
Supplementary Information

A Collecting Internet Data

A.1 Initial Unclean Dataset Curation

Our goal was to curate a video dataset of Minecraft gameplay from the survival game mode. Addition-
ally, we prefer the data come from game modes as close as possible to our evaluation environment,
meaning preferably coming from Minecraft version 1.16, being on a computer (which uses a mouse
and keyboard vs. video game controllers with keypads and other buttons), being single- (vs. multi-)
player, and having the default look of the game (vs. modifications that alter that style, such as to
make it look realistic). To try to accomplish these goals, we collect a dataset by performing keyword
searches of publicly available videos on the internet. A list of search queries we used are given in
Table 1.

minecraft survival longplay
minecraft gameplay no webcam
minecraft gameplay survival mode
minecraft survival tutorial
minecraft survival guide
minecraft survival let’s play
minecraft survival for beginners
minecraft beginners guide
ultimate minecraft starter guide
minecraft survival guide 1.16
minecraft how to start a new survival world
minecraft survival fresh start
minecraft survival let’s play episode 1
let’s play minecraft episode 1
minecraft survival 101
minecraft survival learning to play
how to play minecraft survival
how to play minecraft
minecraft survival basic
minecraft survival for noobs
minecraft survival for dummies
how to play minecraft for beginners
minecraft survival tutorial series
minecraft survival new world
minecraft survival a new beginning
minecraft survival episodio 1
minecraft survival 1
minecraft survival 1. bölüm
i made a new minecraft survival world

Table 1: Search terms used for generating the initial web dataset.

For videos that have metadata available, we perform an additional step of metadata-based filtering
to eliminate videos that do not fit our target distribution. In this step, we look for a list of blacklist
keywords in the video title and description and reject videos that contain these terms. The blacklist
keywords we use are: {ps3, ps4, ps5, xbox 360, playstation, timelapse, multiplayer, minecraft pe,
pocket edition, skyblock, realistic minecraft, how to install, how to download, realmcraft, animation}.
This process yielded us ⇠270k hours of unlabeled data, which we filter down to only a “clean” subset
as described in the next section.

A.2 Training a Model to Filter out Unclean Video Segments

We restrict the scope of this work to the Minecraft Survival game mode and therefore limit our
training dataset to clips that are obtained from this mode that are relatively free from visual artifacts.

17

To do so, we asked contractors to label a set of random video frames (images) from Minecraft videos
(N=8800). These images were from a random subset of the videos we collected toward the beginning
of the project (Section A.1).

A.2.1 Label Collection

We asked 5 workers on Amazon Mechanical Turk (mTurk) that we selected with a sample qualification
task to label random screen capture images to be used in training the classifier. A sample worker
interface that the workers saw on mTurk is given in Figure 10.

We asked workers to label videos as being in one of the following three categories (see Figure 11 for
visual examples of each class):

1. Minecraft Survival Mode - No Artifacts: Video frames (images) that correspond
to the Minecraft Survival game mode that do not contain any non-game visual artifacts (e.g.
subscribe buttons, channel logos, advertisements, picture-in-picture of the narrator, etc.).

2. Minecraft Survival Mode - with Artifacts: Video frames (images) of the
Minecraft Survival game mode that include such visual artifacts.

3. None of the Above: Video frames (images) that are not from the Minecraft survival
game mode, including those from other Minecraft game modes such as creative mode or
even other games/topics entirely.

The full set of instructions workers received are as follows (note that we also included multiple image
examples from each category in the worker instructions, similar to the sample subset provided in
Figure 11):

Please help us identify screenshots that belong only to the survival mode in Minecraft. Everything
else (Minecraft creative mode, other games, music videos, etc.) should be marked as None of the
above. Survival mode is identified by the info at the bottom of the screen:

• a health bar (row of hearts)
• a hunger bar (row of chicken drumsticks)
• a bar showing items held

Survival Mode
Valid survival mode videos have health/hunger bars and an item hotbar at the bottom of the screen.
Creative Mode
Creative mode only has an item hotbar and should be classified as None of the Above.

Label Descriptions
• Minecraft Survival Mode - No Artifacts: These images will be clean screenshots

from the Minecraft survival mode gameplay without any noticeable artifacts.
• Minecraft Survival Mode - with Artifacts: These images will be valid survival

mode screenshots, but with some added artifacts. Typical artifacts may include image
overlays (a logo/brand), text annotations, a picture-in-picture of the player, etc.

• None of the Above: Use this category when the image is not a valid Minecraft survival
screenshot. It may be a non-Minecraft frame or from a different game mode. In non-survival
game modes such as the creative mode, the health/hunger bars will be missing from the
image, the item hotbar may or may not be still present.

In total, we spent $319.96 on human labeling experiments on mTurk, of which $159.98 was directly
paid to workers. The remaining amount was spent towards Amazon platform fees. The workers
received $0.01 per labeled image, at an hourly compensation of $7.20 (based on an estimated labeling
time of 5 seconds/image – in our internal sample run of the same task, we found the average labeling
time to be < 3 seconds).

Since we perform rigorous keyword and metadata based filtering of videos (as described in A.1) from
which we served sample images to be labeled, serving offensive content to workers was extremely

18

low risk and no such images were detected during our manual checks. We only collected labels
during our experiment, and the workers were fully anonymized via the mTurk platform, therefore no
personally identifiable information (PII) was collected.

Figure 10: Amazon Mechanical Turk worker interface showing an example labeling task

Figure 11: (Left) Sample image for Class 1: Minecraft Survival Mode - No Artifacts.
(Middle) Sample image for Class 2: Minecraft Survival Mode - with Artifacts – Image
contains annotations and picture-in-picture of the narrator. (Right) Sample image for Class 3: None
of the Above – Image is missing the hotbar as well as health and armor bars, indicating that it was
not captured during survival mode gameplay

A.2.2 SVM Training

With the image labels collected as described in the previous section, we trained a classifier to extract
video segments that consist of frames from the Minecraft Survival Mode - No Artifacts
category. Given a set of labeled images, we obtain embeddings for each image using the RN50x64
ResNet CLIP Model.6 This is a ResNet-based CLIP model that is scaled up to have approximately
64x the compute of a ResNet-50. We then train a Support Vector Machine (SVM) using the RBF
kernel to obtain a frame classifier. We use the Scikit-learn72 SVM implementation with the parameter
configuration given in Table 2.

Finally, we apply the classifier to frames of raw video sequences at a rate of 3 frames/second. We filter
for videos that consist of at least 80% "clean" frames at this stage (Classes Minecraft Survival
Mode - with Artifacts and None of the Above are both considered not clean). From this set,
we apply a median filter (with a kernel size of 7) to the labels and segment videos by splitting the
"clean" segments that are at least 5s in duration. The result of this is our final web_clean dataset.

A.2.3 Effect of Data Cleaning

To validate the data cleaning SVM, we first construct a dataset which is comprised of video clips of
the first 5 minutes of any video with the same early game keywords used in the rest of the paper but
without using the SVM. This dataset has 14785 hours of video. Because our early_game dataset is
comprised of clean clips that start within the first 5 minutes of the internet video, we create a new
dataset in which we only take clean clips that go up to the 5 minute mark and cut them there such that

19

CLIP Model Specification RN50x64 (see text)
CLIP Input Image Resolution 448x448x3
CLIP Embedding Feature Length 1024

SVM Parameters
Kernel rbf
C 20
Gamma scale

Sample Size
Class 1 2200
Class 2 2200
Class 3 4400

Table 2: Feature Extraction Details and SVM Configuration. The parameters are for the SVM
implementation in Scikit-learn72.

these two datasets are a more fair comparison. This new early game dataset has 2094 hours. We train
a 71M parameter VPT model from scratch (no fine-tuning) on each dataset. For a fair comparison,
we train the cleaned dataset for 20 epochs and the uncleaned dataset for 2.8 epochs such that each
model has the same compute budget. We show the crafting and collection rates for each model at the
end of training in Figure 12 and find that the data data cleaning SVM is quite important in eliciting
the more complex crafting behaviors. We see ⇠10 times the crafting rate of crafting tables for the
model trained on clean data, and the model trained on cleaned data is able to craft some wooden tools
whereas the model trained on all data is not.

Figure 12: Effect of Data Cleaning. We compare two models, one trained on all early game data and
one trained on clean early game data filtered with our SVM.

A.3 early_game Dataset

The early_game dataset is a ⇠3000 hour subset of web_clean targeted at “early game” Minecraft
behavior, i.e. instances where players start in a fresh world with no items. We obtain the metadata
text that accompanies the videos in web_clean and determine whether any of the following regular
expressions match:

• (ep|episode|eps|day|session|sesh|chapter|chap
.|series|part|parte|pt|round|day|tâ.p|bölüm|episodio| |)(
)*(\.1|#1|1|\.01|#01|01|one[̂ 0-9]|$)

• start

• beginning

• (new|fresh|clean).*(world|game|play)

• from scratch

From this set of videos, we take only video snippets that began within the first 5 minutes of each
video.

20

B Contractor Data

B.1 Recording Contractor Play

Our contractors use a custom Minecraft recorder that we built that records their actions and game video
feeds as they play. The recorder is implemented using the MCP-Reborn (github.com/Hexeption/MCP-
Reborn) modding package. To ensure that the recorder environment is as close as possible to
the Minecraft environment used for RL rollouts and evaluations (Appendix C), we use the same
underlying game engine for both. The recorder is a Java app that runs in a window mode, with
constant resolution of 1280x760. Brightness is set to 0 (the "gloomy" setting in Minecraft), which
is the default setting. Other graphics settings (field of view, GUI scale) are fixed to the values used
in the Minecraft environment (C.1); we explicitly prevented users from changing graphics settings.
Unlike the environment, the recorder allows all keyboard key presses and continuous (as opposed to
binned) mouse actions. On every game step (or “tick”) the frame buffer used to display the game
window is downsized to 640x360 and written into a video file. In-game actions are recorded in a
separate JSONL file (a text file where each line is a JSON-formatted string). All recordings are
chunked into 5 minute clips: after each 5 minute segment of contractor game play the recorder
automatically uploads the video file, the JSONL file with actions, as well as a Minecraft state file.
To ensure that contractors cannot corrupt each other’s data, we provided every contractor with an
individual cloud bucket, as well as with credentials giving write access only to that bucket. Credentials
also included adjective-adjective-noun names (e.g. grumpy-amethyst-chipmunk), generated with the
namegenerator python package to ensure contractor anonymity when we publish the data.

B.2 Contractor Contract

We recruited contractors by posting the following offer on the UpWork freelancing platform.

“We are collecting data for training AI models in Minecraft. You’ll need to install
java, download the modified version of Minecraft (that collects and uploads your
play data), and play Minecraft survival mode! Paid per hour of gameplay. Prior
experience in Minecraft not necessary. We do not collect any data that is unrelated
to Minecraft from your computer.”

We had the applications open for a day, and then randomly selected 10 applicants for the first round of
contractors. Later in the project, as we needed more data and as some contractors asked to terminate
their contracts, we added more applicants from the original pool as well as referrals from the currently
working contractors. The contractors were paid $20 per hour (minus Upwork platform fees and
applicable taxes). All of the results presented in this paper are based on about 4,500 hours of data
(including data recorded to gather statistics of human play that was not used for training), which cost
us around $90,000. Over the course of the project, we collected some data we did not use due to
bugs in the recorder and for some ideas we ultimately did not pursue. In total, we spent about $160k
for contractor compensation over the course of the project. However, as we discuss in Sec. 4.6, we
could likely obtain most of our results with an IDM trained using only $2000 worth of data, i.e. the
foundation VPT model, BC fine-tuning to the earlygame_keyword dataset, and the RL fine-tuning
results. Collecting the contractor_house dataset cost about $8000. Because we used the IDM
trained on about 2000 hours of contractor data, the actual cost of contractor data for those results was
around $40,000.

In early stages of the project, we were planning to use contractor data solely for the purpose of training
the IDM. As such, no specific tasks were given, other than “play the survival mode of Minecraft like
you normally would.” Later in the project, we requested that contractors perform specific tasks in
Minecraft, such as:

• Collect as many units of wood as possible, using only wooden or stone tools (treechop)
• Start a new world every 30 minutes of game play
• Build a basic house in 10 minutes using only dirt, wood, sand, and either wooden or stone

tools (contractor_house, more details below in Appendix B.4).
• Starting from a new world and an empty inventory, find resources and craft a diamond

pickaxe in 20 minutes (obtain_diamond_pickaxe). This dataset was used to obtain

21

https://github.com/Hexeption/MCP-Reborn
https://github.com/Hexeption/MCP-Reborn

Figure 13: (Left) Sample of a Minecraft frame in the original resolution (640x360) with an in-game
GUI open. The mouse cursor can be seen in the center of the image. This particular GUI shows the
player’s inventory and can be used to craft very basic items. (Middle) We downsample images to
128x128 for computational reasons. Shown is a downsampled observation with an in-game GUI for
crafting. This is the resolution used by our models. (Right) A 128x128 observation as seen by our
models without in-game GUI. The health, hunger, hotbar overlays, and agent hand can be seen in the
lower part of the image.

statistics for how long it takes humans on average to complete this task (and the subtasks
required to complete it) when obtaining a diamond pickaxe is their goal.

Since we only recorded in-game events and videos, the data does not include personally identifiable
information. That being said, the contractors could theoretically use Minecraft’s open-world property
to generate personally identifiable information and/or offensive content (e.g. by using Minecraft
blocks to write their name or offensive messages, then finding a spot from which the message would
be visible). In practice, we have not seen any attempts to do so in the contractor videos that we
watched. Of course, we train our BC models on videos from the internet of people playing Minecraft,
and if such behavior is in those videos our model could also potentially learn it, although we expect
such behavior is rare enough that our model would not be likely to reproduce it.

B.3 Data for the Inverse Dynamics Model.

Since the IDM’s task is to infer actions given the video, any labelled data is appropriate for IDM
training. In practice, we included general gameplay as well as the treechop task data described
in the previous section, which amounted to a total of 1962 hours. Due to collecting datasets like
contractor_house only at late stages of the project, they were not included in IDM training.

B.4 contractor_house.

The contractor_house contains about 420 hours of data. We asked contractors to build a basic
house in 10 minutes, using only basic dirt, wood, and sand, blocks. Each trajectory starts in a newly
generated world and a timer forcibly ends a trajectory after a 20 minute time limit. For this task, many
contractors chose to begin their trajectories by crafting basic tools and building blocks, specifically
it was common for the first 2 minutes to be spent crafting a wooden pickaxe and then mining stone
for an assortment of stone tools before gathering more building blocks and beginning to create their
structure.

C Minecraft environment details

Our Minecraft training environment is a hybrid between MineRL28 and the MCP-Reborn
(github.com/Hexeption/MCP-Reborn) Minecraft modding package. Unlike the regular Minecraft
game, in which the server (or the "world") always runs at 20Hz and the client runs as fast as rendering
can complete (typically at 60-100Hz), in our version the client and server run in the same thread
at the same frequency. This allows us to run the environment slower or faster than real time, while
avoiding artifacts like missing chunks of the world. The action and observation spaces are similar
to those of MineRL environments and are described in more detail in the following subsections.
The environment also returns diagnostic information, such as in-game stats, contents of the agent’s
inventory, whether any in-game GUI is open, etc., which we use for tracking and recording but not as
inputs to the models.

22

https://github.com/Hexeption/MCP-Reborn

All evaluations use the default Minecraft world generation options as well as randomly generated
worlds. The episode length is 10 minutes for RL experiments and 60 minutes for BC model
evaluations. The agent can "die" in a number of ways, such as staying under water for too long and
drowning, being killed by hostile mobs, or falling from a tall structure. We do not terminate the
episode on agent "death". Instead, just as for humans in the regular Minecraft game, the agent drops
all its items when it dies and respawns at a random spot close to the initial spawning spot in the same
Minecraft world. The policy state is not masked on death, so the model can remember the fact that it
has died and act accordingly.

C.1 Observation space

The environment observations are simply the raw pixels from the Minecraft game that a human
would see. Unlike MineRL, we do not remove overlays like the hotbar, health indicators, and the
animation of a moving hand shown in response to the attack or “use” actions. The field of view is
70 degrees, which corresponds to the Minecraft default. GUI scale (a parameter controlling the size
of the in-game GUI) is set to 2, and brightness is set to 2 (which is not a Minecraft default, but is
very frequently used in online videos). The rendering resolution is 640x360, which is downsampled
to 128x128 before being input to the models. We empirically found 128x128 to be the smallest
resolution for which in-game GUI elements are still discernible, and then chose that to minimize
compute costs. Whenever an in-game GUI is open, we additionally render an image of a mouse
cursor at the appropriate mouse position to match what a human player’s operating system does (Fig.
13).

C.2 Action space

Our action space includes almost all actions directly available to human players, such as keypresses,
mouse movements, and clicks. The specific binary actions we include are shown in Table 3.

One difference between the human action space and our agent’s is that we disallow typing arbitrary
letters, which is only useful for entering text into the search bar of the crafting recipe book. Humans
can either do that or browse the recipe book with the mouse, the latter of which our agent can still
do. However, because we do allow the agent to press letters that are also shortcuts for actions (e.g.
outside of the GUI, the "W" key triggers the forward action) agents are able to press a few keys
within the GUI (W, A, S, D, E, Q) that produce letters if the recipe book search bar is selected. We
have not seen agents attempt to search the recipe book with these letters. Instead, our agents navigate
the recipe book with the mouse or craft by dragging items around the crafting window.

In addition to the binary (on/off) keypress actions, our action space also includes mouse movements.
As with human gameplay, when in-game GUIs are not open, mouse X and Y actions change the
agent’s yaw and pitch, respectively. When a GUI is open, camera actions move the mouse cursor.
Mouse movements are relative (i.e. they move the mouse or camera relative to the current position,
and thus their effect depends on the current position).

Inventory interaction in Minecraft requires fine-grained mouse movements to achieve tasks such as
crafting and smelting, while mining and navigating the world can be achieved with coarser mouse
action. To be able to achieve both with the same action space, we implemented mouse movements
as a set of discrete actions with foveated binning along each axis (Fig. 14), which in preliminary
experiments we found to improve crafting performance.

We use µ-law quantization to achieve foveated binning

F (x) = sgn(x)
log

⇣
1 + µ

��� x
Vmax

���
⌘

log(1 + µ)
Vmax (2)

where x is the raw camera pixel value along each axis, F (x) is the transformed value in the foveated
action space, sgn is the sign function, Vmax is the maximum camera value beyond which values are
clipped, and µ is the parameter that determines the slope of foveation. In our experiments, we used
Vmax = 10 and µ = 10 followed by a quantization step that assumes 11 bins for each axis.

23

Action Human action Description
forward W key Move forward.
back S key Move backward.
left A key Strafe left.
right D key Strafe right.
jump space key Jump.

inventory E key Open or close inventory and the 2x2 crafting grid.
sneak shift key Move carefully in current direction of motion. In the

GUI it acts as a modifier key: when used with attack
it moves item from/to the inventory to/from the hotbar,
and when used with craft it crafts the maximum num-
ber of items possible instead of just 1.

sprint ctrl key Move fast in the current direction of motion.
attack left mouse button Attack; In GUI, pick up the stack of items or place the

stack of items in a GUI cell; when used as a double
click (attack - no attack - attack sequence), collect all
items of the same kind present in inventory as a single
stack.

use right mouse button Place the item currently held or use the block the player
is looking at. In GUI, pick up the stack of items or place
a single item from a stack held by mouse.

drop Q key Drop a single item from the stack of items the player
is currently holding. If the player presses ctrl-Q then
it drops the entire stack. In the GUI, the same thing
happens except to the item the mouse is hovering over.

hotbar.[1-9] keys 1 – 9 Switch active item to the one in a given hotbar cell.

Table 3: Binary actions included in the action space. https://minecraft.fandom.com/wiki/
Controls has more detailed descriptions of each action.

−85 −65 −45 −25 5 25 45 65 85

Mouse movement ipixels)

−65 −5 5 5 65

Camera angle ideg)

5

2

4

6

8

65

C
am

er
a
bi
n

Figure 14: Relative camera angle or mouse movement in pixels vs. action bin. The same binning is
used for both X and Y coordinates. The binning is foveated, meaning that binning is more fine-grained
for smaller movements and more coarse-grained for larger movements. There are 11 bins for each
axis (X and Y). The center of each bin (indicated with green circles) is used when un-discretizing
movements (that is, when converting from an action expressed as a bin to a camera angle or mouse
movement).

24

https://minecraft.fandom.com/wiki/Controls
https://minecraft.fandom.com/wiki/Controls

D Inverse Dynamics Model Training Details

D.1 IDM Architecture

The IDM model has approximately 0.5 billion trainable weights. The input to the IDM is 128
consecutive image frames (128 frames of video), each of which has dimensions 128⇥ 128⇥ 3. The
IDM is tasked with predicting the action at each frame. All image pixel values are first divided
by 255.0 such that they lie within the range [0, 1]. The first layer of the IDM is a 3-D convolution
with 128 learnable filters with a temporal kernel width of 5 and spatial kernel widths of 1. This
convolution is non-causal, meaning that embeddings at time index t are functions of pixel values at
times t� 2, t� 1, t, t+ 1, and t+ 2. We found this layer to be extremely important in IDM training
as it incorporates neighboring temporal information immediately, and we show results comparing
IDM performance with and without this layer in Figure 15. This comparison was made on the default
(1962-hour) IDM dataset.

Figure 15: Effect of 3-D Convolution in the IDM Architecture.

This initial temporal convolutional layer is followed by a ResNet63 image processing network. In this
part of the model, no extra temporal information is shared between neighboring frames; however,
since each frame was first processed with the temporal convolution, some temporal information
is present at this stage. The ResNet image processing network is comprised of three subsequent
stacks with widths W = {64, 128, 128}. Each stack is comprised of, in order, (1) an initial 3x3
convolutional layer with 1-pixel zero padding at the embedding boundary (such that the outgoing
embedding dimensions are the same as the incoming embedding dimension) with W output channels,
(2) a 3x3 max pooling with stride 2 and padding 1 such that the embedding width and height are
halved, and (3) two classic ResNet blocks as defined in He et al. 63 with each layer also having W
output channels.

The output of the ResNet stack is flattened into a 1-dimensional vector of size 217 = 131072 (one
vector for each frame in the video) such that at this stage there are 128 vectors of size 131072. Each
vector is independently processed with two frame-wise dense layers with 256 output activations and
then 4096 output activations, respectively. The result is then fed through 4 subsequent non-causal
(umasked) residual transformer73 blocks. Each block first has an unmasked attention layer, i.e. frames
may attend to future frames, with 32 attention heads of dimension 128 each and a surrounding residual
connection that skips this layer. The embedding is then passed through a frame-wise dense layer
with output dimension 16384 and another with output dimension returning to 4096; a single residual
connection skips past this pair of frame-wise dense layers (not skipping past each layer separately,
but skipping the pair). All dense layers have their weights tied through time, so each frame in the
video is processed with the same weights.

Finally, independent dense layer heads for each action are pulled from the final embedding – a 2
class on/off categorical parameterized with a softmax for each available key as well as a 11-way
categorical for both the discretized horizontal and vertical mouse movements (See Appendix C.2 for
details on the action space).

Each dense layer or convolutional layer in the network is preceded by a layernorm74 and followed by
a ReLU non-linearity. Weights are initialized with Fan-In initialization75 and biases are initialized to
zero.

25

Figure 16: Effect of Attention in the IDM Architecture. Here we compare our baseline architecture
where the attention layers are unmasked, i.e. they can attend to all frames in the sequence of 128
frames, to cases where the attention layers are masked to a certain number of neighbors. For example,
Banded 0 Neighbors indicates that the attention layer cannot attend to any other frames and is
therefore equivalent to MLP layers with residual connections. Banded 2 Neighbors indicates that
each frame can attend to the previous and next 2 frames in the video sequence. The architectures all
performed comparably except for Banded 0 Neighbors, which performs quite a bit worse.

D.2 IDM Training

The total loss for the network is the sum of each independent action prediction loss (one for each
key and one for both mouse directions). Each independent loss is the negative log-likelihood of the
correct action. We use the ADAM76 optimizer with a linear learning rate decay. We use an initial
learning rate of 0.003, a batch size of 128 (where each item in the batch is a video sequence of 128
frames), and a weight decay of 0.01. Hyperparameters were tuned in preliminary experiments. The
IDM is trained on our contractor collected dataset for 20 epochs. This took 4 days on 32 A100 GPUs.

We add data augmentation to each video segment; augmentations are randomly sampled once per
segment such they are temporally consistent. Using the Pytorch77 transforms library, we adjust the
hue by a random factor between -0.2 and 0.2, saturation between 0.8 and 1.2, brightness between
0.8 and 1.2, and contrast between 0.8 and 1.2. We also randomly rotate the image between -2 and 2
degrees, scale it by a random factor between 0.98 and 1.02, shear it between -2 and 2 degrees, and
translate it between -2 and 2 pixels in both the x and y dimensions.

Due the large computational cost of running all of the experiments in this paper, training results
are from one run of training (for IDM, BC, and RL training): this non-ideal situation is mitigated
because deep learning training tends to be low variance78,79 and because we often have data points
from sweeps (e.g. on dataset size) that suggest overall trends.

D.3 Generating Pseudo Labels with the IDM

Section 4.1 shows that inverse dynamics modeling is a much easier task than behavioral cloning
because IDMs can be non-causal. The IDM is trained to simultaneously predict all 128 actions for
each video sequence, so the IDM will effectively be causal for frames at the end of the video clip
because future frames are not included in the sequence. For this reason, we apply the IDM over a
video using a sliding window with stride 64 frames and only use the pseudo-label prediction for
frames 32 to 96 (the center 64 frames). By doing this, the IDM prediction at the boundary of the
video clip is never used except for the first and last frames of a full video.

E Foundation Model Behavioral Cloning

E.1 Foundation Model Architecture

The behavioral cloning model architecture is the same as the IDM architecture described in Appendix
D.1 except that we modify the architecture so that it is causal (i.e. cannot see the future when making
predictions). This means the BC architecture does not have the initial non-causal convolution the
IDM has (this layer is omitted completely). Furthermore, the residual transformer layers are now
causally masked (as is standard in language modeling) and we do Transformer-XL-style80 training

26

Figure 17: (Left) Effect of Null Action Filtering during training. We compare environment metrics
and number of sampled null action during rollouts (rightmost group of columns) for the following
treatments: no null action filtering (blue), filtering all null actions (green), filtering only groups of
3 or more null actions (red), and filtering only groups of 21 or more null actions (purple). (Right)
Hierarchical versus Factored Action Spaces.

where frames can attend to keys and values from past batches within the same video. We also use a
Transformer-XL-style relative attention position embedding.

E.2 Null Action Filtering

The most common action humans take is the null action (no keypresses or mouse movements), which
accounts for 35% of all actions they take. Among other reasons, a player may take the null action to
wait for something in the game to finish, to pause between actions, or to take a break to grab a glass
of water. Early on in the project we found that the BC model would take a much larger fraction than
35% of null actions, often upwards of 95%. In order to prevent this behavior we removed frames with
null actions from the dataset. We compare a few different treatments: we filter nulls if there have
been 1, 3, or 21 frames of consecutive null actions, and include a treatment that does not perform
any null filtering. Null action filtering generally helps, increasing all crafting rates (Figure 17 left).
Filtering only groups of 3 performed slightly better than filtering all null action or groups of 21. Initial
experiments indicated that filtering all null actions was better; however, after further model tuning
and after we had already trained our largest models, we found that filtering only groups of 3 or more
null actions performed best. Due to compute constraints we were not able to redo all experiments
with this setting, but doing so would be a reasonable choice for any future work.

E.3 Joint Hierarchical Action Space

We originally worked with a factored action space, where each keypress could be independently on
or off, and this choice was independent of whether the mouse was being moved. This could cause
issues for modeling the human behavior distribution exactly. Say for a given state, humans either with
50% probability (a) move forward and attack or with 50% probability (b) move left and drop their
item. The best a factored distribution can do is to assign 50% probability to each of the 4 constituent
actions because it chooses to press each button simultaneously and independently. See Appendix C.2
for details on the entire action space.

For this reason, we implemented a joint distribution over actions; however, the full joint distribution
over 20 binary buttons and two mouse movement dimensions discretized into 11 bins each would
result in in 220 ⇥ 112 ⇡ 1.2⇥ 108 possible combinations. This is far too large for many reasons, e.g.
the final layer from the transformer stack with a dimension of 4096 would need to be mapped to each
combination resulting in 4096 ⇥ 1.2 ⇥ 108 ⇡ 5.2 ⇥ 1011 parameters for this final layer alone. In
order to reduce this we noted that many buttons in Minecraft have no effect when simultaneously
pressed; for example, if a player tries to move forward and backward at the same time, they remain in
place. Below we list the the sets of mutually exclusive actions. Furthermore, the inventory button is
exclusive with all other buttons and mouse movement.

27

Mutually Exclusive Actions
forward, back
left, right

sprint, sneak
hotbar.[1-9]

Even reducing the joint action space to reflect these mutually exclusive combinations still results in a
huge action space when combined with the discretized mouse movements, i.e. 33⇥10⇥24⇥112+1 ⇡
5.2⇥ 105. This calculation results from 33 for the 3 sets of 2 mutually exclusive keys above where
taking neither in the set is an option, ⇥10 for the 9 hotbar keys or no hotbar keypress, ⇥24 for the
remaining binary 4 keys: use, drop, attack, and jump, ⇥112 for mouse movements, and finally
+1 for the inventory button which is mutually exclusive with all other actions. ⇠ 5.2⇥ 105 is still
quite large so we chose to implement a hierarchical binary action for camera being moved or not. If
this action is on, then there is a secondary discrete action head with 121 classes (the joint distribution
of mouse movements because each discretized mouse direction has 11 bins) that determines where
to move the mouse. If the hierarchical action is off, then there is no mouse movement, loss for
the secondary mouse movement action is masked during training, and the secondary action head
need not be sampled during evaluations. While this no longer models the full joint distribution, it is
quite a bit better than the factored action space since dependencies between keypresses as well as
whether or not to move the mouse (although not which mouse movement) are modeled jointly. The
resulting action space has dimension 33 ⇥ 10⇥ 24 ⇥ 2 + 1 = 8461 (the 112 dimensional multiplier
for camera movement has been replaced by a multiplier of 2 here, corresponding to a binary action
for whether or not to move the mouse) with an additional 121-dimension head for the joint camera
movements. In the future it would be interesting to implement sequential conditional action spaces to
more completely model the joint distribution.

In Figure 17 (right) we compare environment rollout performance between BC models with the
hierarchical joint action space and with the factored action space. Environment statistics are fairly
comparable; however, we see that the factored action space model samples far more null actions.
This is an important example of the factored action space failing to correctly model the distribution in
the dataset because, due to null action filtering, there are 0 null actions in the dataset these models
train on. Despite this, the factored model samples many null actions because the prediction for each
key is not conditioned on other keypresses.

E.4 Foundation Model Training

The foundation model training is similar to the IDM training, with the exception of labels being
IDM-generated pseudo labels. The hyperparameters used for foundation model training are listed in
Table 4.

Hyperparameter Value
Learning rate 0.002147
Weight decay 0.0625

Epochs 30
Batch size 880

Table 4: Hyperparameters for foundation model training

F Behavioral Cloning Fine-Tuning

Behavior cloning fine-tuning is similar to the foundation model training, except we either use a focused
subset of all the videos (early_game dataset, described in A.3) with pseudo labels, or contractor data
(contractor_house dataset, described in B.4) with ground-truth labels. The hyperparameters used
for behavior cloning fine-tuning are listed in Table 5. We used 16 A100 GPUs for about 6 hours when
fine-tuning on contractor_house dataset, and 16 A100 GPUs for about 2 days when fine-tuning
on early_game dataset.

28

Hyperparameter Value
Learning rate 0.000181
Weight decay 0.039428

Epochs 2
Batch size 16

Table 5: Hyperparameters for behavior cloning fine-tuning

G Reinforcement Learning Fine-Tuning

G.1 Reinforcement Learning Fine-Tuning Training Details

RL experiments were performed with the phasic policy gradient (PPG) algorithm,65 an RL algorithm
based on the proximal policy optimization (PPO) algorithm81 that increases sample efficiency by
performing additional passes over the collected data to optimize the value function as well as an
auxiliary value function. These algorithms have been described extensively in previous work,65,81

so here we describe them only briefly. A major inefficiency when training on-policy algorithms is
that, to remain on-policy, one can only take a single gradient step before new rollout data needs
to be gathered to continue optimization. To alleviate the potentially destructive effects of taking
multiple optimization steps in a single iteration, PPO prevents the policy from changing too much
in a single step by clipping the loss when the difference between the current policy and the policy
before the update becomes too large.81 We also use generalized advantage estimation (GAE), which
can speed-up credit assignment by looking more than 1 step into the future when determining the
advantage of an action, with the look-ahead being determined by hyperparameter �. 82

PPG improves the sample efficiency of PPO when the policy and value function share the same
network by following different optimization processes for the policy, the value function, and their
shared representation. PPG splits optimization in two phases: a wake phase and a sleep phase. In the
wake phase, the policy and value function are optimized as in normal PPO training, with the only
exception being that every sample is used at most once, which prevents the policy from overfitting on
these samples. In the sleep phase PPG optimizes the value function and an auxiliary value function
(which is optimized with the exact same loss as the regular value function, but its output is never used
during training), while keeping a Kullback-Leibler (KL) divergence loss to the policy before the start
of the sleep phase to ensure that the policy does not change. Because the policy is not optimized
in this step, PPG does allow samples to be reused multiple times in this phase. The assumption
behind optimizing the value function during the sleep phase is that value function optimization is
less sensitive to being trained multiple times on the same sample. Optimizing the auxiliary value
function does not directly affect either the value function or the policy, but it can improve the shared
representation of both functions (the assumption being that predicting the value-function requires
encoding all features that are important for distinguishing states). The coefficients for the three
losses (value function loss, auxiliary value function loss, and KL loss) are listed in Table 6. In our
experiments a single iteration consists of two sleep cycles and one wake cycle.

Because the value and auxiliary value functions are not optimized during BC pre-training, they
are initialized at the start of RL fine-tuning. Each value function is implemented as a single, fully
connected layer on top of the last residual transformer block of the pretrained model (Appendix D.1).
The weights of the auxiliary value function are randomly initialized while the weights of the regular
value function are initialized with zero weights, which appeared to prevent destructive updates early
in training that could happen with a randomly initialized value function. To prevent the value-function
loss from having gradients that depend greatly on the magnitude of the reward, we normalize the
value-function target by subtracting the mean and dividing by the standard deviation, which are
estimated through an exponentially weighted moving average.

To prevent catastrophically forgetting the skills of the pretrained network when RL fine-tuning, we
apply an auxiliary KL divergence loss between the RL model and the frozen pretrained policy.11 This
loss is defined as:

Lklpt = ⇢KL(⇡pt,⇡✓) (3)

29

Hyperparameter Value
Learning rate: 2⇥ 10�5

Weight decay: 0.04
Batch size: 40
Batches per iteration: 48
Context length: 128
Discount factor (�): 0.999
GAE �: 0.95
PPO clip: 0.2
Max Grad norm: 5
Max Staleness: 2
PPG sleep cycles: 2
PPG sleep value-function coefficient: 0.5
PPG sleep auxiliary value-function coefficient: 0.5
PPG sleep KL coefficient: 1.0
PPG sleep max Sample Reuse: 6
KL divergence coefficient ⇢: 0.2
Coefficient ⇢ decay: 0.9995

Table 6: Hyperparameters for RL experiments. These are the hyperparameters for all treatments with
two exceptions. First, when fine-tuning from the early-game model without a KL divergence loss,
in addition to the KL divergence loss being set to 0, the learning rate was set to 3⇥ 10�6 (the best
setting out of a sweep over 5 different learning rates), as we found that performance was substantially
lower with the standard learning rate of 2 ⇥ 10�5 and the agent did not even learn to collect logs.
We suspect that the reason that the learning rate needed to be lowered when fine-tuning without a
KL loss is that the KL loss prevents making optimization steps that change the policy too much in a
single step, especially in early iterations when the value function has not been optimized yet, and
the KL loss thus makes it possible to optimize with a higher learning rate. Second, when running
RL from a randomly initialized policy there is no KL divergence loss or KL divergence decay, but
instead we use an entropy bonus of 0.01, which reportedly worked well in previous work.31

Where ⇡✓ is the the policy being trained, ⇡pt is the frozen pretrained policy, KL(⇡pt,⇡✓) is the
Kullback-Leibler divergence between the policy being trained and the pretrained policy, and ⇢ is a
coefficient to weight this loss relative to other losses.

In the fine-tuning experiments, this KL divergence loss replaces the common entropy maximization
loss, which is often added to RL experiments to encourage exploration.83,84 The idea behind entropy
maximization is that, when all actions appear to have equal value, such as when the agent has not
learned about the next reward, it should maximize its entropy to increase the chance that it discovers
the next reward. Blindly exploring by maximizing entropy is effective when the state and action
spaces are sufficiently small or the reward is sufficiently dense, but becomes infeasible when the
state and action spaces are large and rewards are sparse, which is the case in the diamond-pickaxe
task. Instead of blindly exploring through uniform-random actions, we assume that the pretrained
policy has an action distribution that is much more likely to take sequences of actions that lead
to interestingly new states, and thus, in states where the agent assigns equal value to each of its
actions, it should mimic the action-distribution of the pretrained policy instead of a uniform-random
action distribution. In experiments with a randomly initialized policy we do include the entropy
maximization loss with a coefficient of 0.01, which has been an effective setting in other Minecraft
work.31 Empirically, we found that a high coefficient ⇢ for this KL divergence loss would prevent
the agent from properly optimizing the reward function while a low coefficient ⇢ was ineffective at
protecting the learned skills of the pretrained policy and preventing catastrophic forgetting. As such,
we start with a relatively high coefficient ⇢ and decay it by a fixed factor after each iteration (Table 6).
This method protects policy skills in early iterations while guaranteeing that the policy can eventually
maximize the reward function, regardless of how different its behavior has to be to do so relative to
the pretrained policy.

For the reward function we estimated the rough quantities of each item that a human player might
gather when trying to craft a diamond pickaxe, and we reward the model for gathering up to that
quantity for each item. We started these estimates by iterating over the technology tree backward from

30

Item Quantity rewarded Reward per item
Log 8 1/8
Planks 20 1/20
Stick 16 1/16
Crafting table 1 1
Wooden pickaxe 1 1
Cobblestone 11 1/11
Stone pickaxe 1 1
Furnace 1 1
Coal 5 2/5
Torch 16 1/8
Iron ore 3 4/3
Iron ingot 3 4/3
Iron pickaxe 1 4
Diamond inf 8/3
Diamond pickaxe inf 8

Table 7: Reward per item and total quantity rewarded.

a diamond pickaxe and adding the requirements for each item to the reward function (e.g. first we
added a diamond pickaxe to the reward function, then we added the 3 diamonds and 2 sticks required
for crafting a diamond pickaxe, then we added the 1 iron pickaxe required for mining diamonds,
and so on). Then we added coal and torches to the reward function, with coal being useful as fuel
when smelting iron and for crafting torches while the torches themselves improve visibility and
prevent enemies from spawning. Finally, we reward the model for bringing additional logs (5 logs are
required to craft all items in the reward function, but we reward up to 8 logs), which can be used as
fuel or crafted into a crafting table or sticks if the agent runs out. In practice the agent rarely collects
the additional logs, places the torches, or uses coal as fuel when smelting, but the reward function
was based on human expectations on what would be useful to execute this task, rather than designed
around how an RL model behaves after training. Finally, to encourage the agent to keep mining
diamonds and crafting diamond pickaxes after it has crafted its first diamond pickaxe, we did not put
a limit on the number of diamonds or diamond pickaxes that would be rewarded.

The rewards for the different items are separated into 4 tiers, roughly depending on how late a player
would usually get the relevant item. The first tier consists of all wooden and stone items and has a
base reward of 1, the second tier consists of all items requiring coal with a base reward of 2, the third
tier consists of all items requiring iron with a base reward of 4, and the final tier is diamond with a
base reward of 8. Thus items later in the sequence of items towards a diamond pickaxe generally
give a higher reward. To make sure that the agent does not over-value items that are supposed to
be gathered in bulk (e.g. the agent is rewarded for up to 20 planks but only up to 1 crafting table,
which can cause the agent to focus on planks at the expense of creating a crafting table), we divide
the base reward of each item by the total quantity that the agent gets rewarded for (for the purpose
of determining the reward, the total quantity for diamonds is 3 and the total quantity for diamond
pickaxes is 1, even though we did not put a limit on the number of these items being rewarded). For
example, the agent is rewarded for 3 iron ore, which has a base reward of 4 for being in the iron tier
and up to 3 blocks of iron ore are rewarded, thus the reward per block of iron ore is 4/3. The quantity
and reward for each item are listed in Table 7.

While every item in the sequence towards a diamond pickaxe is rewarded, the reward function is still
sparse and, in some cases, even deceptive. The sparsity comes from the fact that it can take thousands
of actions to find the next reward, even after the agent has acquired all the necessary prerequisites
(e.g. human players often take more than 10,000 actions to find a diamond after crafting an iron
pickaxe). The reward function can be deceptive when the most efficient method for getting one item
can make it far more difficult to get the next item. For example, a good strategy for the agent to
craft a stone pickaxe quickly is to mine (i.e. spend a few seconds to pick up) its crafting table after
crafting a wooden pickaxe, such that the agent has immediate access to a crafting table as soon as it
has collected enough cobblestone. However, the fastest way to get a reward for gathering cobblestone
is to mine down immediately after crafting a wooden pickaxe, while leaving the crafting table behind.

31

Thus following the optimal strategy for gathering cobblestone makes it more difficult to learn to craft
a stone pickaxe.

Experiments ran for approximately 6 days (144 hours) on 80 GPUs (for policy optimization) and
56,719 CPUs (mostly for collecting rollouts from Minecraft). In this time the algorithm performed
roughly 4,000 optimization iterations and collected roughly 1.4 million Minecraft episodes consisting
of 12,000 frames each, for a total of 16.8 billion frames.

G.2 Reinforcement Learning Fine-Tuning Additional Data

Additional figures that are helpful for understanding the main results of the RL fine-tuning experiments
are presented in this section. First, we show the items-over-training figure when RL fine-tuning from
the early-game model without a KL loss (Fig. 18). When training without a KL loss, the model
only learns to obtain the four items that the early-game model is capable of getting zero-shot, which
are logs, planks, sticks, and crafting tables. Second, we present preliminary experiments in which
we directly compare RL fine-tuning from the house-building model and RL fine-tuning from the
early-game model (Fig. 19). These experiments differ from the main experiments in that, for both
treatments shown here, the KL loss coefficient was set to 0.4, the learning rate was set to 6⇥ 10�5,
and the reward for each item was 1/quantity for all items (i.e. items closer to the diamond pickaxe
did not have an increased reward). While RL fine-tuning from the house-building model initially
worked better than RL fine-tuning from the early-game model, fine-tuning from the early-game model
worked better after 800,000 episodes and showed signs of smelting iron ingots, which is why the
early-game model was chosen for the main experiments.

Figure 18: Items obtained when RL fine-tuning from the early-game model without a KL loss. The
model learns to obtain all items that the early-game model can craft zero-shot, which are logs, planks,
sticks, and a crafting table. In contrast to the treatment with a KL-penalty, it does not learn any items
beyond these initial four, likely because skills that are not performed zero-shot, and for which the
model thus does not initially see any reward, are catastrophically forgotten while the first four items
are learned.

Figure 19: Preliminary experiments when RL fine-tuning from the early-game model compared to
RL fine-tuning from the house-building model. (Left) While reward initially increases faster when
fine-tuning from the house-building model, fine-tuning form the early-game model eventually obtains
a slightly higher reward. (Right) RL fine-tuning from the early-game model has a higher likelihood
of smelting an iron-ingot, which is why the early-game model was chosen for future RL fine-tuning
experiments.

32

H Foundation Model Scaling

In early experiments we found that increasing model size led to models staying in the efficient
learning regime longer into training.64 Here we compare the 0.5B model described in Section 4.2 to
both a 248M and 71M parameter model. Both of these models are trained for 15 epochs as compared
to the 30 epochs the 0.5B model trained for. These models have the same architecture as the 0.5B
model but each layer in the 248M parameter model has 1/2 the width and each layer in the 71M
parameter model 1/3 the width. The 71M model was trained with an initial learning rate of 0.001586,
batch size of 480, and weight decay of 0.044506. The 248M model had an initial learning rate of
0.001831, batch size of 640, and weight decay of 0.051376.

Figure 20: Training and Zero-Shot Performance versus Model Scale. In the first two plots the x-axis
is compute normalized to that used by the 71M parameter model, such that after 15 epochs of training
the 71M model has used 1 "compute". The 248M parameter model and the 71M model are trained on
the same amount of data (15 epochs), and the 0.5B parameter model is trained on 30 epochs of data.
(Top Left) Loss on the web_clean validation dataset. (Top Middle) Loss on the IDM contractor
dataset; note that these models were trained only on web_clean and not on any contractor data.
(Top Right) Zero-shot environment rollout performance at the end of training. (Bottom) Zero-shot
environment rollout performance over training for the 71M model (bottom left), 248M model (bottom
middle), and 0.5B model (bottom right).

In Figure 20 we show validation loss on web_clean with IDM pseudo-labels, loss on the contractor
dataset used to train the IDM with ground truth labels collected during contractor play, and zero-shot
environment performance for the 71M, 248M, and 0.5B models. While larger models have better
validation loss on web_clean, these results do not tell the clear story that the 0.5B model is better
than its smaller counterparts. The 71M model has the lowest contractor dataset loss while having the
highest web_clean loss, and it also has the best zero-shot environment performance. In fact, we see
that the 71M model even had non-zero wooden tool crafting (Fig. 20 bottom left). The 248M model
also appears to be better at crafting than the 0.5B, and also has lower contractor dataset loss.

While the zero-shot results suggest smaller models are better, fine-tuning tells another story. When
fine-tuning to contractor_house, model size rank ordering reverses and now the 0.5B model
performs best both in validation loss (Fig. 21 left) and in environment performance (Fig. 21 right)
followed by the 248M model and then the 71M model. Environment model rollouts are performed
using the same game engine that we use to collect contractor data, which could be visually distinct
from videos taken from the web. It is plausible that the larger models overfocus on the visual
peculiarities in web data during pretraining since they have worse contractor data loss (Fig.20 top
middle), and this causes them to perform more poorly in the environment zero-shot. However, we
hypothesize that because the contractor_house dataset we fine-tune to is collected from our game
engine, the larger models that are a better overall Minecraft prior (as indicated by lower web_clean
validation loss in Fig.20 top left) can quickly shift their low level features to perform better on data
coming from our game engine, resulting in better environment rollout performance. This hypothesis
is further supported by Fig. 21 (middle) showing loss on the contractor dataset collected for IDM

33

Figure 21: Fine-tuning VPT foundation models with increasing model sizes to the
contractor_house dataset. (Left) Loss on the contractor_house holdout validation set. (Mid-
dle) Loss on the full contractor dataset collected to train the IDM; this dataset is disjoint from
contractor_house. (Right) Environment rollout performance at the end of fine-tuning.

training, which has no overlap with contractor_house. After just a few steps of fine-tuning to
contractor_house, all models quickly improve in loss on the full IDM contractor dataset, with
larger models now performing best. While not conclusive, we believe this investigation provides
some intuition for future studies of model scaling for sequential decision making problems.

I Text Conditioning

Goal-conditioned policies85,86 make it possible for a single agent to perform a wide variety of
goals in a single environment, which is particularly relevant in open-ended environments such as
Minecraft. In recent work, goal specification has increasingly taken the form of domain specific
languages87, or even natural language88,89. The benefits of language-conditioned agents can be
tremendous, especially natural-language-conditioned agents, as their goal space contains a wide
variety of potentially very complex tasks. Text conditional models have shown an amazing ability to
perform tasks zero-shot (or learn them few-shot) including generalizing in impressive ways via the
compositional and combinatorial possibilities allowed by natural language (e.g. GPT1 and DALL·E
290). We hypothesize that we should expect similar capabilities to emerge with natural-language-
conditioned virtual agents, if they are similarly trained on enormous amounts of data (that goes from
a natural language description to a sequence of actions that completes the specified goal). In this
section we take preliminary steps toward that future. Our preliminary experiments provide evidence
that it is possible to pretrain a natural-language-conditioned model for Minecraft using the general
approach presented in this paper (VPT) plus conditioning on the speech that often accompanies
videos.

In online videos, the human actor sometimes indicates their intent in their verbal commentary
(e.g. “Let’s go chop some trees to make a wooden axe” or “now let’s learn how to crop photos in
Photoshop”). Conditioning on this closed caption data could produce a steerable pre-trained model:
i.e., it may later be possible to condition the model with text such as “I am going to craft a wooden
pickaxe” or “I am going to build a house,” and have the agent perform those tasks specifically rather
than simply follow typical human behavior (as was investigated in the rest of this paper). An alternate
way to produce a steerable agent is via RL fine-tuning, which we could have done in Section 4.4
by adding a bit indicating the task to be completed, as has been done in prior work31. However,
conditioning on natural language offers many benefits over that approach. First, it is flexible and
powerful, being able to express any task. Second, one does not need to preconceive of the task to
be completed ahead of time. This would allow for general, capable, zero-shot agents like GPT, but
extending those capabilities to embodied tasks such as completing tasks on computers or in simulated
3D worlds. Third, text conditioning can be used even when tasks are difficult to specify via reward
functions (e.g. “Let’s build a house” or–if the agent is capable of doing it–more complex things like
“I will now build a castle surrounded by a moat”). In the limit, VPT+text could conceivably produce
powerful, capable, natural-language-conditional agents with the powers of GPT to meta-learn, follow
instructions, and complete tasks zero or few shot, but in the form of agents that can act in virtual
worlds, complete tasks on computers, and in other similar embodied sequential decision domains.
We do not reach those lofty goals in this work, but we began a first step towards exploring in that
direction.

34

Many Minecraft videos feature audio commentary from the player. This commentary is sometimes
present in the form of closed captions for the videos, or could be extracted post-hoc using automated
speech recognition (ASR).91 Our dataset features about 17k hours of content with associated closed
captions.

We fine-tuned the 220 million parameter VPT foundation model used in the RL-fine-tuning ex-
periments (chosen vs. 0.5B for the same reason: to reduce compute costs) with an additional
text-conditioning input on the subset of our data for which closed captions are available. To obtain the
conditioning input, we first split videos into 30 second chunks. The same text is associated with every
frame in a given chunk, and is made up of all the closed captions occurring within that chunk, as well
as the line of text preceding and following the chunk (if any). Because the vast majority (around
95%) of our closed caption data lacks capitalization and punctuation, it is punctuated using the rpunct
library92. We then obtain a text embedding vector of length 4,096 from the OpenAI embedding API93,
which is processed by a randomly initialized multi-layer perceptron (MLP) with two hidden layers of
size 2,048. The resulting activations are added for each frame to the pretrained model activations
before the transformer layers (pretransformerActivations += mlp(textEmbedding)). The
model is fine-tuned for four epochs.

Variant name String
dig I’m going to dig as far as possible
dirt I’m going to collect dirt

explore I’m going to explore
house I’m going to make a house
seed I’m going to collect seeds
water I’m going to find water
wood I’m going to chop wood

Table 8: Strings corresponding to each conditioning variant.

Our model shows evidence of steerability. When conditioned on sentences that incite the agent to
explore (such as “I’m going to explore” and “I’m going to find water”) the agent travels significantly
farther from its spawn point (Figure 22a). Additionally, we can steer the agent to preferentially collect
early game items such as seeds, wood, and dirt by conditioning with text such as “I’m going to collect
seeds/chop wood/collect dirt” (Figure 22b,c,d).

While our results show some level of steerability, more work is required to increase it. For example,
we were not able to successfully steer agents to gather flowers or to hunt, both of which are possible
in the early game, but less common (and, in the case of hunting animals, much more difficult) than
gathering dirt, wood, or seeds. Likewise, an experiment in which the agent is presented with a
crafting window and various resources, and conditioned to craft a given item (e.g. “I’m going to
craft a wooden axe”) failed to show that the conditioning had a significant effect on which items got
crafted. Instead, it seemed the agent was more influenced by the prior, unconditional probability
of what human players would craft next given the resources available, which is not too surprising
since in Minecraft, especially in the early game, there is a relatively consistent path to gathering
resources in a specific order go produce more powerful tools (Fig. 6). For example, if the agent had
the resources to make a stone pickaxe and we asked it instead to make a (weaker) wooden pickaxe, it
often would make the stone pickaxe anyway. Finally, looking at videos of agent behaviors failed to
convince us that the “house” conditioning causes the agents to take more steps towards building a
house than other variants.

Thus, our results show that it is possible to train a somewhat steerable natural-language-conditioned
agent. However, its steerability is still too weak to be practically useful, and it is far from what we
believe could be accomplished with more research, data, and training compute. Another exciting
research direction is to have the model predict future text as well as just the next action.

35

di
g

di
rt

��
�
��
��

ho
us
e

se
ed

�
��
��

w
oo
d

Conditioning

125

135

145

155

Tr
av
el
 d
is
ta
nc
e
ib
lo
ck
s)

.�������	��������	�������	�	��	��(a)

di
g

di
rt

ex
pl
or
e

ho
us
e

��
��

w
at
er

w
oo
d

Conditioning

5.9

5.5

5.6

5.7

5.8

5.9

W
he
at
 s
ee
ds
 c
ol
le
ct
ed

-�����������	����	�������	�	��	��(b)
di
g

di
rt

ex
pl
or
e

ho
us
e

se
ed

w
at
er

�
��
�

Conditioning

1.55

1.75

1.55

1.75

7.55

7.75

7.55

7.75

O
ak
 lo
gs
 c
ol
le
ct
ed

&����������	����	�������	�	��	��(c)

�
	�

�
	�
�

ex
pl
or
e

ho
us
e

se
ed

w
at
er

w
oo
d

Conditioning

5

6

7

8

9

65
D
irt
 c
ol
le
ct
ed

�	����������	����	�������	�	��	��(d)

Figure 22: Evidence for conditioning. In each plot, the variants expected to stand out are shown in
bold. The strings corresponding to each variant are shown in Table 8. Statistics are measured over 5
minute episodes. (a) Distance traveled by the agent . Both “explore” and “water” text strings should
encourage a steerable agent to move more than when doing other tasks, which is what occurs. Grass
(which is needed to get seeds) is not present in all biomes, which is likely why the “seed” condition
produces more travel (as the agent sometimes needs to move to a biome with grass). The travel
distance is the Euclidean distance from the spawn point to the farthest point the agent reached during
the episode on the horizontal (x-z) plane. (b) Collection of wheat seeds. The “seed” variant collects
substantially more than other variants, as expected of a steerable agent. (c) Collection of oak (the
most common type of wood) logs. The “wood” variant collects significantly more oak logs, as is to
be expected of a steerable agent (we speculate that the “water” variant collects less because there are
no trees in water). (d) Collection of dirt. The “dirt” and “dig” variants collect a large amount, and are
the variants that are (indirectly in the case of “dig”) conditioned to collect dirt. It is easy to mistakenly
aim at the ground rather than at grass or trees when collecting seeds or wood, which likely explains
the slightly higher amount of dirt collected by these variants. In all cases, the error bars are 95%
confidence intervals of the mean, over 1,000 episodes per conditioning variant. Treatments for which
the bars in each bar plot do not overlap are statistically significantly different at a p < 0.05 level.

36

	Introduction
	Preliminaries and Related Work
	Methods
	Results
	Performance of the Inverse Dynamics Model
	VPT Foundation Model Training and Zero-Shot Performance
	Fine-Tuning with Behavioral Cloning
	Fine-Tuning with Reinforcement Learning
	Data Scaling Properties of the Foundation Model
	Effect of Inverse Dynamics Model Quality on Behavioral Cloning

	Discussion and Conclusion
	Collecting Internet Data
	Initial Unclean Dataset Curation
	Training a Model to Filter out Unclean Video Segments
	Label Collection
	SVM Training
	Effect of Data Cleaning

	early_game Dataset

	Contractor Data
	Recording Contractor Play
	Contractor Contract
	Data for the Inverse Dynamics Model.
	contractor_house.

	Minecraft environment details
	Observation space
	Action space

	Inverse Dynamics Model Training Details
	IDM Architecture
	IDM Training
	Generating Pseudo Labels with the IDM

	Foundation Model Behavioral Cloning
	Foundation Model Architecture
	Null Action Filtering
	Joint Hierarchical Action Space
	Foundation Model Training

	Behavioral Cloning Fine-Tuning
	Reinforcement Learning Fine-Tuning
	Reinforcement Learning Fine-Tuning Training Details
	Reinforcement Learning Fine-Tuning Additional Data

	Foundation Model Scaling
	Text Conditioning

