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Abstract

We revisit the problem of stochastic online learning with feedback graphs, with the
goal of devising algorithms that are optimal, up to constants, both asymptotically
and in finite time. We show that, surprisingly, the notion of optimal finite-time
regret is not a uniquely defined property in this context and that, in general, it is
decoupled from the asymptotic rate. We discuss alternative choices and propose
a notion of finite-time optimality that we argue is meaningful. For that notion,
we give an algorithm that admits quasi-optimal regret both in finite-time and
asymptotically.

1 Introduction

Online learning is a sequential decision making game in which, at each round, the learner selects one
arm (or expert) out of a finite set of K arms. In the stochastic setting, each arm admits some reward
distribution and the learner receives a reward drawn from the distribution corresponding to the arm
selected. In the bandit setting, the learner observes only that reward [Lai et al., 1985, Auer et al.,
2002a,b], while in the full information setting, the rewards of all K arms are observed [Littlestone
and Warmuth, 1994, Freund and Schapire, 1997].

Both settings are special instances of a more general model of online learning with side information
introduced by Mannor and Shamir [2011], where the information supplied to the learner is specified
by a feedback graph. In an undirected feedback graph, each vertex represents an arm and an edge
between between arm v and w indicates that the reward of w is observed when v is selected and
vice-versa. The bandit setting corresponds to a graph reduced to self-loops at each vertex, the full
information to a fully connected graph. The problem of online learning with stochastic rewards and
feedback graphs has been studied by several publications in the last decade or so. The performance of
an algorithm in this problem is expressed in terms of its pseudo-regret, that is the difference between
the expected reward achieved by always pulling the best arm and the expected cumulative reward
obtained by the algorithm.

The UCB algorithm of Auer et al. [2002a] designed for the bandit setting forms a baseline for this
scenario. For general feedback graphs, Caron et al. [2012] designed a UCB-type algorithm, UCB-N,
as well as a closely related variant. The pseudo-regret guarantee of UCB-N is expressed in terms of
the most favorable clique covering of the graph, that is its partitioning into cliques. This guarantee is
always at least as favorable as the bandit one [Auer et al., 2002a], which coincides with the specific
choice of the trivial clique covering. However, the bound depends on the ratio of the maximum and
minimum mean reward gaps within each clique, which, in general, can be quite large.

Cohen et al. [2016] presented an action-elimination-type algorithm [Even-Dar et al., 2006], whose
guarantee depends on the least favorable maximal independent set. While there are instances in
which this guarantee is worse compared to the bound presented in Caron et al. [2012], in general it
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could be much more favorable compared to the clique partition guarantee of Caron et al. [2012]. The
algorithm of Cohen et al. [2016] does not require access to the full feedback graph, but only to the
out-neighborhood of the arm selected at each round and the results also hold for time-varying graphs.
Later, Lykouris et al. [2020] presented an improved analysis of the UCB-N algorithm based on a new
layering technique, which showed that UCB-N benefits, in fact, from a more favorable guarantee
based on the independence number of the graph, at the price of some logarithmic factors. Their
analysis also implied a similar guarantee for a variant of arm-elimination and Thompson sampling,
as well as some improvement of the bound of Cohen et al. [2016] in the case of a fixed feedback
graph. Buccapatnam et al. [2014] gave an action-elimination-type algorithm [Even-Dar et al., 2006],
UCB-LP, that leverages the solution of a linear-programming (LP) problem. The guarantee presented
depends only on the domination number of the graph, which can be substantially smaller than the
independence number. A follow-up publication [Buccapatnam et al., 2017a] presents an analysis for
an extension of the scenario of online learning with stochastic feedback graphs.

We will show that the algorithms just discussed do not achieve asymptotically optimal pseudo-regret
guarantees and that it is also unclear how tight their finite-time instance-dependent bounds are. Wu
et al. [2015] and Li et al. [2020] proposed asymptotically optimal algorithms with matching lower
bounds. However, the corresponding finite-time regret guarantees are far from optimal and include
terms that can dominate the pseudo-regret for any reasonable time horizon.

We briefly discuss other work related to online learning with feedback graphs. When rewards are
adversarial, there has been a vast amount of work studying different settings for the feedback graph
such as the graph evolving throughout the game or the graph not being observable before the start of
each round [Alon et al., 2013, 2015, 2017]. The setting in which only noisy feedback is provided by
the graph is addressed in Kocák et al. [2016]. First order regret bounds, that is bounds which depend
on the reward of the best arm, are derived in Lykouris et al. [2018], Lee et al. [2020]. The setting
of sleeping experts is studied in Cortes et al. [2019]. Cortes et al. [2020] study stochastic rewards
when the feedback graph evolves throughout the game, however, they do not assume that the rewards
and the graph are statistically independent. Another instance in which the feedback and rewards are
correlated is that of online learning with abstention [Cortes et al., 2018]. In this setting the player can
choose to abstain from making a prediction. The more general problem of Reinforcement Learning
with graph feedback has been studied by Dann et al. [2020]. For additional work on online learning
with feedback graphs we recommend the survey of Valko [2016].

We revisit the problem of stochastic online learning with feedback graphs, with the goal of devising
algorithms that are optimal, up to constants, both asymptotically and in finite time. We show that,
surprisingly, the notion of optimal finite-time regret is not a uniquely defined property in this context
and that, in general, it is decoupled from the asymptotic rate. Let T denote the time horizon and
RegA(T ) the pseudo-regret of algorithm A after T rounds. When A is clear from the context, we drop
the subscript. It is known that c∗, the value of the LP considered by Buccapatnam et al. [2014], Wu
et al. [2015], Li et al. [2020], is asymptotically a lower bound for RegA(T )/ log(T ). We prove that no
algorithm A can achieve a finite-time pseudo-regret guarantee of the form RegA(T ) ≤ O(c∗log(T )).
Moreover, we show that there exists a feedback graph G for which any algorithm suffers a regret
of at least Ω(K

1
8 (c∗ + 1

∆min
)), where ∆min is the minimum reward gap. We discuss alternative

choices and propose a notion of finite-time optimality that we argue is meaningful, based on a regret
quantity d∗ that we show any algorithm must incur in the worst case. For that notion, we give an
algorithm whose pseudo-regret is quasi-optimal, both in finite-time and asymptotically and can be
upper bounded by O(c∗ log(T ) + d∗).

2 Learning scenario

We consider the problem of online learning with stochastic rewards and a fixed undirected feedback
graph. As in the familiar multi-armed bandit problem, the learner can choose one of K ≥ 1 arms.
Each arm i ∈ [K] admits a reward distribution, with mean µi. For all our lower bounds, we assume
that the distribution of the reward of each arm is Gaussian with variance 1/

√
2. For our upper bounds,

we only assume that the distribution of each arm is sub-Gaussian with variance proxy bounded by
1. We assume that the means are always bounded in [0,1]. For arm i, we denote by ∆i = µ

∗ − µi
its mean gap to the best µ∗ = maxi∈[K] µi. We will also denote by ∆min the smallest and by ∆max

the largest of these gaps. At each round t ∈ [T ], the learner selects an arm it and receives a reward
rt,it drawn from the reward distribution of arm it. In addition to observing that reward, the learner
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observes the reward of some other arms, as specified by an undirected graph G = (V,E), where the
vertex set V coincides with [K]: an edge e ∈ E between vertices i and j indicates that the learner
observes the reward of arm j when selecting arm i and vice-versa. We will denote by Ni the set of
neighbors of arm i in G, Ni = {j ∈ V ∶ (i, j) ∈ E}, and will assume self-loops at every vertex, that is,
we have i ∈ Ni for all i ∈ V . The objective of the learner A is to minimize its pseudo-regret, that is
the expected cumulative gap between the reward of an optimal arm i∗ and its reward:

Reg(T ) = E[
T

∑
t=1

(rt,i∗ − rt,it)] = µ
∗T −E[

T

∑
t=1

rt,it],

where the expectation is taken over the random draw of a reward from an arm’s distribution and the
possibly randomized selection strategy of the learner. In the following, we may sometimes abusively
use the shorter term regret instead of pseudo-regret. We will denote by I∗ the set of optimal arms,
that is, arms with mean reward µ∗, and, for any t ∈ [T ] will denote by rt the vector of all rewards rt,i
at time t. When discussing asymptotic or finite-time optimality, we assume the setting of Gaussian
rewards.

We will assume an informed setting where the graph G is fixed and accessible to the learner before the
start of the game. Our analysis makes use of the following standard graph theory notions [Goddard
and Henning, 2013]. A subset of the vertices is independent if no two vertices in it are adjacent. The
independence number of G, α(G), is the size of the maximum independent set in G. A dominating
set of G is a subset S ⊆ V such that every vertex not in S is adjacent to S. The domination number
of G, γ(G), is the minimum size of a dominating set. It is known that for any graph G, we have
γ(G) ≤ α(G). The difference between the domination and independence numbers can be substantial
in many cases. For example, for a star graph with n vertices, we have γ(G) = 1 and α(G) = n− 1. In
the following, in the absence of any ambiguity, we simply drop the graph arguments and write α or
γ. We will denote by D(G′) the minimum dominating set of a sub-graph G′ ⊆ G and by I(G′) the
maximum independent set. When the minimum dominating set is not unique, D(G′) can be selected
in an arbitrary but fixed way.

3 Sub-optimality of previous algorithms

In this section, we discuss in more detail the previous work most closely related to ours [Buccapatnam
et al., 2014, Wu et al., 2015, Buccapatnam et al., 2017b, Li et al., 2020] and demonstrate their
sub-optimality. A summary of our comparison can be found in Table 1. These algorithms all seek to
achieve instance-dependent optimal regret bounds by solving and playing according to the following
linear program (LP), which is known to characterize the instance-dependent asymptotic regret for
this problem when the rewards follow a Gaussian distribution:

c∗(∆,G) ∶= min
x∈RK+

⟨x,∆⟩ s.t. ∑
j∈Ni

xj ≥
1

∆2
i

, ∀i ∈ [K] ∖ I∗. (LP1)

We note that these prior works’ algorithms can work in more general settings, but we will restrict our
discussion to their use in the informed setting with a fixed feedback graph that we consider in this
study.

The UCB-LP algorithm of Buccapatnam et al. [2014, 2017b] is based on the following modification
of LP1: minx∈RK+ ⟨x,1⟩ subject to ∑j∈Ni

xj ≥ 1, for all i ∈ [K], in which the gap information
is eliminated, working with gaps such that ∆min = Θ(∆max). This modified problem is the LP
relaxation of the minimum dominating set integer program of graph G.

The algorithm first solves this minimum dominating set relaxation and then proceeds as an action-
elimination algorithm in O(log(T )) phases. During the first O(log(K)) rounds, their algorithm
plays by exploring based on the solution of their LP. Once the exploration rounds have concluded,
it simply behaves as a bandit action-elimination algorithm. We argue below that this algorithm is
sub-optimal, in at least two ways.

Star graph with equal gaps. Consider the case where the feedback graph is a star graph (Fig-
ure 1(a)): there is one root or revealing vertex r adjacent to all other vertices. In our construction, the
optimal arm is chosen uniformly at random among the leaves of the graph. The rewards are chosen so
that all sub-optimal arms admit the same expected reward with gap to the best ∆ ≤ O(1/K1+ε), ε > 0.
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(a) Example 1. (b) Example 2.
Figure 1: Sub-optimality examples

Table 1: Summary of the regret bounds for Figure 1 (b.)

c∗ Min-max rate

Caron et al. (UCB-N),
Cohen et al. (Action elimination),

Buccapatnam et al.
Buccapatnam et al.

Lykouris et al.
(UCB-N,

Thompson Sampling)

Wu et al.
Li et al. Theorem 5.2

Regret bound
on Example 1 (b.): O (

log(T )
∆min

) O(
√
KT ) O (

K log(T )
∆min

) O (
K log2(T )

∆min
) O (

log(T )
∆min

+ K
∆2

min

) O (
log(T )
∆min

)

In this case, an optimal strategy consists of playing the revealing arm for Θ(1/∆2) rounds to identify
the optimal arm, and thus incurs regret at most O( 1

∆
). On the other hand the UCB-LP strategy incurs

regret at least Ω(
K log(T )

∆
). Even if we ignore the dependence on the time horizon, the dependence

on K is clearly sub-optimal.

Sub-optimality of using the minimum dominating set relaxation. In the second problem instance,
given in Figure 1(b), we consider a star-like graph in which we have a revealing vertex r1, adjacent
to all other vertices. We also have an "almost" revealing vertex r2 which is adjacent to all vertices
but a single leaf vertex (leaves are the vertices with degree 1 and 2 in this case). The optimal arm
is again chosen uniformly among the leaves. Rewards are set so that the gap at r1 is ∆max and the
remaining gaps are ∆min. The solution to the LP of Buccapatnam et al. [2014, 2017b] puts all the
weights on r1. However, the optimal policy for this problem consists of playing r2 and the leaf vertex
not adjacent to r2 until all arms but the optimal arm are eliminated. The instance optimal regret in
this case is O(

log(T )
∆min

), while UCB-LP incurs regret Ω(
K log(T )

∆min
).

Next, we discuss [Wu et al., 2015] and [Li et al., 2020]. Their instance-dependent algorithms are
based on iteratively solving empirical approximations to LP1. For simplicity, we only discuss the
instance-dependent regret bound in [Li et al., 2020]. A similar bound can be found in [Wu et al.,
2015]. Let x(∆) denote the solution of LP1 and define the following perturbed solution

xi(∆, ε) = sup{xi(∆
′
)∶ ∣∆′

i −∆i∣ ≤ ε,∀i ∈ [K]}.

The solution x(∆, ε) is the solution of LP1 with ε-perturbed gaps. [Li et al., 2020][Theo-
rem 4] states that the expected regret of their algorithm is bounded as follows: Reg(T ) ≤

O(∑i∈[K] log(T )xi(∆, ε)∆i +∑
T
t=1 exp(−β(t)ε

2

K
) +K), for any ε > 0 and β(t) = o(t). For the

standard bandit problem with Gaussian rewards, we can compute the perturbed solution: xi(∆, ε) =
max( 1

(∆i+ε)2 ,
1

(∆i−ε)2 ). Thus, for a meaningful regret bound, we would need ε = Θ(∆min). If ε is

much smaller, then the term ∑
T
t=1 exp(−β(t)ε

2

K
) becomes too large and otherwise we risk making

xi(∆, ε) too large. To analyze the second term more carefully, we allow β(t) = t. The first K
∆2

min

terms

of ∑Tt=1 exp(−β(t)ε
2

K
) are now at least 1

e
and thus this sum is at least ∑Tt=1 exp(−β(t)ε

2

K
) ≥ K

e∆2
min

.

Thus, the bandit regret bound evaluates to at least Ω(∑i∈[K]
log(T )

∆i
+ K

∆2
min

). While this bound is
asymptotically optimal, since the second term does not have dependence on T , it admits a very poor
dependence on the smallest gap. We can repeat the argument above with a star-graph construction in
which the revealing vertex has gap ∆min. In this case, the optimal strategy given by the solution to
LP1 consists of playing the revealing vertex for 1

∆2
min

times and incurs regret at most O(
log(T )
∆min

). The

regret bound of the algorithm of Li et al. [2020], however, amounts to Ω(
log(T )
∆min

+ K
∆2

min

).
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4 Instance-dependent finite-time bounds

In this section, we provide an in-depth discussion of what finite-time optimality actually means.
Finite-time bounds are statements of the form Reg(T ) ≤ f(T ), which hold for any T > 0. Specifically,
we are considering functions of the type f(T ) = c∗ log(T ) + d,1 which we know to exist from prior
work.2 The question of what the optimal expression of d might be seems easy to answer at first.
Indeed, for bandits with Gaussian rewards, one can achieve d = O(∑i∆i), which in general is much
smaller than c∗ = Ω(∑i

1
∆i

) [Lattimore and Szepesvári, 2020], and hence will be dominated by the
time-dependent part of the regret for almost all reasonable lengths of the time horizon T . In full
information, we obtain a meaningful optimal value d∗ for a given gap vector by considering the
worst-case regret of any algorithm under any permutation of the arms. This leads to d∗ = O(

ln(K)
∆min

)

[Mourtada and Gaïffas, 2019]. Note that in the full information setting we have c∗ = 0.

One might hope for a similar structure for feedback graphs, where the optimal d depends only on
the “full-information structure”, that is the gaps of arms neighboring an optimal arm. All other arms
contribute to c∗ and we might assume that their complexity is already captured in the c∗ log(T ) term
as it is the case for bandits. However, the situation is more complicated, as we show next.
Theorem 4.1. For any K ≥ 32 and ∆min = O( 1√

K
), there exists a graph G with K vertices, such

that for any algorithm there exists an instance with unique best arm and minimal gap ∆min for which
for any T ≥ Ω(K

3/4
∆min

), the regret is at least Reg(T ) = Ω(K
1
8 (c∗ + 1

∆min
)).

Theorem 4.1 shows that there exists a problem instance, in which d ≫ c∗ dominates the finite
time regret for any T ≤ O(exp(K1/8)). We note that this is not simply due to the full-information
structure of the feedback graph G, as c∗ is positive. Furthermore, combined with examples shown
in Section 7, Theorem 4.1 suggests that there is no simple characterization of d independent of the
graph in terms of c∗, e.g., d = Θ(c∗/∆min). While d = Θ(K1/8c∗) holds for the example instance in
Theorem 4.1, there exists a non-trivial family of graphs, for which for any rewards instance, we have
d = O(c∗), so the shape and relevance of d is highly graph-dependent.

Having established that d could be the dominating term in the regret for any reasonable time horizon,
we now discuss the hardness of defining an optimal d. Let us first consider a simple two-arm full-
information problem and inspect algorithms of the style: “Play arm 1, unless the cumulative reward
of arm 2 exceeds that of arm 1 by a threshold of τ .” This kind of algorithm has small regret (small
d) if arm 1 is optimal, and large otherwise. Tuning τ yields different trade-offs between the two
scenarios. The same issue appears in learning with graph feedback on a larger scale. Given two
instances defined by gap vectors ∆ and ∆′ respectively, an agent can trade off the constant regret
part d(∆) and d(∆′) in the two instances. Take for example two algorithms A and B and assume
the respective values of c∗ and d for the two instances and algorithms are given by Table 2. As we
show in Appendix A, there exist a feedback graph and instances that are consistent with the table.
Which algorithm is more “optimal”, A or B? B ensures that maxδ∈{∆,∆′}

d(δ)
c∗ = O(1) and we can

c∗ d for Alg. A d for Alg. B
Instance ∆ C/3 C/3 4C/9
Instance ∆′ 4Cε C/2 4Cε

Table 2: Comparison of c∗ and d.

write the regret function as f(T ) = O(c∗ log(T )) without the need of a constant term d at all. This
algorithm minimizes the competitive ratio of d and c∗. A minimizes the worst-case absolute regret
A = argmina∈{A,B} maxδ∈{∆,∆′} d(δ, a).

Thus, we argue that the notion of optimality is subject to a choice and that there is no unique
correct answer. In this paper, we opt for the worst-case absolute regret, minimized by A in the
above example, for the following reasons: 1. Theorem 4.1 shows that a constant competitive ratio is
generally unachievable; 2. Optimizing regret in general is a different objective than that of competitive

1When the problem parameters are clear from the context, we will write c∗ instead of c∗(∆,G).
2While obtaining exact asymptotic optimality limT→∞

f(T )
log(T ) = c

∗ would be ideal, we settle for optimality
up to a multiplicative constant in our upper bounds.
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ratio. Optimizing for a mixture implies a counter-intuitive preference such as: “In a hard environment
where I cannot avoid suffering a loss of 1000, it does not matter much if I suffer an additional 1000 on
top, as long as I do better on easier environments.” 3. Moreover, note that, even if one were interested
in optimizing the competitive ratio between c∗ and d, it is unclear if one could achieve that objective
computationally efficiently.

We present our final definition for an optimal notion of d∗ in Section 6. The high level idea is to take
all confusing instances, where the means are perturbed by less than ∆s and consider the worst-case
regret any algorithm suffers over these instances until identifying all gaps up to ∆s precision.

5 Algorithm and regret upper bounds

Our algorithm works by approximating the gaps (∆i)i∈[K] and then solving a version of LP1. First,
note that all arms i with gaps ∆i ≤

1
T

can be ignored as the total contribution to the regret is at
most O(1). We now segment the interval [ 1

T
,1], containing each relevant gap, into sub-intervals

[2−s,2−s+1], where s ∈ [⌈log2(T )⌉]. The algorithm now proceeds in phases corresponding to each
of the ⌈log2(T )⌉ intervals. During phase s, all arms with gaps ∆i ∈ [2−s,2−s+1] will be observed
sufficiently many times to be identified as sub-optimal.

For phase s, let ∆s = 2−s denote the smallest possible gap that can be part of the interval
[2−s,2−s+1] and define the clipped gap vector as ∆s ∈ RK ,∆s

i = ∆s ∨ ∆i. Further, define the
set Γs = {i ∈ [K]∶∆i ≤ 2∆s}. Γs consists of all optimal arms I∗ and all sub-optimal arms with gaps
small enough, making them impossible to distinguish from optimal arms. Define the following LP

min
x∈R[K]

⟨∆s, x⟩ s.t. ∑
j∈Ni

xj ≥
1

∆2
s

, ∀i ∈ Γs . (LP2)

For any arm i such that ∆i ∈ [2−s,2−s+1] observing i for 1
∆2

s
times is sufficient to identify i as a

sub-optimal arm. Further, information theory dictates that i needs to be observed at least 1
∆2

s−1
times

to be distinguished as sub-optimal. Thus, the constraints of LP2 are necessary and sufficient for
identifying the sub-optimal arms i with ∆i ∈ [2−s,2−s+1]. Furthermore, since there is no sufficient
information to distinguish between any two arms i and j with gaps ∆i ≤ ∆j < ∆s, we choose to treat
all of them as equal in the objective of the LP. Indeed, Lemma 6.1 shows that for any graph G and
any algorithm, there exists an assignment of the gaps ∆i < ∆s so that the algorithm will suffer regret
proportional to the value of LP2.

In practice, it is impossible to devise an algorithm that solves and plays according to LP2 because even
during phase s, there is still no complete knowledge of the gaps ∆i > ∆s, but, rather only empirical
estimators, and so there is no access to ∆s. We also replace the constraints by a confidence interval
term of the order log(1/δs)

∆2
s

. This enables us to bound the probability of failure for the algorithm by δs
during phase s. We note that standard choices of δs such as δs = Θ ( 1

T
) from UCB-type strategies

will result in a regret bound that has a sub-optimal time-horizon dependence. This suggests that a
more careful choice of δs must be determined.

5.1 Algorithm

To describe our algorithm, we will adopt the following definitions and notation. Let τs denote the
last time-step of phase s. We will denote by ni(s) the total number of times the reward of arm i is
observed up to and including s, ni(s) = ∑τst=1 I(it ∈ Ni), and by ri(s) the average reward observed,
r̂i(s) = [∑

τs
t=1 rt,i I(it ∈ Ni)]/ni(s). We also denote by ∆̂i(s) a lower bound on ∆s with a shrinking

confidence interval bi(s) and by Γ̂s the empirical version of the set Γs:

∆̂i(s) = ∆s ∨ max
j∈[K]

r̂j(s) − bj(s) − r̂i(s) − bi(s), where bi(s) =

¿
Á
ÁÀ3α log( K

∆s+1
)

ni(s)

Γ̂s ∶= {i ∈ [K] ∣ ∆̂i(s − 1) ≤ 2∆s}
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Algorithm 1: Algorithm based on LP3
Input :Graph G = (V,E), confidence parameter δ, time horizon T

1 Initialize t = 0, s = 0, r̂i(0) = 0,∀i ∈ [K]

2 Compute (approximate) minimum dominating set D̂(G)

3 while s ≤ ⌈log(K)⌉ do

4 Play each arm i ∈ D̂(G) for
α′ log( K

∆s+1
)

∆2
s

rounds
5 Update t and s.
6 while t ≤ T do
7 Compute a (approximate) solution x∗LP3 to LP3.
8 Play each action i for ⌈(x∗LP3)i⌉ rounds and update t.
9 Update the phase s+ = 1.

Our algorithm solves an empirical version of (LP2) at each phase, which is the following LP:

min
x∈RK+

⟨x, ∆̂(s − 1)⟩ s.t. ∑
j∈Ni

xj ≥
α′ log( K

∆s+1
)

∆2
s

,∀i ∈ Γ̂s,

∑
j∈Ni

xj ≥
α′

∆̂2
i (s − 1)

,∀i /∈ Γ̂s .

(LP3)

Pseudocode can be found in Algorithm 1. In the first ⌈log(K)⌉ rounds, the algorithm just plays
according to the minimum dominating set of G. This is because there is not enough information
regarding any of the gaps. Denote the approximate solution of LP3 as x∗LP3 at phase s. Then
at every round of phase s we play each arm exactly ⌈(x∗LP3)i⌉ many times. Phase s then ends
after ∑j∈[K]⌈(x

∗
LP3)i⌉ rounds. We note that it is sufficient to approximately solve LP3 so that the

constraints are satisfied up to some multiplicative factor and the value of the solution is bounded by a
multiplicative factor in the value of the LP.

5.2 Regret bound
The first step in the regret analysis of Algorithm 1 is to relate the value of LP3 to the value of LP4
based on the true gaps given below.

min
x∈RK+

⟨x,∆s
⟩ s.t. ∑

j∈Ni

xj ≥
α′ log( K

∆s+1
)

∆2
s

,∀i ∈ Γs,

∑
j∈Ni

xj ≥
α′

∆2
i

,∀i /∈ Γs.

(LP4)

We do so by showing that Γ̂s+1 ⊆ Γs and that ∆̂(s) = Θ(∆s). This allows us to upper upper bound
the value of LP3 by the value of LP4 in the following way.
Lemma 5.1. Let DLP3(s) be the value of LP3 at phase s and let DLP4(s) be the value of LP4 at
phase s. For any s ≥ log(K) ∨ 10 holds that DLP3(s + 1) ≤ 4DLP4(s), with probability at least

1 − 3 (
∆s/2+1

K
)
α−2

. Further, for any s ≥ log(∣I∗∣/(4∆min)) ∨ 10 it holds that the regret incurred for
playing according to LP3 is at most 16α′c∗(G,µ) with the same probability.

Lemma 5.1 shows that playing Algorithm 1 is already asymptotically optimal, as the incurred regret
during any phase s ≥ log(∣I∗∣/∆min) starts being bounded by O(c∗). There are two challenging
parts in proving Lemma 5.1. First is how to handle the concentration of ∆̂i(s) for actions i /∈ Γ̂s
which have been eliminated prior to phase s. This challenge arises because α′ needs to be set
as a time-independent parameter as the time-horizon part of the regret incurred by the algorithm
will depend on α′. We notice that for any phase s ≥ 2 the event that the empirical reward, r̂i(t),
concentrates uniformly around its mean µi in the interval t ∈ [s/2, s] can be controlled with high
probability. This in turn guarantees that the empirical gap estimator ∆̂(t) is small enough and hence
action i is observed sufficiently many times in phases [s/2, s].
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The second challenge is to analyze the regret of the solution of LP3 directly, for any s ≥ log (
∣I∗∣
K

)

so that we can bound this regret by c∗. The key observation is that there exists a x̂∗ which is
feasible (with high probability) for LP1 with the property that ⟨x̂∗, ∆̂(s)⟩ ≤ O(c∗) and further
∑i/∈I∗ x

∗
LP3,i∆̂i(s) ≤ 2∑i/∈I∗ x̂

∗
i ∆̂i(s). This is sufficient to conclude that DLP3(s) ≤ O(c∗)

Lemma 5.1 can now be combined with the observation that the constraints of LP2 are a subset of the
constraints of LP4, up to a logarithmic factor in 1

∆min
, to argue the following upper regret bound.

Theorem 5.2. Let d∗(G,µ) = maxs≤log(∣I∗∣/∆min)DLP2(s). There exists an algorithm with expected
regret Reg(T ) bounded as

Reg(T ) ≤ O (log2
(

1

∆min
)d∗ + log(T )c∗ + γ(G)K log(K)) ∧ Õ(

√
α(G)T ) .

We note that Algorithm 1 can incur additional regret of order O(K) per phase due to the rounding,
⌈x∗LP3⌉, of the solution to LP3. Thus its regret will only be asymptotically optimal in the setting
when ∆min ≤ O(1/K). To fix this minor issue, we present an algorithm with more careful rounding
in Appendix B.1, which enjoys the regret bound of Theorem 5.2.

6 Regret lower bounds

Lower bound with d∗. We are able to show the following result for any algorithm.
Lemma 6.1. Fix any instance µ s.t. µi ≤ 1 − 2∆s, i ∈ I

∗. Let Λs(µ) be the set of problem instances
with means µ′ ∈ µ + [0,2∆s]k. Then for any algorithm, there exists an instance in Λs(µ) such that
the regret is lower bounded by LP2.

Motivated by Lemma 6.1, the quantity d∗(G,µ) is a meaningful definition of finite-time optimality.
We note that d∗ is indeed independent of the time-horizon and only depends on the topology of G and
the instance µ. The result in Lemma 6.1 is a companion to the upper bound in Theorem 5.2. It shows
that for any instance µ and number of observations which are not sufficient to distinguish the arms
with smallest positive gaps as sub-optimal, any algorithm will necessarily incur large regret of order
d∗. This happens because the algorithm will not be able to distinguish µ from some environment µ′
which is identical to µ except for the reward of a single arm which is only slightly perturbed.

The definition of d∗ as a maximum over different values of s might seem surprising, as one could
expect that the value of LP2 strictly increases when s grows, after all this is precisely what happens in
the bandit setting. This is not the case for general graphs, where the value can also decrease between
phases s and s+ 1. Intuitively this happens when the approximate minimum weighted dominating set
chosen by the LP’s solution increases between phases.

The result in Lemma 6.1 has a min-max flavor in the sense that all possible instances which are close
to µ are considered. It is reasonable to ask if d∗ can be further bounded by a favorable instance-
dependent quantity. The answer to this question is complicated and certainly depends on the topology
of the feedback graph as we show next.

Figure 2: Reinforced wheel.

Sketch of proof of Theorem 4.1. We now show that any finite
time term d has to exceed c∗ by at least a multiplicative polynomial
factor in the number of actions K. To do so we exhibit a specific
feedback graph G, found in Figure 2, on which any algorithm will
have to incur regret at least Ω(K

1
8 c∗) for some µ s.t. c∗ ≥ 1

∆min
.

Formally the graph is defined to have a vertex set V = N1⋃N2⋃N3

of 2K+1 arms, with each ofNi’s disjoint andN1 = {2i ∶ 1 ≤ i ≤K},
N2 = {2i + 1 ∶ 0 ≤ i ≤ K}, N3 = {0}. The set of edges is defined
as follows. Every vertex in N1 is adjacent to the vertex in N3 and
the 2i vertex is adjacent to both 2i + 1 and 2i − 1 in N2 modulo
2K + 1. Finally vertex 2i + 1 in N2 is further adjacent to to the next
⌈K1/8⌉ vertices in N2 modulo 2K + 1. The base instance, E , is defined by a scalar ν ∈ [0,1] and
gap parameter ∆ so that the expected reward of every action in N1 is equal to ν −∆, the expected
reward of every action in N2 is equal to ν −K1/4∆ and the expected reward of the action in N3

8



is ν −
√
K∆. We assume that all rewards follow a Gaussian with variance 1√

2
. We denote by

∆1 = ∆,∆2 =K
1
4 ∆,∆3 =

√
K∆.

The lower bound now fixes an algorithm A and considers two cases. First, A could commit to often
playing arms in N1. In this case we show that there could be a large gap to the arms in N1 which
would not be detectable by A as arms in N2 are not observed often enough. This is indeed the case
as A needs to play Ω(K) actions in N1 to cover N2. This first case corresponds to assuming that the
number of arms played from N2 is at most O(K

7
8 /∆2

2) in the first O(K/∆2
2) rounds. The second

case considers the scenario in which actions in N2 are played for more than Ω(K
7
8 /∆2

2) times in the
first O(K/∆2

2) rounds. In this case, A would suffer large regret if the gap at actions in N1 is small
enough, so that the optimal strategy is to cover N2 by playing arms in N1.

More formally, we begin by showing that there always exists an arm n∗ ∈ N2 which is observed
for only O(1/∆2

2) times. Next, we change the expected reward of n∗ depending on which of the
above two cases occur. In the first case we change the environment by setting the reward of n∗

to have expectation ν + ∆2. We can now argue that the regret of A will be at least Ω(K
3
4 /∆) as

n∗ will not be played often enough in the new environment. The value of c∗, however, is at most
O(K

7
8 /∆2) = O(K

5
8 /∆), as playing each action in a minimum dominating set over N2 for 1

∆2
2

rounds is feasible for LP1. For the second case, we set the expected reward of n∗ to equal ν. The
optimal strategy now has regret at most O(

√
K/∆) by playing the action in N3 for 1

∆2 and every
action in N1 for 1

∆2
2

rounds. On the other hand A will incur at least Ω(K
5
8 /∆), as again n∗ is not

played often enough. This argument implies the result presented in Theorem 4.1.

7 Characterizing the value of d∗

Theorem 4.1 suggests that we take into account the topology of G explicitly when trying to bound d∗,
independently of the instance µ. In this section, we first show a bound on d∗ that depends only on
independent sets of G. Then, we show a set of graphs G for which d∗ ≤ O(c∗) on any instance µ.

Let us recall the regret bounds presented in [Lykouris et al., 2020]. Denote by I(G) the set of all
independent sets for the graph G. Then the regret bounds presented in [Lykouris et al., 2020] are of
the order Reg(T ) ≤ O (maxI∈I(G)∑i∈I

log2(T )
∆i

). It is possible to show, as we do in Appendix D.1,

that d∗(G,µ) ≤ maxI∈I(G)∑i∈I
1

∆i
Thus, our algorithm enjoys regret bounds which are better than

what is known for the algorithms studied in [Cohen et al., 2016, Lykouris et al., 2020]. The above
bound, however, could be very loose as was discussed in the beginning of the paper, especially when
considering star-graphs, as the bound would just reduce to the bandit case. It turns out, however, that
d∗ ≤ O(c∗) in this case. In fact we can state a sufficient condition on G so that d∗ ≤ c∗ + ∣I∗∣

∆min
for a

more general family of graphs. We begin by defining the following operation on G.

Definition 7.1. Let ∼ be the equivalence class defined by u ∼ v iff Nu = Nv and let C be the mapping
which sends G to the quotient G/∼ through the operation of collapsing any sub-graph of G into its
equivalence class.

Figure 3: Generalized star-graph.

We note that C is well-defined as the relation ∼ is an equiv-
alence relation. The equivalence classes defined by ∼ are
cliques with the following property. For any v in an equiv-
alence class [v] it holds that u ∈ [v],∀u ∈ Nv, that is the
vertices in the equivalence class clique only have neighbors
in the clique to which they belong. An example can be
found in Figure 3, where the graph contains four cliques
adjacent to the vertex r. In general, the vertex r can also
be a clique as well and the graph can have multiple dis-
joint components of the type presented in the figure. For
any instance µ of the problem, this allows us to collapse
each equivalence class [v] to a vertex v with the maximum
expected reward in [v]. The next lemma states a sufficient condition on G under which d∗ is bounded.

Lemma 7.2. If the graph G is such that C(G) has no path of length greater than two between any
two vertices, then, for any instance µ, the following inequality holds: c∗ + ∣I∗∣

∆min
≥ d∗.

9



8 Conclusion
We presented a detailed study of the problem of stochastic online learning with feedback graphs in a
finite time setting. We pointed out the surprising issue of defining optimal finite-time regret for this
problem. We gave an instance on which no algorithm can hope to match, in finite time, the quantity
c∗, which characterizes asymptotic optimality. Next, we derived an asymptotically optimal algorithm
that is also min-max optimal in a finite-time sense and admits more favorable regret guarantees than
those given in prior work. Finally, we described a family of feedback graphs for which matching the
asymptotically optimal rate is possible in finite time.

There are several interesting questions that follow from this work. First, while the condition on
C(G) in Lemma 7.2 is sufficient, it is not necessary. For example, a star-like graph in which two
leaf vertices are also neighbors will have the property that d∗ ≤ O(c∗) for any instance µ. We ask
what would be a necessary and sufficient condition on G for which d∗ = Θ(c∗) on any instance
µ? Another interesting question is how to address the setting of evolving feedback graphs. It is
unclear what conditions on the graph sequence would allow us to recover bounds that improve on the
existing independence number results. Further, can we use our approach to show improved results for
the setting of dependent rewards and feedback graphs studied in [Cortes et al., 2020]? Finally, our
methodology crucially relies on the informed setting assumption. We ask if it is possible to achieve
similar bounds to Theorem 5.2 in the uninformed setting.
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Figure 4: Arm in red is optimal

A Refined example for hardness of determining optimal d

To understand better why it is difficult to define a notion of optimality for the constant term d in the
finite-time bound, consider the following toy problem. The graph is given by Figure 4. There are
n disjoint copies of an open cube graph with 8 vertices each. We let V1 = {νi,1, νi,2, νi,3, νi,4}i∈[n]
and V2 = {νi,5, νi,6, νi,7, νi,8}i∈[n]. We assume that we have oracle knowledge of the mean rewards
of all arms µ(ν) = 1

2
for any ν ∈ V2 and µ(ν) = 1

2
−∆ for all ν ∈ V1, with one exception. There is

one arm in V1, chosen uniformly at random, that is optimal with a mean µ∗ ∈ { 1
2
+ 2∆, 1

2
+ ε∆}. We

note that we do not know the index of the optimal arm and so the problem reduces to identifying
the optimal arm and the respective environment (i.e. value of µ∗). The best we can do is to collect
equally many samples for each arm in V1 until we have sufficient statistics to figure out either the
environment or the optimal arm. Under Env. A we need to collect 1/(3∆)2 samples and under Env.
B we need to collect 1/((1 + ε)∆)2 samples. There are two canonical base strategies corresponding
to algorithm A and B in Section 4: either play all arms in V2 for N(env) times (Algorithm A),
depending on the environment, or play all arms in V1 for N(env)/4 many times (Algorithm B). The
following table shows the regret each strategy suffers for collecting sufficient samples to distinguish
the environments.

Env. A (µ∗ = 1
2
+ 2∆) Env. B (µ∗ = 1

2
+ ε∆)

A (Play V1) n/(3∆) n/((1 + ε)∆)

B (Play V2) 4n/(9∆) 4nε/((1 + ε)2∆)

Under Env. A we have c∗Env. A = n
(3∆) and under Env. B we have c∗Env. B = nε

(1+ε)2∆
. Which strategy is

the “optimal” one? One possible answer is to say that A is optimal, since it minimizes the worst-case
regret. One might be tempted to say that B is better, since we can absorb the constant term in the
leading O(c∗ log(T )) without the need of adding a constant d at all! That is, B minimizes the
competitive ration.

The implicit assumption made for the second choice of optimality is: “In a bad environment, where
it is inevitable to suffer a loss of 100000, suffering an additional 100000 is just as bad as suffering
an additional loss of 10 in an environment where one cannot avoid a loss of 10.” We argue that this
notion of optimality is not aligned with the principle of regret as a benchmark. In regret, unlike
the competitive ratio, we care about the absolute value of suboptimality. Hence, we claim that
considering strategy 1 optimal in our toy experiment independent of the value of c∗ in environment A
and B is a meaningful choice. The same argument implies that hiding arbitrarily large constants in
the O-notation will obscure critical information about the practicalities of an algorithm, which our
work unfortunately does as well. The regret upper bounds presented in this work hide only universal
constants which are independent of the problem parameters, including the topology of the feedback
graph.

B Regret upper bound proofs

For the rest of the appendix we are going to assume that each gap ∆i is such that ∆i = 2−f(i) for
some function f ∶ [K]→ ⌈log(T )⌉. This is without loss of generality as every ∆i is in [2−s,2−s+1]

for some s. Thus, we can clip every ∆i to 2−si for some si and change the constraints and objective
of LP1 by at most a factor of 2. Thus the value of c∗ would change by at most a factor of 2.
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B.1 Algorithm modification

Since Algorithm 1 plays ⌈x∗LP3,i⌉ we need to take care of the difference ⌈x∗LP3,i⌉ − x
∗
LP3,i. At worst,

playing according to the rounded solution of LP3 can result in a Ω(K) additive factor on top of
DLP3(s). This can accumulate regret up to an Ω(K log(T )) factor in the final bound. Our goal is to
give asymptotically optimal bounds together with the finite time bounds and such a term might be
sub-optimal in the case when ∆min ≥ ω( 1

K
).

To avoid the additional K-factor we modify Algorithm 1 in the following way. Note that for any
Algorithm 2: Modification of Algorithm 1
input :Graph G = (V,E), confidence parameter δ, time horizon T

1 Initialize t = 0, s = 0, r̂i(0) = 0,∀i ∈ [K], B = [0]K

2 Compute (approximate) minimum dominating set D̂(G)

3 while s ≤ ⌈log(K)⌉ do

4 Play each arm i ∈ D̂(G) for
α′ log( K

∆s+1
)

∆2
s

rounds
5 Update t and s.
6 while t ≤ T do
7 Compute a (approximate) solution x∗LP3 to LP3.
8 for i ∈ [K] do
9 if x∗LP3,i < 1 then

10 if Bi = 0 or ⌊Bi + x
∗
LP3,i⌋ ≥ ⌊Bi⌋ then

11 Play i and update t
12 Bi+ = x∗LP3,i

13 else
14 Play i for ⌈(x∗LP3)i⌉ rounds and update t

15 Update the phase s+ = 1.

x∗LP3,i ≥ 1, the following inequality holds: ⌈x∗LP3,i⌉ ≤ 2x∗LP3,i, and thus playing such arms will
only increase the incurred regret by a multiplicative factor of at most 2. Thus, we only need to
consider x∗LP3,i < 1. We introduce a buffer B ∈ RK which will inform us when to play an arm i for
which x∗LP3,i < 1. The first time the solution of the LP informs us to play i for less than a single
round, we play i for a single round and update the buffer as Bi+ = x∗LP3,i. We observe that we have
now overplayed i and have a buffer of 1 − x∗LP3,i extra plays of i. Thus, at the next phase at which
x∗LP3,i < 1, we can check if x∗LP3,i can be covered by the remaining buffer. If so, then there is no
need to play arm i again as we still have sufficient number of observations provided by playing i. If
the buffer is exceeded, we again play i for one round and take into account the additional overplay.
Thus, at the end of phase s, the total number of arm i has been played does not exceed

2
s

∑
t=1

x∗LP3,i(t) + ⌈B⌉ ≤ 2
s

∑
t=1

x∗LP3,i(t) + s ≤ 3
s

∑
t=1

x∗LP3,i(t),

where x∗LP3,i(t) is the solution to LP3 at phase t. The above implies the following lemma.

Lemma B.1. Let x∗LP3,i(t) be the solution to LP3 at phase t. The at the end of phase s of Algorithm 2
the total number of plays of arm i is at most

3
s

∑
t=1

x∗LP3,i(t).

The above lemma implies that we can, at the price of a constant multiplicative factor of 3, consider
the solution of LP3 instead of the rounded solution played by Algorithm 1. Hence, for the rest of the
appendix, we do so.

B.2 Proof of Theorem 5.2

We begin with a somewhat standard concentration result.
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Lemma B.2. For any s ∈ [10, log(T )],K ≥ 2, α′ ≤ 3072, the following inequality holds

P(∃i ∈ [K] ∶ ∣µi − r̂i(s)∣ ≥ bi(s)) ≤ (
∆s+1

K
)

α−1

.

Proof. We use Theorem 1 from Zhao et al. [2016] which states that for a sum of zero-mean, 1/2
sub-Gaussian random variables (Xi)

t
i=1 the following inequality holds

P(∃t ∶
t

∑
i=1

Xi ≥
√
t(2 log log2(t) + log(1/δ))) ≤ 2δ.

We begin by bounding P(∣µi − r̂i(s)∣ ≥ bi(s)) for a fixed i ∈ [K]. Since action i is observed at most
α′ log(K/∆s+1)

∆2
s+1

times up to and including phase s, we can write

P(∣µi − r̂i(s)∣ ≥ bi(s)) ≤ 2P
⎛

⎝
∃t ∈ [

α′ log(K/∆s+1)

∆2
s+1

] ∶
t

∑
`=1

(rt,i − µi) ≥

√

3αt log (
K

∆s+1
)
⎞

⎠

≤ 2(
∆s+1

K
)

α

,

where we used the fact that for s ≥ 7,K ≥ 2, α′ ≤ 512 the following inequality holds

log2 (
α′ log(K/∆s+1)

∆2
s+1

) ≤
K

∆s+1
.

A union bound over i ∈ [K] completes the proof.

Lemma B.3. Under the same assumptions as in Lemma B.2, we have

P(∃i ∈ [K], t ∈ [s/2, s] ∶ ∣µi − r̂i(t)∣ ≥ bi(t)) ≤ (
∆s/2+1

K
)

α−2

.

Furthermore, if we let Eupper = {∀i ∈ [K], t ∈ [s/2, s] ∶ ∆̂i(t) ≤ ∆i ∨ ∆t} then P(Eupper) ≥

1 − (
∆s/2+1

K
)
α−2

.

Proof. A union bound over Lemma B.2, together with picking α sufficiently large imply

P(∃i ∈ [K], t ∈ [s/2, s] ∶ ∣µi − r̂i(t)∣ ≥ bi(t)) ≤
s

∑
t=s/2

(
1

2t+1K
)

α−1

≤ (
∆s/2+1

K
)

α−2

.

For the second part of the lemma, we assume WLOG ∆i ≥ ∆s/2. Thus, we have

∆̂i(t) = max
j∈[k]

r̂j(t) − bj(t) − r̂i(t) − bi(t) =∶ r̂i∗t (t) − bi∗t (t) − r̂i(t) − bi(t).

On the event that {∀i ∈ [K], t ∈ [s/2, s] ∶ ∣µi − r̂i(t)∣ ≤ bi(t)} we have r̂i∗t (t) − bi∗t (t) ≤ µi∗t and

r̂i(t) + bi(t) ≥ µi. This implies that w.p. 1 − (
∆s/2+1

K
)
α−2

we have

∆̂i(t) ≤ µi∗t − µi ≤ µi∗ − µi = ∆i,

for all i ∈ [K] and t ∈ [s/2, s].

Lemma B.4. Let α′ = 256α in LP3. On the event Eupper it holds that bi(s) ≤ ∆i∨∆s

8
,∀i ∈ [K].

Thus, for any α ≥ 3 and any log(K) ∨ 10 ≤ s ≤ log(T ) the following inequality holds

P(∃i ∈ [K] ∶ bi(s) ≥
∆i ∨∆s

8
) ≤ (

∆s/2+1

K
)

α−2

.
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Proof. Recall that bi(s) =
√

3α log( K
∆s+1

)
ni(s) so we are going to bound ni(s) from below. Assume that

∆i ≥ ∆s, the other case is handled similarly. Let si be the phase at which ∆si = ∆i. On the event
Eupper we know that ∆̂i(t) ≤ ∆i for all t ∈ [si, s], i ∈ [K]. The constraints in LP3 imply

ni(s) ≥
s

∑
t=si+1

α′

∆̂2
i (t)

+
α′ log(K

∆ si+1
)

∆2
si

≥
α′(s − si)

∆2
i

+
α′ log(K

∆ si+1
)

∆2
si

.

The above implies that

b2i (s) ≤
α log(K

∆ s+1
)

α′ log(K
∆ si+1

)
∆2

si

+
α′(s−si)

∆2
i

≤
6(s + 1)α

α′(si+1)
∆2

i
+
α′(s−si)

∆2
i

+
α′ log(K)

∆2
i

For α′ = 768α the above implies bi(s) ≤ ∆i

8
.

Lemma B.5. Let Egap(s) = {∀i ∈ [k] ∶ ∆i

2
∨∆s ≤ ∆̂i(s) ≤ ∆i ∨∆s}. Under the assumptions of

Lemma B.4 we have

P (Egap(s)) ≥ 1 − 3(
∆s/2+1

K
)

α−2

.

Proof. If s is such that ∆i ≤ ∆s the statement of the lemma holds from Lemma B.3 and the definition
of ∆̂i(t). We now consider the case ∆i ≥ ∆s and assume that Eupper holds. Lemma B.4 now implies
that bi(s) ≤ ∆i

8
. Further, assume that ∣µi − r̂i(s)∣ ≤ bi(s),∀i ∈ [K]. We have

∆̂i(s) = max
j∈[K]

r̂j(s) − bj(s) − r̂i(s) − bi(s) ≥ r̂i∗(s) − bi∗(s) − r̂i(s) − bi(s)

≥ ∆i − 2(bi∗(s) + bi(s)) ≥
∆i

2
.

Our assumptions fail with probability at most (∆s/2+1

K
)
α−2

+ 2 (∆s+1

K
)
α−1

.

Lemma B.6. For any phase s ≥ log(K) ∨ 10, it holds that P(Γ̂s+1 /⊆ Γs) ≤ 3 (
∆s/4+1

K
)
α−2

.

Proof. We have P(Γ̂s+1 /⊆ Γs) ≤ ∑i/∈Γs
P(i ∈ Γ̂s+1). The fact i /∈ Γs implies that ∆i ≥ 2∆s. The

result now follows by Lemma B.5.

Lemma B.7 (Lemma 5.1). Let DLP3(s) be the value of LP3 at phase s and let DLP4(s) be the
value of LP4 at phase s. For any s ≥ log(K) ∨ 10 the following inequality holds

DLP3(s + 1) ≤ 4DLP4(s),

with probability at least 1 − 3 (
∆s/2+1

K
)
α−2

. Further, for any s ≥ log(K) ∨ 10 ∨ log (
∣I∗∣

∆min
) we have

that the regret incurred for playing according to LP3 is at most 16α′c∗(G,µ) with probability at

least 1 − 3 (
∆s/2+1

K
)
α−2

.

Proof of Lemma 5.1. For any s and all i ∈ [K] Lemma B.5 and Lemma B.6 imply that Γ̂s+1 ⊆ Γs

and ∆s

2
≤ ∆̂(s) ≤ ∆s with probability at least 1 − 3 (

∆s/2+1

K
)
α−2

. If we let x∗LP4(s) be a solution to
LP4 at phase s, then these conditions imply that 4x∗LP4(s) is feasible for LP3. This implies

DLP3(s + 1) ≤ 4⟨x∗LP4(s), ∆̂(s)⟩ ≤ 4⟨x∗LP4(s),∆
s
⟩ = 4DLP4(s).

Further, for s ≥ log(1/∆min), Γs consists only of I∗. Let x∗LP3 be a solution to LP3, and let x̂∗ be
a solution to the LP dropping all constraints on I∗ and its neighborhood. Note that ⟨x̂∗, ∆̂(s)⟩ ≤
8α′c∗(G,µ) under E(s). We show by contradiction that

∑
i/∈I∗

x∗LP3,i∆̂i(s) ≤ 2 ∑
i/∈I∗

x̂∗i ∆̂i(s) ,
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which by ∆i ≤ 2∆̂i(s) completes the proof. Assume the opposite is true, take a new x such that

xi = x̂
∗
i ∀i /∈ I

∗

xi = x
∗
LP3,i + ∑

j/∈I∗
x∗LP3,j ∀i ∈ I

∗ .

x is a feasible solution of LP3. Next, we only consider s ≥ log(∣I∗∣/(4∆min)) which implies that

⟨x, ∆̂s
(s)⟩ = ∑

i∈I∗
x∗LP3,i∆s + ∑

i/∈I∗
(x∗LP3,i∣I

∗
∣∆s + x̂

∗
i ∆̂i(s))

< ∑
i∈I∗

x∗LP3,i∆s + ∑
i/∈I∗

(x∗LP3,i(
∆min

4
+

∆̂i(s)

2
)

≤DLP3(s) ,

which is a contradiction to ⟨x, ∆̂s(s)⟩ ≥DLP3(s).

Denote the value of LP2 at phase s as DLP2(s) and a solution to the LP as x∗LP2(s). We note that
for any s it holds that xLP4(s) = (α log(K/∆s+1) ∨ α

′)∑t≤s x
∗
LP2(t) is feasible for LP4. Further

we have that for all t ≤ s it holds that ⟨x,∆s⟩ ≤ ⟨x,∆t⟩. These two observations imply

DLP4(s) ≤ (α log(K/∆s+1) ∨ α
′
)∑
t≤s
DLP2(t) .

Further, we have DLP2(t) ≤ DLP4(s). We can assume that s ≥ 10, otherwise the regret is O(K).
Thus we can characterize the optimality of Algorithm 1 up to factors of log2

(1/∆min) as follows.

Theorem B.8 (Theorem 5.2). Let d∗(G,µ) = maxs≤log(∣I∗∣/∆min)DLP2(s). The expected regret
R(T ) of playing according to Algorithm 2 with α = 4 and α′ = 768α is bounded as

R(T ) ≤ O (log2
(

1

∆min
)d∗(G,µ) + log(T )c∗(G,µ) + γ(G)K) .

Further, for any algorithm, there exists an environment on which the expected regret of the algorithm
is at least Ω(d∗(G,µ)).

Proof. Lemma 5.1 implies that the regret bounds fail to hold at any phase s ≥ log(K) w.p. at most
3 ( 1

2s/2+1K
)
α−2

. Further the regret at phase s is always bounded by α′K2s log(1/∆min) Choosing
α = 4 implies expected regret of only O(log(1/∆min)) on the union bound of failure events. For the
remainder of the proof we now have for s ≤ log(∣I∗∣/∆min)

DLP3(s) ≤ 4DLP4(s) ≤ O(log(K/∆s+1)d
∗
(G,µ)) .

For s ≥ log(∣I∗∣/∆min) we have that

DLP3(s) ≤ O(c∗(G,µ)) .

Finally the regret incurred in the first s ≤ log(K) phases is at most O(γ(G)K log(K)) as the
algorithm plays the approximate solution corresponding to the minimum dominating set of G.
Combining all of the above shows the instance dependent regret upper bound.

To show the instance independent bound we again use the bound DLP4(s) ≤ (α log(K/∆s+1) ∨

α′)∑t≤sDLP2(t). Let Is be a maximum independent set of Γs. If ∆s ≥

√
∣Is∣
T

then by the argument

in Section D.1 it holds that DLP2(s) ≤
√
α(G)T . Next, we consider ∆s <

√
∣Is∣
T

. Let s be the

smallest index for which ∆s <

√
∣Is∣
T

so that ∆s−1 ≥

√
∣Is−1∣
T

. Since ∆s =
1
2
∆s−1 we have that

DLP2(s) ≤ 4DLP2(s − 1) ≤ 4
√
α(G)T . Further, playing every arm in Is for 1

∆2
s

rounds will exceed

the time horizon of the game and incur at most 4
√
α(G)T regret. Suppose that the solution of LP2 at

epoch s is such that the game does not end if the solution is followed and consider playing according
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LP2 at epoch s + 1. If the game does not end, then the incurred regret is no more than 2
√
α(G)T .

This follows from the fact that

∆s+1∑
i

x∗LP2,i(s + 1) ≤ ∆s∑
i

x∗LP2,i(s + 1) ≤ ∆s ∑
i∈Is

4

∆2
s−1

= 2
√
α(G)T ,

where the last inequality follows from the fact that xi = 4
∆2

s−1
, i ∈ Is is feasible for LP2 at epoch s.

Proceeding by induction, it holds that any epoch s at which the solution of LP2 does not end the
game must have regret at most 2

√
α(G)T . Suppose now that the game ends, then the regret of the

final epoch is at most twice the preceding epochs regret as playing 4-times the optimal solution for the
previous epoch is feasible for the current epoch, and so the total regret incurred for playing according
to LP2 is at most 4

√
α(G)T . By the argument thatDLP4(s) ≤ (α log(K/∆s+1)∨α

′)∑t≤s x
∗
LP2(t),

we can construct a feasible solution for LP4 at any epoch s during which from the solutions to LP2.
These feasible solutions have bounded regret for any epoch before the terminal epoch for LP2.
Finally, we note that the terminal epoch for LP2 must be no smaller than the terminal epoch for LP4,
otherwise we can construct a feasible solution to LP2 from that of LP4 with regret smaller than the
value of LP2, which would be a contradiction. The construction sets all variables not in Γs to 0 and
rescales the non-zero variables normalizing with the additional logarithmic factors in the constraint
of LP4. Thus, the total regret for playing according to LP4 is at most O (log2

(KT )
√
α(G)T).

Further, any feasible solution for LP4 is feasible for LP2 and any feasible solution for LP2 must play
more than T rounds

The regret lower bound follows from Lemma 6.1.

C Regret lower bounds

C.1 Proof of Lemma 6.1

Lemma C.1 (Lemma 6.1). Fix any instance µ s.t. µi ≤ 1 − 2∆s, i ∈ I
∗. Let Λs(µ) be the set of

problem instances with means µ′ ∈ µ + [0,2∆s]k. Then for any algorithm, there exists an instance in
Λs(µ) such that the regret is lower bounded by LP2.

Proof. We take as a base environment the instance with expected rewards vector µ and assume that
the rewards follow a Gaussian with variance 1√

2
. Let τ ∈ R+⋃{∞} be the time at which the following

is satisfied

min
i∈Γs

E [
τ

∑
t=1

P[At ∈ Ni]] =
1

4
√

2(∆s)
2
,

where the expectation is with respect to the randomness of the sampling of the rewards and A.

First we argue that we can assume τ <∞. Consider τ =∞. Let

i∗ = argmin
i∈Γs

E [
τ

∑
t=1

Pµ[At ∈ Ni]] .

Fix a time horizon T and let xT be the vector of expected number of observations ofA on environment
µ and XT the random vector of actual observations. By the assumption that τ =∞ and Markov’s
inequality, we have that P[XT,i∗ ≥

1
∆2

s
] ≤ 1

2
. Consider the algorithm Ā which after 1

∆2
s

observations
of i∗ switches to playing uniformly at random from [K] ∖Ni∗ so that it never observes i∗ again. Let
µ′ be the instance which changes the expected reward of µi∗ to µ′i∗ = µi∗ + 2∆s, and so µ′ ∈ Λs(µ).
The KL-divergence between the measures induced by playing A on these two instances for τ rounds
is bounded as 4∆2

sxτ,i∗ . If we let x′T denote the vector of expected number of observations under
environment µ′ then Pinsker’s inequality implies that

x′T,i∗ ≤
1

4
√

2∆2
s

2∆s

√
xτ,i/2 ≤

1

4∆2
s

.

Thus, the expected regret of Ā under µ′ is at least (T − 1
4∆2

s
)∆s for any T ≥ 1

4∆2
s

. Further, by

Pinsker’s inequality the probability that XT,i∗ ≥
1

∆2
s

under Ā in environment µ′ is bounded by 3
4

.
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Since A and Ā act in the same way up to 1
∆2

s
observations of i∗ it holds that the expected regret

of A in environment µ′ is at least 1
4
(T − 1

4∆2
s
)∆s for any T ≥ 1

4∆2
s

. Thus for T large enough, e.g.,

T = Ω(DLP2(s)/∆s +
1

4∆2
s
) the conclusion of the lemma holds.

We now assume that τ ≤∞. Let xτ,i = E [∑
τ
t=1 P[At ∈ Ni]] be the expected number of observations

of action i after τ rounds. Assume that ∑i/∈Γs
xτ,i∆i ≤

DLP2(s)
16

, otherwise we are done. The
definition of τ with the above assumption imply that

xτ,i ≥
1

4
√

2∆2
s

,∀i ∈ Γs

Ô⇒

∑
i∈[K]

xτ,i∆
s
i ≥

D̄(∆s,Γs)

4
√

2

Ô⇒

τ∆s ≥ ∑
i∈Γs

xτ,i∆s ≥
D̄(∆s,Γs)

16
.

Let µ′ be the instance which changes the expected reward of µi∗ to µ′i∗ = µi∗+2∆s, and so µ′ ∈ Λs(µ).
The KL-divergence between the measures induced by playing A on these two instances for τ rounds
is bounded as 4∆2

sxτ,i∗ . If we let x′τ denote the vector of expected number of observations under
environment µ′ then Pinsker’s inequality implies that

x′τ,i∗ ≤ τ∆s

√
xτ,i/2 ≤

τ

2
.

This implies

∑
i∈[K]∖{i∗}

x′τ,i∆
s
i ≥

τ

2
∆s ≥

D̄(∆s,Γs)

32
.

C.2 Proof of Theorem 4.1

Theorem C.2. There exists a feedback graph G, with K ≥ 32 vertices, such that for any algorithm
A there exists an environment µ on which R(T ) ≥ Ω(K1/8c∗(G,µ)).

Proof. For any algorithm A, define the algorithm A as follows: If there have been more than K
7
8

64∆2
2

pulls of actions in N2, then commit to action N3 until end of time. We call the random time-step
where A and A deviate in trajectory as τ . Define the stopping times

T1 ∶= min{t ∈ N ∪ {∞} ∣P[τ ≤ t] >
1

2
}

T = min{⌈
K

128∆2
2

⌉ , T1} .

Let n∗ be the node inN2 with the smallest number of expected observations at time T under algorithm
A. Let Ni denote the number of times an action in Ni has been played by A. The total number of
observations over all actions in N2 is

2N1 +K
1
8N2 ≤

K

64∆2
2

+
K

64∆2
2

=
K

32∆2
2

.

Hence the number of observations of n∗ is bounded by 1
32∆2

2
. Consider the environment E1, where

all we change is increasing the reward of n∗ by up to 2∆2. By Pinsker’s inequality we have

∣PA,E(E) − PA,E1
(E)∣ ≤

√
1

2
(2∆2)

2
1

32∆2
2

=
1

4
,

as the largest difference in probability of any event under the two environments. We consider two
possible cases below.
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Case 1 T < T1. Set the reward of n∗ to ν +∆2. Define the following event:

E ∶= {τ > T ∧ Nn∗ ≤
1

4∆2
2

} .

In the first environment, we have

P(E) = 1 − P(EC) ≥ 1 − P[τ < T ] − P [Nn∗ >
1

4∆2
2

] ≥
3

8
.

Hence the probability of E is at least 1
8

in the changed environment. The regret of A is at least

1

8
(T −

1

4∆2
2

)∆2 >
K

1024∆2
= Ω(

K
3
4

∆
) .

However, the value of LP1 for this environment is Θ(K
7
8

∆2
) = Θ(K

5
8

∆
).

Case 2 T = T1 Set the reward of n∗ to ν. Define the following event:

E ∶= {τ ≤ T ∧ Nn∗ ≤
1

4∆2
2

} .

In the base environment, we have

P(E) = 1 − P(EC) ≥ 1 − P[τ > T ] − P[Nn∗ >
1

4∆2
2

}] ≥
3

8
.

Hence the probability of E is at least 1
8

in the changed environment. The regret of A is at least

1

8
(
K

7
8

64∆2
2

−
1

4∆2
2

)∆2 >
K

7
8

1024∆2
= Ω(

K
5
8

∆
) .

However, the value of LP1 for this environment is Θ(K
1
2

∆
).

We note that this also characterizes d∗ = Θ(K1/8c∗), as playing according to LP2 will result in
Θ(K7/8/∆2

2) plays of arms in N2.

Hence for any algorithm, there exist an environment and time step T = O(K
1
2

∆2 ), such that the
algorithm suffers a regret that is a factor K

1
8 larger than c∗.

D Characterizing d∗

D.1 Improving on bound in Lykouris et al. [2020]

We now show that d∗(G,µ) ≤ maxI∈I(G)∑i∈I
1

∆i
:

DLP2(s) ≤
γ(Γs)

∆s
≤
α(Γs)

∆s
≤ ∑
i∈I(Γs)

1

∆i
≤ max
I∈I(Γs)

∑
i∈I

1

∆i
≤ max
I∈I(G)

∑
i∈I

1

∆i

Ô⇒ d∗(G,µ) ≤ max
I∈I(G)

∑
i∈I

1

∆i
.

The first inequality follows from the definition of the LP, the second inequality follows from the fact
that the domination number is no larger than the independence number, the third inequality follows
from the fact that for any i ∈ Γs we have ∆s ≥ ∆i, and the fifth inequality holds by the fact that
I(Γs) ⊆ I(G).
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D.2 Bound on d∗ for star-graphs

Lemma D.1. For the star-graphG and any instance µ, the following inequality holds: c∗+ ∣I∗∣
∆min

≥ d∗.

Proof. Consider the dual of LP1 given below

max
y∈RK

1

∆2
s

∑
i∈Γs

yi

s.t. ∑
j∈Ni⋂Γs

yj ≤ ∆s,∀i ∈ Γs,

∑
j∈Ni⋂Γs

yj ≤ ∆i,∀i ∈ ΓC
s .

(LP5)

Note that for any i ∈ [K] we can take the intersection of Ni with Γs as no action j ∈ ΓC can increase
the value of the objective of LP5. The analysis is split into two parts. First consider all phases s for
which it holds that ∆r ≤ ∆s. We argue that the solution to LP2 for these phases is to just play the
revealing vertex for 1

∆2
s

times. Indeed we can just set yr = ∆s and observe that this is feasible for the

dual LP with value 1
∆s

. Further, setting xr = ∆s in the primal also yields a value of 1
∆s

. The fact that
∆r ≥ ∆min together with the lower bound of R(T ) ≥ Ω( 1

∆min
) for any strategy, implies that playing

according to LP2 is optimal up to at least the phase at which ∆r > ∆s.

Next, consider the setting of s s.t. ∆r > ∆s. The following is feasible for LP5

yi = {

∆r

∣Γs∣ if ∣Γs∣∆s ≥ ∆r

∆s otherwise.

Thus the value of LP2 is ∆r

∆2
s

in the first case and ∣Γs∣
∆s

in the second as we can match these values

in the primal by setting either xr = 1
∆2

s
or xi = 1

∆2
s
, i ∈ Γs in the primal. To show that both of these

values are dominated by c∗ consider the dual of LP1 below

max
y∈RK

∑
i∈[K]∖I∗

yi
∆2
i

s.t. ∑
j∈Ni⋂Γs

yj ≤ ∆i∀i ∈ [K].
(LP6)

First consider the setting in which the value of LP2 equals ∆r

∆2
s

. Set all yi ∈ Γs ∖ I
∗ to yi = ∆r

∣Γs∣ and all
other yi = 0. This is feasible for LP6 and implies that

c∗ ≥ ∑
i∈Γs∖I∗

∆r

∆2
i ∣Γs∣

≥
∣Γs ∖ I

∗∣

∣Γs∣

∆r

∆2
s

,

where the second inequality follows because ∆s ≥ ∆i. This is sufficient to guarantee that c∗ + ∣I∗∣
∆min

≥

∆r

∆2
s

. Next consider the setting in which the value of LP2 equals ∣Γs∣
∆s

. Set all yi ∶ i ∈ Γs ∖ I
∗ to yi = ∆i

and all other yi = 0. This is again feasible for LP6 because ∑i∈Γs∖I∗ ∆i ≤ ∣Γs∣∆s ≤ ∆r and further
implies that

c∗ ≥ ∑
i∈Γs∖I∗

1

∆i
≥

∣Γs ∖ I
∗∣

∣Γs∣

1

∆s
.

Again this is sufficient to guarantee that c∗ + ∣I∗∣
∆min

≥
∣Γs∣
∆s

.

D.3 Proof of Lemma 7.2

Proof. Again we assume that G consists only of a single connected component. First we argue that
C(G) is a star-graph. Consider three vertices v1, v2, v3 ∈ C(G) such that v1, v3 ∈ Nv2 . Assume
that v1 ∈ Nv3 . This implies that there exists a vertex u ∈ C(G) such that u ∈ Ni but u /∈ Nj for
i ≠ j, i, j ∈ {1,2,3}, otherwise Nv1 = Nv2 = Nv3 and they collapse to a single vertex under C(G).
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Assume that u ∈ N1 but u /∈ N2. Then this implies there exists a path of length 3 between u and v2,
given by (u, v1, v3, v2). All other cases are symmetric and so this contradicts v2 ∈ Nv3 . Further, it
can not occur that there exists a neighbor u of v2 or v3 s.t. u /∈ Nv1 . The above two arguments show
that for G every vertex must neighbor v1 and no two vertices v2, v3 ≠ v1 can be neighbors making
C(G) a star graph.

Next, we show that for any µ there exists a µ′ defined on C(G) s.t. c∗(G,µ) = c∗(C(G), µ′) and
d∗(G,µ) = d∗(C(G), µ′). For any equivalence class [v] ∈ C(G), define the expected reward of [v]
as µ′[v] = maxu∈[v] µu. For the remainder of the proof we represent the equivalence class by the action
v with maximum reward µv = µ′[v]. By construction, maxv µ

′
[v] = maxu µu, hence the gaps are also

identical ∆[v] = ∆v. We first show that we can drop the constraints for any u ∈ [v] ∖ {v} without
changing the value of the LP. The LHS of all constraints for u ∈ [v] is identical since it depends only
on Nu. Hence, we can remove all but the largest constraint, which is obtained for the smallest gap, i.e.
the constraint for v. Next we show that we can also remove xu for any u ∈ [v] ∖ {v}. Assume xu > 0
is a feasible solution of the LP, then we obtain another feasible solution x′ by x′u = 0, x′v = xu + xv,
while leaving everything else unchanged. However, since ∆v ≤ ∆u, the objective value of x′ is
smaller or equal that of x. Hence there exists an optimal solution where all u ∈ [v] ∖ {v} are 0 and
these variables can be dropped from the LP. The resulting LP after dropping constraints and variables
for u ∈ [v] ∖ {v} is exactly given by C(G), µ′. This shows that c∗(C(G), µ′) = c∗(G,µ′).

The claim that d∗(G,µ) = d∗(C(G), µ′) follows analogously.
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