
Supplemental to Shape and Structure Preserving

Differential Privacy

1 Proof of Lemma 1

Recall that f : M → R is strong geodesically convex with parameter λ > 0 if for every
x, y ∈M

f(y) ≥ f(x) +
〈
∇f(x), exp−1(x, y)

〉
x

+
λ

2
ρ2(x, y);

the above definition is interpreted in a local sense within a suitable neighbourhood in which
the inverse exponential map is well-defined. We first establish that x 7→ U(x,D) is strong
geodesically convex and derive upper and lower bounds on its Hessian within Br(p0) with
r chosen as per Assumption 1.

Note that when s < π
2
√
κmax

, the function s 7→ hmax(s, κmax) > 0, decreasing, and

bounded above by 1, while s 7→ hmin(s, κmin) is bounded below by 1 and increasing. Thus
0 < hmax(2r, κmax) ≤ hmax(ρ(x, y), κmax) for every x, y ∈ Br(p0) under the assumption on
r. On the other hand, hmin(2r, κmin) ≥ hmin(ρ(x, y), κmin) ≥ 1 for every x, y ∈ Br(m0). For
each xi ∈ Bp0(r), from Lemma 1 of [1] we have that for x, y ∈ Br(m0),

ρ2(x, xi) ≥ ρ2(y, xi) + 〈∇ρ2(y, xi), exp−1(y, x)〉y +
2hmax(ρ(x, xi), κmax)

2
‖ exp−1(y, x)‖2y

≥ ρ2(y, xi) + 〈∇ρ2(y, xi), exp−1(y, x)〉y +
2hmax(2r, κmax)

2
‖ exp−1(y, x)‖2y. (1)

Summing over i and dividing by 2n we get

U(x,D) ≥ U(y,D) + 〈∇U(y,D), exp−1(y, x)〉y +
hmax(2r, κmax)

2
‖ exp−1(y, x)‖2y,

which implies that U is strong geodesically convex with parameter hmax(2r, κmax) inside
Br(p0). Thus, in local coordinates

∇2U(x,D) < hmax(2r, κmax)Id.

From assumption on the lower bound κmin on sectional curvatures ensures, using Lemma
5 of [3] derived for non-positively curved manifolds, we obtain

U(x,D) ≤ U(y,D) + 〈∇U(y,D), exp−1(y, x)〉y +
hmin(2r, κmin)

2
‖ exp−1(y, x)‖2y.

In other words, U has a gradient that is geodesically Lipschitz with parameter hmin(2r, κmin).
As a consequence,

∇2U(x,D) 4 hmin(2r, κmin)Id.
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On flat manifolds (e.g., Rd, flat torus, cylinder) where κmin = κmax = 0 we have hmin(2r, 0) =
hmax(2r, 0) = 1, and U is strong gedesically convex with parameter 1 when D is restricted
to lie within a ball of any finite radius. Summarily, in local coordinates,

hmax(2r, κmax)Id 4 ∇2U(x,D) 4 hmin(2r, κmin)Id, ∀x ∈ Br(m0). (2)

We now consider the norm of the gradient vector field ∇U . Let γ be a unit-speed geodesic
from x̄ to x, and denote by Γxx̄ : Tx̄M → TxM the parallel transport along γ; from our
assumption on the radius r, the geodesic lies entirely within Br(p0). Then,

‖∇U(x,D)‖x =
∣∣‖∇U(x,D)‖x − ‖Γxx̄∇U(x̄, D)‖x

∣∣
≤ ‖∇U(x,D)− Γxx̄∇U(x̄, D)‖x
≤ hmin(2r, κmin)ρ(x̄, x) .

The equality is due to the fact that the parallel transport map is an isometry between
tangent spaces and fixes the origin; the first inequality follows from the reverse triangle
inequality, while the last follows from the upper bound on the Hessian of U in (2).

To derive the lower bound on ‖∇U(x,D)‖x, note that under our assumption on the
radius r, the function U is strong geodesically convex within Br(p0) since the function hmax

is positive. From the lower bound on the Hessian of U in (2), for any y ∈ Br(p0), we hence
obtain ∣∣∣〈∇U(x,D)− Γxy∇U(y,D), exp−1(x, y)

〉
x

∣∣∣ ≥ hmax(2r, κmax)ρ(x, y)2,

where Γxy is the parallel transport along a geodesic from y to x; applying Cauchy-Schwarz
to the inner product results in

‖∇U(x,D)− Γxy∇U(y,D)‖xρ(x, y) ≥ hmax(2r, κmax)ρ(x, y)2.

Dividing both sides by ρ(x, y) and taking y = x̄ leads to the desired lower bound, since,
within the local coordinates at x, Γxx̄∇U(x̄, D) is the zero gradient vector field under the
isometric parallel transport.

2 Simulation details

Simulations pertaining to the sphere and Kendall shape space are done on a desktop com-
puter with an Intel Xeon processor at 3.60GHz with 31.9 GB of RAM running windows
10. Simulations pertaining to symmetric positive-definite matrices were performed on the
Pennsylvania State University’s Institute for Computational and Data Sciences’ Roar super-
computer. All simulations are done in Matlab. This content is solely the responsibility of
the authors and does not necessarily represent the views of the Institute for Computational
and Data Sciences.

2.1 Fréchet Mean

To compute the Fréchet mean, we use the standard gradient descent approach. Given a
sample D = {x1, x2, . . . , xn} we initialize µ̂1 at a data point. The variance functional
which we wish to minimize is U(x;D) = − 1

2n

∑n
i=1 ρ

2(x, xi). So, at iteration k one takes
a step in the direction of tk∇U(µ̂k−1;D) where tk ∈ (0, 1] from µk−1. That is, µ̂k =
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exp(µ̂k−1, tk∇U(µ̂k−1;D)). To check convergence one could either check if the distance
between adjacent iterations is smaller than some value β1 > 0 or if the norm of the gradient
is smaller than some value β2 > 0, that is if ρ(µ̂1, µ̂2) < β1 or if ‖∇U(µ̂k;D)‖µ̂k

< β2. The
latter is convenient from a computational standpoint and how we measure convergence. We
set β2 = 10−5 and tk = 0.5 for all k. Further, to avoid a computational timeout we set
a maximum number of iterations to 500 however for all examples the algorithm converged
within the first couple hundred iterations. Lastly, we assume the data follows Assumption
?? and thus convergence issues and local minima pose no observed issues.

2.2 The Euclidean Laplace

A standard distribution to generate differentially private estimates is the Euclidean Laplace
which is a K-norm mechanism with the `2 norm. We sample from the distribution f(x) ∝
exp{−σ−1|x− x̄|} on Rd as in [2].

1. Sample a direction V uniformly from Sd−1.

2. Sample a radial length r from Γ(d, 1), the Gamma distrbution with α = d and β = 1.

3. Set Y = x̄+ rσV .

Y will then be a draw from f(x), the d−dimensional Euclidean Laplace distribution. Note
that x/|x| is uniform on Sd−1 when x ∼ Nd(0d, Id).

2.3 SPDM simulations

2.3.1 Generating random samples

We have that P(k) is the space of symmetric positive-definite matrices. We note that the
Wishart distribution has support on P(k), and draw from Y ∼W (V, df) where E(Y ) = V ·df ,
df > 0, and V is a symmetric k× k matrix. We require that the D ⊂ Br(p0) but note there
is non canonical choice for p0 or r. We set p0 to be the identity matrix Ik, V = 1

k Ik, and
df = k. Recall that since P(k) is negatively curved under the chosen metric, r is finite but
unconstrained. Operationally, however, there is no reason to believe that ρ(y, Ik) ≤ r for
any chosen r, where the distance is manifold distance; we thus first set an r and discard
draws which are greater than distance r from p0 until we have sufficient draws for a desired
sample size. For the simulations we set k = 2 and r = 1.5.

2.3.2 Sampling from KNG on SPDM

To sample from KNG for mean estimation on SPDM we use Metropolis-Hastings, a Markov
chain Monte Carlo method. Let vech(·) denote the vectorization of a symmetric matrix
and vech−1(·) denote its inverse. Recall that the dimension k = 2. At each iteration i
we generate a proposal x′ by first randomly drawing a matrix v from the tangent space
at the current stage TxiP(2) ∼= Sym2, and moving along P(2) in the direction of v using
the exponential map by proposing f(x′|xi) = exp(xn, tσv) where t ∈ (0, 1]. We sample v as
v = vech−1(ṽ), where ṽ is k(k+1)/2 = 3-dimensional vector of uniform random variables on
[−0.5, 0.5]; this indeed is not the same as a uniform draw on Sym2. We then accept or reject
the proposals of f producing a Markov chain for the density g(x) ∝ exp{−‖U(x;D)‖x/σ}.
Here σ = 2∆/ε = 4r/n since ε = 1 and ∆ is as in Theorem ??.
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1. Initialize x0 = x̄.

2. At the ith iteration, draw a matrix v ∈ Symk, the tangent space of xi, as described
above.

3. Generate a proposal x′ by letting x′ = exp(xi, tσv).

4. Accept x′ and set xi+1 = x′ with probability g(x′)/g(xi). Otherwise, reject x′ and
generate a new candidate by returning to the previous generation step.

5. Return to step 2 until a chain of sufficient length has been created.

For our simulations we tuned t at each sample size, but had a minimal 5000 burn-in steps
and a thinning jump width of approximately 5000 to avoid correlation between adjacent
accepted samples.

2.3.3 Choosing the ambient space radius

We compare privatization of our mechanism over P(k) to privatization in the ambient space
of symmetric matrices Symk. To do this, we need to compute a comparable sensitivity.
That is, given our data D ⊂ Br(Ik) ⊂ P(k) we need to find rE of D ⊂ BrE (Ik) ⊂ Symk, the
radius of the geodesic ball in the space of symmetric matrices. Given the ball is centered at
the identity matrix, it turns out that rE = er − 1 as shown in [2].

2.4 Sphere simulations

2.4.1 Generating random samples

To generate random samples in Br(p0) ⊂ S2
1 we use polar coordinates. First, let (θ, φ) be

the pair of angles where θ ∈ [0, π] is the radial coordinate and φ ∈ [0, 2π) is the polar angle.
We uniformly sample on θ ∈ [0, r] and φ ∈ [0, 2π) and set r = π/8. This results in data in
Br(p0) where p0 is the north pole and higher concentration of data nearer p0.

2.4.2 Sampling from KNG on S2
1

To sample from KNG on S2
1 we use a Metropolis-Hastings algorithm in a manner similar to

that described above in Section 2.3.2 with the only difference being how we make proposals.
At each iteration i we generate a proposal x′ in the following manner. First, we draw a
sample direction by drawing a vector from N3(03, I3), scale this vector to have length σ,
and then project this vector onto the tangent space TxiS2

1 of xi to produce a vector ṽ. We
then make a proposal by setting x′ = exp(xi, tṽ) with t ∈ (0, 1]. The projection onto the
tangent space ensures that ‖ṽ‖ ≤ σ.

Here σ = ∆/ε where ∆ = 2r(2 − h(r, κ))/n and ε = 1. For our simulations we set
t = 0.5, a burn-in period of 20 000 and thinned the chain every 600 to avoid correlated
adjacent samples.
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2.5 Kendall’s 2D shape space simulations

2.5.1 KNG over Kendall’s shape space

To sample from KNG on the space of Kendall shape space we use a Metropolis-Hastings
algorithm similar to that described in Section 2.3.2. Let k be the number of landmarks for
our set of shapes. At each iteration i we generate a proposal x′ as follows:

1. Sample v = {vi} such that the real and imaginary components of each vi are indepen-
dent draws from U(0, 1).

2. Set ṽ = v − 1
k

∑
vi, which is simply v centered at the origin.

3. Compute the horizontal component of ṽ on the tangent space of xi, denote this as ṽh.

4. Propose x′ = exp(xi, tṽh).

For our experiments we have a burn-in period of 7500.
We make two key assumptions that are needed for computing the sensitivity. First, we

set κmax = 4 which is the maximal curvature of Kendall shape space. This perhaps can be
improved upon, but we only require an upper bound on the curvature as per Assumption ??,
so we assume a worst case scenario. We set r = maxi ρ(x̄, xi) the maximum shape distance
from the Fréchet mean shape and all landmark configurations in our dataset.

2.5.2 Shape point-wise Laplace

Suppose we have a dataset D = {x1, x2, . . . , xn} such that xi = {xi,j} ∈ Ck is an set of k
labelled landmarks. We assume the shapes are all centered and scaled as in ??. To compute
a sanitized estimate in Euclidean space we sanitize each coordinate in the following manner.

1. Compute the Fréchet mean in shape space, denote this as x̄ = {x̄j}

2. Rotationally align each shape xi to the mean x̄ using Procrustes analysis, denote this
as x̃i. That is, xi → Oxi where O = argminO∈SO(2) ρ(x̄, Oxi),

3. For each landmark j, find the maximal distance from x̄j in the real and imaginary
direction, call these dx,j and dy,j .

4. Sanitize each landmark of the mean in the real and imaginary direction using the
standard Laplace.

Similar to Section 2.5.1 above, rather than assume an r for the ball in which the data lives,
we determine this by setting this as a maximum distance to each landmark. So, at each
landmark and in each direction we have σ = ∆/(ε/2k) = 4rk/n where we set r = dx,j for
the real direction and r = dy,j in the imaginary direction. We divide the privacy budget
by 2k since we sanitize each landmark in each coordinate. By dividing the privacy budget
among the landmarks in this way, the entire shape will have total privacy budget ε. We
compute the orthogonal alignment using standard Procrustes analysis.
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