
A Omitted proofs

A.1 Proposition 3.4

Proof. We follow the usual structure of revelation principle proofs. Given an S-certification equi-
librium, consider augmenting the mediator d by devices di, one per player, that acts as follows. di
internally keeps track of the current sequence σi of player i. Whenever it is player i’s turn to act, di
expects to be told an information set I ′ with σ(I ′) = Ia. Then di samples what message s player
i would have honestly sent to the mediator at infoset I ′, and forwards this to d. When d replies
with a message s′, di samples the action a′ the player would have played, sends that to the player,
and updates her internal state to σi := I ′a′. If di ever receives an invalid message (i.e., anything
except an infoset I ′ with σ(I ′) = Ia), it resorts to always sending ⊥ to both d and player i for the
remainder of the game.

To see that this results in an equilibrium, note that player i can always simulate di when playing with
the original mediator d—therefore, any deviation she can perform against the direct equilibrium can
also be performed with d (This is where NRC is used: since the acting player may in reality have
lied about her information, without the NRC, it could be the case that the simulated message swould
not be legal for player i to send).

A.2 Proposition 3.5

Proof. Consider a mediator for the full game that acts according to x̂M. If the player sends messages
that are not in Γ̂, then the mediator acts as if the player sent⊥. If the mediator reaches a state in which
at least two players have provably deviated (i.e., the mediator has reached a state not in Γ̂), then the
mediator acts arbitrarily. This mediator strategy, along with the players’ direct strategies, forms a
strategy profile. The only difference between Γ̂ and the true communication protocol induced by S
is, in Γ̂, players are not able to send certain messages. But, in any case, those messages are ones that
are never sent by an honest player; therefore, the mediator will always act as if the player sent ⊥ if
it receives such a message. Therefore, the player gains nothing by having extra messages that she
can send. This completes the proof.

B Full linear program

In this section, we present the full LP formulation implied by the discussion in Section 3.1.

Dropping the hats for notational cleanliness, and letting Xj = {xj : Fjxj = fj ,xj ≥ 0} be the
realization-form representation of player j’s decision space, the program (1) has the form

max
xM∈XM

c>x s.t. max
xj :Fjxj=fj ,xj≥0

x>MAjxj ≤ 0. ∀j ∈ [n]

Dualizing the inner maximizations, we have the linear program

max c>xM

s.t. F>j vj ≥ A>j xM, f
>
j vj ≤ 0 ∀j ∈ [n]

xM ∈ XM

where vj are dual variables. Intuitively, the dual variables represent best-response values: the vector
vj will be indexed by information sets I for player j, and vj [I] will be the best-response value for
player j at infoset I (assuming all other players are direct). This sort of dualization of an inner
optimization problem to create a linear program is fairly standard—see Koller et al. [20] for an
application to two-player zero-sum games and Farina et al. [9] for the same approach applied to the
special case of correlation.

C Example of game in which full-certification equilibria dominate NFCCEs

We now give an example that demonstrates the difference between NFCCEs (where the mediator has
imperfect recall) and the perfect-recall notions. In particular, we will show a game where there is an
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Figure 2: The counterexample in Appendix C. At terminal nodes, N’s utility is listed first. The root
node is a chance node, and the distribution at it is uniform random.

(extensive-form) persuasion strategy for the mediator that leads to outcomes Pareto-dominating ev-
ery NFCCE of Γ. Since persuasion can be recovered from full certification (or even communication)
by adding a dummy player who communicates information to the mediator and has no incentives
(thus is always direct), this also shows that communication equilibria can Pareto-dominate NFCCEs.

Consider the game whose tree is depicted in Figure 2. At the root, chance selects a subgame s ∈
{N,H,H,T}. If chance selects s ∈ {N,H}, then player s is offered a chance to exit the game; if she
does, she scores 0 and the other player scores 1. If she does not exit, the two players play matching
pennies with the other player (not s) playing first (this will be relevant when we take perfect-recall
refinements). The winner scores 1 point and the loser −1. If chance selects s ∈ {H,T}, then N
attempts to guess which one was selected. If successful, both players score 1 point; otherwise, both
scores 0. The following properties can be directly verified:

• For every NFCCE in both Γ and its perfect-information refinement, both N and H have
value exactly 1/2.

• The following mediator pure strategy is persuasive in Γ, where both players achieve value
3/4: both players exit when possible, and if s ∈ {H,T}, the mediator informs N which is
the case. If the matching pennies subgame is entered, the mediator recommends that each
player play independently and uniformly at random.

Intuitively, this outcome exists because the mediator has the power to selectively tell players infor-
mation when it is to their benefit (e.g. in the case s ∈ {H,T}, where the mediator can inform N
of chance’s choice to allow N to score a point) and withhold information to incentivize cooperation
(e.g., in the case s = N, where the mediator can withhold H’s matching pennies bit from N to prevent
N from deviating).

D Descriptions of games in experiments

• B is a two-player Battleship game [9] with a grid of size h × w and r rounds, made into
a nonzero-sum game by having each player value their own ships greater than their oppo-
nents’. The three numbers afterward are, in order, the length, width, and number of shots
per side. Each player has a single ship of unit size.

• S is a simplified Sheriff of Nottingham game [9], a small game modeling a negotiation
between two players. The first two numbers roughly correspond to how much power each
player has in negotiation; the final number is the number of rounds of negotiation.

• RS is a small ridesharing game [31], played on a graph, in which the players walk around
the graph attempting to serve “customers” who reside at certain nodes. The first number
(1 or 2) denotes the specific graph on which the game is played; the second number is the
number of steps in the game.
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E Mechanisms with payments

The mediator may be able to take its own actions during the game, separate from the players. In
our framework, this can be modelled by introducing an auxiliary player that has no incentives of
her own and therefore no reason to disobey the mediator recommendations. One particular use case
of such a player is payments: the auxiliary player can collect payments from or give payments to
players, as a means of incentivizing players to perform certain actions.

We can make this concrete as follows. At the end of the game Γ̂, chance picks a random player
i∗ ∈ [n], reveals it to the mediator. The mediator then selects a payment p ∈ {L,U} to be given
to the player, where L,U ∈ R are a minimum or maximum payment (that may be functions of the
mediator’s information). The player gains utility np and the mediator loses utility np. By varying
the probability with which the mediator makes the two payments, the mediator can (in expectation)
pay any player any amount in the range [L,U ]. The size of the mediator-augmented game increases
by a factor of O(n).

If U − L is at least the reward range of the game, and the mediator always learns whether players
have acted directly, then any strategy at all can be enforced in equilibrium simply by giving each
player a sufficiently large payoff for cooperating. The ability of the mediator to commit to a strategy
is critical when payments are involved: if a mediator could not credibly commit, then it would never
make a payment because it has negative incentive to do so.

Automated mechanism design. A consequence of the above analysis is that we recover the Bayes-
Nash8 randomized automated mechanism design algorithm of Conitzer and Sandholm [6, 8] as a
special case, as follows. That paper considers a Bayesian game with T types per player and n
players. A type assignment θ ∈ [T ]n is sampled from some joint distribution, and each type θi is
revealed privately to player i (for ex interim incentive compatibility) or publicly to all players (for ex
post incentive compatibility). A round of communication ensues, in which each player informs the
mediator about her own type (or lies about it). The mediator then chooses an outcome o ∈ [O], and
each player receives a utility that is a function of their own type θi and the outcome o. The resulting
game has size TnO, and each player has at most Tn sequences, so the overall LP (1), after including
payments, has size poly(O, Tn), which is the same result observed by Conitzer and Sandholm [8].

Costly messaging. Suppose that players have a strict preference for not revealing information over
revealing it, or for sending certain messages over others. In the game Γ̂, we can easily express this
preference by changing the utilities of player i. In this setting, direct equilibria may not exist in the
general case: indeed, consider a single-player game where the player has perfect information and
therefore no need to tell the mediator anything. Nonetheless, direct equilibria can still exist in some
games if the mediator has some power to persuade the players to reveal their information—that is,
if a player’s information will help the mediator to give the player a better outcome. If the mediator
knows whether players have been direct, there always exist payments large enough to incentivize
direct behavior (or, indeed, any behavior), so payments can also be used to recover equilibrium
existence.

This algorithm does not take into account the possibility that the mediator or players may be better
off not knowing certain information than paying the price of gathering it, which is often the case
in preference elicitation [e.g., 21, 27] and has more recently been studied for automated mechanism
design Zhang et al. [34], Kephart and Conitzer [18, 19]; it will only compute the optimal equilibrium
for which the mediator gives sufficient incentive for all players to always honestly reveal informa-
tion. Finding optimal equilibria in settings when the revelation principle fails is beyond the scope of
this paper.

F Additional related research

Our results are extremely general across settings and applications, most notably mechanism design
and Bayesian persuasion (information design). Many special cases of our main algorithm have been
discussed in the literature. Here, we give an overview of some of them.

8There is no correlation to speak of, because players do not have any actions—they merely report informa-
tion. Hence, we are able to discuss Bayes-Nash instead of Bayes-correlated equilibria.
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Automated multi-stage mechanism design. In mechanism design, an uninformed mediator (the
mechanism) takes actions based on information given to them by player(s) who have information
but cannot take actions. In the previous section, we showed how our framework can be used to
generalize the automated mechanism design algorithm of Conitzer and Sandholm [6]. We will now
discuss several other very recent papers on automated mechanism design in dynamic settings, and
how our paper relates to them.

Zhang and Conitzer [33] consider an automated dynamic mechanism design setting in a Markov
game with one player. Their main positive result is an LP for the setting of short-horizon MDPs,
which can be viewed as a special case of our framework by simply unrolling the (short-horizon)
MDP into an extensive-form game.

Zhang et al. [35] consider an automated mechanism design setting in which the agent’s only power
is, at each timestep, to quit the decision process. They study Markov games, which in this setting
are significantly involved difficult than extensive-form games. In extensive form, their setting can
be formulated as an augmented game very similar to our framework, in which the “exit” action is
explicitly added into the augmented game and the principal selects the action.

Papadimitriou et al. [26] study a dynamic auction design setting. In their most general setup, there
are k players (bidders) with independent valuations for each of D items to be sold in sequence. The
agents in their setting know all their valuations upfront, but only report their valuations for the item
currently being sold. That constraint can be expressed in our framework in the language of (S,M)-
certification equilibria, by setting M such that the mediator only learns the player’s valuation of
the current item. As such, that setting is also a special case of ours—in particular, our algorithm
matches their positive results, Theorems 7 and 8, that use a “dynamic programming LP” to compute
the optimal randomized mechanism.

Sandholm et al. [28] study multi-stage mechanism design, but they use multiple stages for the pur-
pose of reducing the amount of communication necessary for preference elicitation in what would
otherwise be a single-stage setting. Their work is therefore orthogonal to ours.

Automated mechanism design with partially-verifiable types. Zhang et al. [34] give an algo-
rithm for finding the optimal direct mechanism in a single-agent, single-stage setting with partially-
verifiable types. The positive results in their paper focus on the case when all types have the same
preferences over outcomes. Our work differs from that one in that we consider extensive-form
(multi-stage) settings and a more general setup (in which the players can also take actions and can
have arbitrary utility functions). However, we share in common with that paper the fact that we only
compute the optimal direct mechanism, and hence rely on the revelation principle holding for that
mechanism to be optimal across communication structures.

Kephart and Conitzer [18] analyze mechanism design in a single-stage, single-agent setting with
costly reporting and not assuming the revelation principle. Their goal is to, given a social choice
function, determine whether that function can be implemented. They analyze a large spectrum of
cases, and discuss for each case whether this implementation problem is easy or (NP-)hard. In a
follow-up paper [19], the same authors carefully investigate when the revelation principle does or
does not hold (still in the single-stage, single-agent setting with reporting costs). When the revela-
tion principle does hold, as we have discussed in Appendix E, our framework matches, as a special
case, the polynomial-time algorithm of Conitzer and Sandholm [6, 8], and both can be used to com-
pute whether a social choice function is implementable, simply by adding the appropriate linear
constraints to the linear program formulation. However, when the revelation principle fails, that ap-
proach will fail to find an implementation for any social choice function that cannot be implemented
by a direct mechanism.

Automated multi-stage Bayesian persuasion (information design). In Bayesian persuasion, also
commonly referred to as information resign [17], the roles of the mediator and player are reversed
compared to automated mechanism design: the mediator (“principal”) has informational advantage,
and the player(s) take the actions. The difference between the two settings lies in who has the
commitment power: in automated mechanism design, the side with the power to take actions has the
commitment power.

Celli et al. [3] study persuasion in extensive-form games with multiple players, in which the principal
can only send a single signal at the beginning of the game to the players. They focus on a setting
where the mediator can only send a single signal to the players, which is far more restrictive than our
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setup of persuasion. Their setting of Bayes coarse-correlated equilibria is equivalent to what we call
normal-form coarse imperfect-recall persuasion, and their results in this setting fall out as special
case of our framework (using the correlation DAG of Zhang et al. [31] to represent the mediator’s
decision space). Their discussion of Bayes-correlated equilibria is not captured by our framework
for the same reason that NFCEs are not captured.

Gan et al. [14] study persuasion in Markov games with a single player, in which the principal can
send messages to the player at every time step. The extensive-form analogue of their setting is, once
again, a special case of our framework. The complexity gap between myopic, advice-myopic, and
far-sighted players, discussed in that paper for Markov games, disappears in extensive-form games
because extensive form naturally allows history-dependent strategies for both the mediator and the
players.

Wu et al. [30] study persuasion in Markov games with myopic players. That is, a new player arrives
at every timestep. After performing a single action, the player gains a reward dependent on the true
state (which, of course, the player may not actually know) and her action, and then leaves the system
forever. The authors devise an online learning algorithm that provably has low regret for the sender.
Compared to their setting, our setting is significantly more general—allowing multiple non-myopic
agents as well as other forms of limited information and communication—but ours is based on linear
programming instead of online learning, and works with extensive-form games instead of Markov
games.

We are not the first to point out associations between communication equilibria and other settings
such as mechanism design and persuasion. In particular, Bergemann and Morris [2] discuss in
great depth the relationship between communication equilibria, mechanism design, and persuasion
in Bayesian games. On top of that paper, our contribution is that we extend their ideas of unification
to the more general setting of arbitrary extensive-form games and provide efficient algorithms for
all of those cases.

Preference elicitation from multiple agents. There has been significant work on preference elici-
tation from multiple agents, starting in the context of combinatorial auctions [5]. Often the elicitor
knows that some preference information from an agent is not needed for optimally allocating (and
pricing) given what other agents have already revealed about their preferences. This is the case
already in private-values settings. In quasilinear settings, if the elicitor receives enough informa-
tion from the agents to determine the welfare-maximizing allocation and the Vickrey-Clarke-Groves
payments, it is an ex post equilibrium for all players to tell the truth [5]. This is despite the fact
that the elicitor’s queries leak information across agents. Similar leakage also happens in preference
elicitation in voting, and there are certain restrictions that can be imposed on the elicitation policy
that eliminate any strategic effects that stem from that [7].

Our paradigm is fundamentally different from the above preference elicitation setting, in several
ways. First, all our complexity results are at least linear in the size of the game tree, whereas in
a combinatorial auction, the auctioneer (mediator) may pick one of exponentially many outcomes.
Second, we always allow mixed strategies, which are typically not used in preference elicitation.
Finally, in voting settings one often desires an equilibrium in weakly dominant strategies, which our
paradigm also does not cover.
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Figure 3: Inclusion diagram for the equilibrium notions in Section 3.4 and a few others. Au-
tonomous correlated equilibria [11, 29] are equilibria in which the mediator cannot receive infor-
mation from the players but still only gives recommendations one timestep at a time.
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