrafted U-net structure. Nevertheless, compared with ANN models using
geometric volumes its performance is suboptimal.

3 Method

3.1 Preliminary

We adopt the iterative leaky integrate-and-fire (LIF) neuron model [66] described by
ut,n = τut−1,n(1− yt−1,n) + It,n (1)

where superscripts n and t denote layer index and time step, respectively. τ is the membrane time
constant, u is the membrane potential, y denotes the spike output and I denotes the synaptic input
with It,n =

∑
j wjy

t,n−1
j where w is the weight. The neuron will fire a spike yt,n = 1 when ut,n

exceeds a threshold Vth, otherwise yt,n = 0. In this work, we set τ = 0.2 and Vth = 0.5. Given loss
L, using chain rule the weight update of SNN can be expressed as:

∂L

∂w
=

∑
t

∂L

∂yt
∂yt

∂ut

∂ut

∂It
∂It

∂w
(2)

where ∂yt

∂ut is the gradient of the spiking function, which is zero everywhere except at u = Vth.
The SG approach uses continuous functions to approximate the real gradients, such as rectangular
[76], triangular [2], Superspike [70], ArcTan [16] and exponential curves [58]. We adopt Dspike
function from [35]:Dspike(x) = a · tanh(b(x− c))+d, which can cover a large range of smoothness
by changing the temperature parameter b, with Dspike(x) = 1 or 0 for x > 1 or x < 0. We set
c = Vth = 0.5 and determine a and d by setting Dspike(0) = 0, Dspike(1) = 1.

3.2 Differentiable hierarchical search for SNN

3.2.1 Cell level search

Similar to traditional DARTS [40], a cell is defined as a repeated and searchable unit, which is a
directed acyclic graph with N nodes, {xi}N , as depicted in Fig. 1. Each cell receives input from two
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Figure 1: Hierarchical search space of SpikeDHS. (a) Cell level search space, with 3 nodes as an example.
Within one node, operations are summed (2 operations here) and filtered by a sign function. BN denotes batch
normalization. (b) Layer search space for event-based deep stereo.

previous cells and forms its output by concatenating all outputs of its nodes. In SpikeDHS, each node
is a spiking neuron described by:

xj = f(
∑
i<j

o(i,j)(xi)) (3)

where f is a sign function (or a spiking neuron) taking the sum of all operations as input, o(i,j) is the
operation associated with the directed edge connecting node i and j. During search, each edge is
represented by a weighted average of candidate operations, the information flow connecting node i
and node j becomes:

ō(i,j)(x) =
∑

o∈O(i,j)

exp(α
(i,j)
o )∑

o∈O(i,j) exp(α
(i,j)
o )

o(x) (4)

where O(i,j) denotes the operation space on edge (i, j) and α
(i,j)
o is the weight of operation o, which

is a trainable continuous variable. At the end of search, a discrete architecture is selected by replacing
each mixed operation ō(i,j) with the most likely operation o(i,j) = max

o∈O(i,j)
α
(i,j)
o . For spiking neurons,

we can either mix the operation at the spike activation or at the input of the membrane potential,
i.e. y = ō or I = ō. The former allows a search over operations with different SG functions,
while the latter transfers more accurate learning signals for α and leads to a concise node with less
spiking filters (see supplement material for deduction). We choose the former for search phase and
apply the latter particularly for SG search during retraining when operation type freeze (Section
3.4). Specifically, in the former choice, we distinguish between operations with the same forward
computation but with different SG functions in candidate operation space. In addition, in original
DARTS, a prepossessing step is required on operations between nodes and cells of previous layers
in order to align the dimension of feature maps. We merge this step with subsequent candidate
operations to reduce model complexity and improve inference speed.

3.2.2 Layer level search

Task specific knowledge has been proved to be helpful in speeding up the search process and
improving network performance. For classification task, we adopt a fixed downsampling structure
(Fig. 2) as in [40], with normal cells and reduction cells searched separately. For dense image
prediction where high resolution output is needed and network architecture requires more variation,
we implement differentiable search on the layer level as proposed in [39]. A set of scalars {β} are
trained to weight different potential layer resolutions and they are updated together with α. By the
end of search, an optimal structure is decoded from a pre-defined L-layer trellis, as shown in Fig.
1. For upsampling layers, we use nearest interpolation to maintain binary feature maps. For the
stereo matching task, following volumetric approaches [23, 72, 77] we construct a feature volume
which embeds geometric knowledge of the binocular input, and search cell structure separately for
the feature and matching subnetworks, similar to [9]. At the end of both subnetworks, the output of
the last cell is upsampled to the initial resolution of the trellis using spike-based activation. We use
batch normalization and ANN stem layers in the search phase. In the retraining phase, the ANN stem
layers are converted to SNN by replacing the Relu function with spike function and retraining the
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weights from scratch. The reason for using Relu activation during search is to ensure more stable
updating of the supernet, since deep SNNs may suffer from gradient vanish problem when the SG
functions is not chosen appropriately. In extended experiments we replace the Relu function in stem
layers with Dspike function under appropriate hyperparameters, e.g b = 3, and the search process
is also stable. Parameters of batch normalization are converted into convolution weights and biases
after retraining [22, 57], leading to full spike-based network for inference. We provide more details
for spike-based layer search space in the supplement.

3.3 Loss function, estimator and optimization

For classification task, we use an auxiliary loss as in [40], with weight 0.4. For event-based stereo
matching, our network produces a matching cost tensor C of size dmax

2 × h× w, based on which we
estimate a disparity map D̂ using a sub-pixel estimator [61].

D̂ =
∑
d

D(d) softmin
d:|d̂−d|<δ

(Cd,y,x) , with d̂ = argmin
d

(Cd,y,x) (5)

where δ = 2 is an estimator support and D(d) = 2d is a disparity corresponding to index d in the
matching cost tensor. We use a sub-pixel cross entropy loss [61] to train the network, which is
described by:

L(Θ) =
1

wh

∑
y,x

∑
d

Laplace(D(d)|µ = DGT
y,x , b) · log(softmin

d
(Cd,y,x)) (6)

where Laplace(D|µ = DGT
y,x , b) is a discretized Laplace distribution with the mean equal to the

ground truth disparity µ = DGT
y,x and diversity b = 2. Following bi-level optimization [40], we update

weight and architecture parameters {α, β} alternately based on two disjoint training sets A and B:

• Update network weights w by ∇wL(w, α, β) on A
• Update architecture parameters α and β by ∇α,βL(w, α, β) on B

We use first-order approximation to speed up the search process. After search, we decode the discrete
cell structure by retaining two strongest afferent edges for each node. As to network structure, we
decode it by finding the maximum probability path between different layers.

3.4 Differentiable surrogate gradient search

A recent work [20] shows that a suitable SG function is critical when the SNN goes deeper, and [35]
demonstrates that by optimizing the width (or temperature) of the SG function the performance of
SNN can be improved. Continuous relaxation through gradient descent is an efficient approach to
explore diverse operations on the same path, inspired from this idea, we propose a differentiable
surrogate gradient search (DGS) method to parallelly optimize local SGs for SNN.
In the retraining phase, with certain epoch intervals, we associate each operation path with N
candidate SG functions, {gi}N , based on which we update the weight (or N copies of the weight)
separately, leading to {wgi}N . These weights are then combined to form a mixed operation weighted
by a set of factors {αgi}N through a softmax function, described as:

Î =

N∑
i=1

exp(αgi)∑N
j=1 exp(αgj )

Ii , with Ii = wgix (7)

We then update {αgi}N through the loss of the mixed operation output. This process is repeated for
multiple batches and finally we update the original SG to {gi|i = argmaxi ⟨αi⟩}, with ⟨·⟩ denoting
the average over batches. Note that wgi can be obtained either by repeatedly calculate for each gi, or
directly estimating from the gradient of the original SG, ∇g,wL, if {gi}N are linear to g. The psuedo
code of the algorithm is summarized in Algorithm. 1. The intuition behind DGS is that the updated
value of αgi indicates the contribution of wgi in decreasing the loss. So {gi|i = argmaxgi ⟨αi⟩},
which leads to the best updated weight, could be the most suitable SG function for the original local
weight. Note that the difference between DGS and the SG search in Section 3.2.1 is that the former
aims to optimize SG function for the local weight, while the latter is essentially a search of different
operation types.
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Algorithm 1: Differentiable surrogate gradient search (DGS)
Input: Training dataset, training epoch E, training iteration I , DGS iteration Ig , SG function g,

candidate SG functions {gi}N , SG weighting factors {αgi}N and their initializing value
ϵ, epoch interval for DGS eD

1 for all e = 1, 2, ..., E-th epoch do
2 for all i = 1, 2, ..., I-iteration do
3 Collect training data and labels, update weights w based on SG function g;
4 if e/eD = Int. then
5 for all j =1, 2, ..., Ig-iteration do
6 Initialize {αgi}N to ϵ, update weights w with ∇gi,wL based on {gi}N , obtain

associated weights {wgi}N ;
7 Combine {wgi}N to form mixed operation, update {αgi}N with ∇αgi

,{wgi
}
N
L.

8 Update g to {gi|i = argmaxgi ⟨αi⟩}
9 return trained network.
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Figure 2: (a) Architecture for classification: SpikeDHS-CLA and (b) event-based stereo: SpikeDHS-Stereo.

4 Experiments

4.1 Classification

The CIFAR10 and CIFAR100 datasets [28] have 50K/10K training/testing RGB images with a spatial
resolution of 32× 32. The ImageNet dataset [12] contains more than 1250k training images and 50k
test images. We apply SpikeDHS on CIFAR10 and then retrain on target datasets including CIFAR10,
CIFAR100 and ImageNet. For ImageNet, we use a larger variant of the searched network with one
more stem layer and two more cells. We use standard pre-processing and augmentation for training
as in [21]. The test image is directly centered cropped to 224× 224. More details about the model
architecture and training are provided in the supplement material.

4.1.1 Architecture search and retrain

In the search phase, the training set is equally split into two subsets for bi-level optimazation. For
retraining, the standard training/testing split is used. We use 4 nodes (n4) within one cell and a
limited number of candidate operations to reduce search time, which are {conv3×3 with g(b = 3),
conv3×3 with g(b = 5), skip connection}, with g = Dspike. For the sign function we use g(b = 3).
For the network architecture, we adopt an 8 layer fixed downsampling architecture proposed in
[40]. The search phase takes 50 epochs with mini-batch size 50, the first 15 epochs are used to
warm up convolution weights. We use SGD optimizer with momentum 0.9 and a learning rate of
0.025. The architecture search takes about 1.4 GPU day on a single NVIDIA Tesla V100 (32G)
GPU. We term the searched architecture SpikeDHS-CLA and plot it in Fig. 2. After search, we
retrain the model on target datasets with channel expansion for 100 epochs with mini-batch size
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50 for CIFAR and 160 for ImageNet, with cosine learning rate 0.025. We use SGD optimizer with
weight decay 3e−4 and momentum 0.9. The DGS method is applied to the first stem layer (s1),
we set Ig = 100, ϵ = 0.001, eD = 5, g = Dspike with {gi}N having equal temperature interval:
{g(b − (N−1)

2 ∆b), ..., g(b + (N−1)
2 ∆b)} where ∆b = 0.2 and N = 5. In extending experiments,

we slightly increase the output channel of the first stem layer and use 3 nodes (n3) within a cell. In
addition, we apply DGS to the first node of the 5th cell (c5).

4.1.2 Results

The results are summarized in Table 1 and the values of other models are obtained from literature.
On CIFAR datasets, SpikeDHS-CLA with DGS achieves the highest accuracy comparing with other
directly trained SNNs under similar model capacity. Note that both Dspike [35] and TET [13] use
advanced training algorithms while plain SpikeDHS-CLA models are trained with fixed SG function.
Our model also outperforms the recent SNN works with NAS in terms of accuracy, inference steps
and model size†. As a reference, we run the original ANN DARTS network with the same architecture
and it achieves 95.88% accuracy on CIFAR10. On ImageNet, our models surpass the ResNet-34-large
model with much smaller model capacity and rivals VGG-16 with less than half of its size. We
conjecture that the large number of jump connections both within and across cells potentially help
gradient propagation through deep layers, which improves training of the model.

Table 1: Comparison on image classification. D: DGS method. NoP: Number of parameters.

Dataset Methods Architecture NoP T Accuracy[%]

CIFAR10

[74]TSSL-BP CIFARNet - 5 91.41
[54]Diet-SNN ResNet-20 - 10 92.54

[76]STBP-tdBN ResNet-19 13M 6 93.16
[35]Dspike ResNet-18 11M 6 94.25± 0.07
[13]TET ResNet-19 13M 6 94.50± 0.07

[35]Dspike ResNet-18 11M 6 94.25± 0.07
[26]SNASNet SNASNet-Bw - 8 94.12± 0.25
[46]AutoSNN AutoSNN (C=128) 21M 8 93.15

SpikeDHS SpikeDHS-CLA (n4) 12M 6 94.34 ± 0.06
SpikeDHS-CLA (n3) 14M 6 95.35 ± 0.05

SpikeDHSD SpikeDHS-CLA (n4s1) 12M 6 94.68 ± 0.05
SpikeDHS-CLA (n3s1) 14M 6 95.36 ± 0.01
SpikeDHS-CLA (n3c5) 14M 6 95.50 ± 0.03

CIFAR100

[54]Diet-SNN ResNet-20 - 5 64.07
[76]STBP-tdBN ResNet-19 13M 6 71.12± 0.57

[35]Dspike ResNet-18 11M 6 74.24± 0.10
[13]TET ResNet-19 13M 6 74.72± 0.28

[26]SNASNet SNASNet-Bw - 5 73.04± 0.36
[46]AutoSNN AutoSNN (C=64) 5M 8 69.16

SpikeDHS SpikeDHS-CLA (n4) 12M 6 75.70 ± 0.14
SpikeDHS-CLA (n3) 14M 6 76.15 ± 0.20

SpikeDHSD SpikeDHS-CLA (n4s1) 12M 6 76.03 ± 0.20
SpikeDHS-CLA (n3s1) 14M 6 76.25 ± 0.10

ImageNet

[66]STBP-tdBN ResNet-34 22M 6 63.72
[66]STBP-tdBN ResNet-34-large 86M 6 67.05
[54]Diet-SNN VGG-16 138M 5 69.00

SpikeDHS SpikeDHS-CLA-large 58M 6 67.96
SpikeDHSD SpikeDHS-CLA-large 58M 6 68.64

4.2 Event-based deep stereo

We further apply our method to event-based deep stereo matching on the widely used benchmark
MVSEC dataset [80]. The dataset contains depth information recorded by LIDAR sensors and event
streams collected from a pair of Davis346 cameras, with synchronized 20 Hz gray scale images at

†The size of SNASNet is not given.
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346×260 resolution. We split and preprocess the Indoor Flying dataset from the MVSEC following
the same setting as [62, 1, 79]. We use the mean depth error (MDE), one-pixel-accuracy (1PA),
median depth error, and mean disparity error as evaluation metrics. Learning from highly sparse raw
events is challenging and a prepossessing step is often required to encode events. We use stacking
based on time (SBT) [63] which merges events into temporally neighboring frames. During training,
we use multiple consecutive stacks as one input, with an equal number of consecutive ground truth
disparities as one label. More details can be found in the supplement material.

4.2.1 Architecture search and retrain

We use 3 nodes within one cell. For candidate operations, we use: {conv3×3 with g(b = 3), conv3×3
with g(b = 5), skip connection} for the feature net and {conv3×3×3 with g(b = 3), conv3×3×3
with g(b = 5), skip connection} for the matching net, with g = Dspike. For the layer search space,
we adopt a four-level trellis with downsampling rates of {3,2,2,2}. The number of layers is set to
2 and 4 for the feature and matching net, respectively. In addition, two stem layers are applied in
front of both subnetworks to reduce input spatial resolution and increase channel number. We search
the architecture for 12 epochs with batch size 1. The first 3 epochs are used to initiate the weight of
the supernet. The rest 9 epochs are applied with bi-level optimization. We use SGD optimizer with
momentum 0.9 and a learning rate of 0.002. The architecture search takes about 0.4 GPU day on
a single NVIDIA Tesla V100 (32G) GPU. We term the searched architecture as SpikeDHS-Stereo
and plot it in Fig. 2. Extensive random seed experiments show that the architectures are gradually
optimized during the search phase. After search, we retrain the model with channel expansion for
200 epochs with mini-batch size 2. We use Adam optimizer with initial learning rate 0.001 and
momentum (0.9, 0.999), with learning rate decaying half at [50, 100, 150] epochs. The DGS method
is applied to the first stem layer of the feature net with the same setup as in classification. In extending
experiments, we also retrain the network with operation mixed at the membrane potential (MM).

4.2.2 Results

We compare our method with other event-based stereo matching approaches (Section 2.3) on dense
disparity estimation. The results are summarized in Table 2, values of other models are obtained from
literature. Among SNN methods, SpikeDHS significantly outperforms StereoSpike, exhibiting the
effectiveness of the searched architecture. Among events-only approaches, SpikeDHS even surpasses
ANN-based specially designed DDES network in all criteria with only one-third of its number of
parameters. The performance of SpikeDHS-Stereo is further improved with DGS. As shown in Fig.
4a-b, the temperature of the SG function is constantly optimized, which avoids vanishing gradient
compared to training with fixed SG function, leading to more stable training of SNN. The MM
approach also improves the performance of the network. A qualitative comparison of estimated
disparities is shown in Fig. 3. It can be seen that SpikeDHS with DGS predicts better disparities
compares to other models, especially in local edges.
Streaming inference: In real-world scenario, events are generated consecutively by the sensor with
flexible lengths. To test the real-time applicability of our model, we fed the entire test split contin-
uously into the model, which evolves an equal length of steps and estimates sequential disparities.
The inference speed of our model achieves 44 FPS (26 FPS for the DDES model, see supplement
material for measurement details) while achieving similar accuracy as in standard testing (Fig. 3),
where the model always receives a fixed length of events.

4.2.3 Ablation study

The inherent temporal dynamics of SNN is assumed to be helpful for it to learn temporal correlation
of the data. To investigate this property, we fix the membrane time constant τ to 0 to create binary
neuron (BN) and perform architecture search and retrain. As shown in Table 2, the SpikeDHS-BN
model performs worse than SpikeDHS, which shows the benefit of temporal dynamics in this task.
In addition, we evaluate different SG functions including Superspike [70], Triangle [2], Arctan [16]
SG functions with fixed hyperparameters during training and varying hyperparameters with DGS.
The results demonstrate the robustness of DGS for different SG functions as it consistently improves
network performance, as shown in Table 3. More details are provided in the supplement.
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Table 2: We denote the best and second best results in bold and underscore. EO denotes events-only method.
EITNet requires gray scale images for training but not for inference. Symbols meaning: -, unavailability of the
value; (·), streaming tests; D, training with DGS; *, estimated value; NoP, Number of parameters.

Method EO NoP
MDE [cm] ↓

Median depth
error [cm] ↓

Mean disparity
error [pix] ↓

1PA [%] ↑

split1 split3 split1 split3 split1 split3 split1 split3

EIS [43] ✗ - 13.7 22.4 - - - - 89.0 88.1
EITNet [1] ✓– >16M* 14.2 19.4 5.9 10.4 0.55 0.75 92.1 89.6
DDES [62] ✓ 2.33M 16.7 27.8 6.8 14.7 0.59 0.94 89.4 74.8

StereoSpike [53] ✓ - 18.5 25.4 - - - - - -
SpikeDHS-BN ✓ 0.87M 17.5 20.3 7.1 10.8 0.59 0.74 88.7 88.3

SpikeDHS-BND ✓ 0.87M 17.0 19.8 6.8 10.2 0.58 0.73 89.3 88.5
SpikeDHS ✓ 0.87M 16.5(16.5) 19.4(19.5) 6.5(6.5) 10.6(10.6) 0.57(0.57) 0.73(0.74) 90.1(90.2) 88.5(88.4)

SpikeDHSD ✓ 0.87M 15.9(15.8) 19.1(19.3) 6.3(6.3) 10.4(10.5) 0.54(0.54) 0.72(0.74) 90.7(90.8) 88.9(88.8)
SpikeDHS (MM) ✓ 0.87M 15.7(15.7) - 6.3(6.3) - 0.55(0.54) - 91.0(91.1) -

SpikeDHSD (MM) ✓ 0.87M 15.4(15.4) - 6.0(6.0) - 0.54(0.54) - 91.3(91.4) -

(a) Events (b) DDES (c) SpikeDHS (d) SpikeDHSD (e) Ground truth (f) Gray image

Figure 3: Qualitative comparison on MVSEC. Disparity maps of different methods are on same frames, see
supplement material for details.

Table 3: Different SG functions for event-based stereo task on split 1 w/ and w/o DGS.
SG function 1PA w/ DGS (w/o DGS) [%] ↑
Triangle [2] 91.3 (90.9)
Arctan [16] 90.1 (89.3)

Superspike [70] 89.7 (89.6)

5 Sparsity and energy cost

The dense computation of deep ANNs came at a significant energy cost. In contrast, SNN performs
sparse computing and multiplication-free inference. As Fig. 5 shows, our models show an overall
sparse activity with different degrees across layers. For event-based stereo, we plot network activity
along with the density of events for a short duration (Fig. 4c-d). The activity of the first stem layer
in the feature net highly correlates with the density of the event streams. This relation is weakened
with the increase of layer depth. As activity propagates, the sparsity of matching layers drops to
create dense disparities. The operation number of ANN is collected by a public available PyTorch
package [60]. Following [35], the addition count of SNN is calculated by s ∗ T ∗ A, where s is
the mean sparsity, T is the time step and A is the addition number. The operation number and
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Figure 4: DGS training process and sparsity of SpikeDHS-Stereo. (a): Evolution of SG temperatures during
DGS training. (b): 1PE (left) and first stem weight gradient (right) of DGS training and normal training. (c) and
(d): Sparsity of the feature net and the matching net.

energy cost is in Table 3. We can see that SpikeDHS-Stereo has much lower operation number than
DDES. Note that due to streaming inference, SNN realizes a natural usage of its temporal dynamics
with T = 1. We measure the energy consumption following [54]. In 45nm CMOS technology, the
addition operation in SNN costs 0.9pJ while the multiply-accumulate (MAC) operation in ANN
consumes 4.6pJ. SpikeDHS-Stereo costs only 6.7mJ for a single forward, with 26× lower energy
than DDES.
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(b)

Method #Add. #Mult. Energy

DARTS CIFAR10 29654M 29654M 136.4 mJ

SpikeDHS-CLA (n4) 5973M 19M 5.5 mJ

DDES (ANN) 37917M 37917M 174.4 mJ

SpikeDHS-Stereo 7414M 0M 6.7 mJ

Figure 5 & Table 3: Left: Network sparsity for (a) classification and (b) event-based stereo. Right: The
operation number and energy cost.

6 Discussion

In this paper, we develop the SpikeDHS framework which finds optimal architectures for SNNs. On
image classification and event-based deep stereo tasks, our models outperform previous SNNs with
ANN or handcrafted architectures. The latter task demonstrates the advantage of SNNs in processing
highly sparse and dynamic event streams with extremely low power. One potential reason of the
high performance of our architecture could be the large number of jump connections both within
and across cells, which helps gradient propagation. Our method can be applied to other tasks where
network requires more architectural variations such as object detection and semantic segmentation.
The DGS algorithm efficiently optimizes SGs locally, which is of general usage in improving training
of deep SNNs or binary networks. Currently we only apply DGS on a fixed layer, future works could
develop a dynamical algorithm which applies it on optimal layers. In addition, we only use limited
candidate operations, other types of biological plausible connections such as recurrent and feedback
connections, as well as excitatory/inhibitory synapses could be considered in the future.
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(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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