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Appendices for the NeurIPS submission
Resolving the data ambiguity for periodic crystals

The most important contribution is the introduction of the PDD invariants whose speed, continuity,
and generic completeness in Problem 1.1 have no analogs among any state-of-the-art comparisons.

Many descriptors and similarities of crystals use only their finite subsets (only molecules or balls
of a manually cut-off radius), which can have infinitely many non-isometric classes as shown in
Fig. 4 (left). Any minimally useful descriptor should be invariant as in Problem 1.1a because any rigid
motion cannot really change a solid crystalline material. A descriptor with false negatives cannot be
used for comparison because equivalent objects can have different values of a non-invariant.

False negatives should be avoided first to detect different crystals S % @ due to I(S) # I(S5).
Only for an invariant I, it makes sense to avoid false positives by proving the completeness of I in
condition (1.1b) to justify the converse implication: I(S) = I(Q) = S = Q. All ‘state-of-the-art’
comparisons fail to distinguish many periodic crystals [32, 49, 46], hence cannot define a metric
satisfying the coincidence axiom: d(.5, Q) = 0 only for isometric crystals S = (). Appendix A gives
specific examples when past similarities RMSD [13] and 1-PXRD [54] fail the triangle axiom.

The traditional crystallography tools such as diffraction patterns and pair distribution function cannot
distinguish any homometric crystals [48], even in dimension 1 as shown in Fig. 3 (right).

The simpler continuity in conditions (1.1c,d) is needed to quantify the similarity of (near-)duplicates
but is failed by most invariants based on (reduced) cells or symmetry groups, see Fig. 2 (right).

Another inconvenience of the tools such as SOAP (Smooth Overlapped Atomic Positions [4]) and
ACSF (Atom-Centered Symmetry Functions [5]) is their dependence on parameters such as cut-off
radii that require manual choices. If these parameters change, then so do the underlying invariants.

generically complete,
near-linear time: PDD

no invariant? N’fs : -

: : ; - no fast%es
useless non-invariants isometry invariants -

e.g. cell parameters, (minimally useful) o
atomic coordinates no false negatives

Mtinuous?\*yes
«discontinuous invariants::  continuous invariants” —»  incomplete:
reduced cell parameters, (much more useful) no SOAP, ACSF, powder
symmetries, space group  quantify the similarity diffraction patterns

generically complete?

Figure 7: A hierarchy of crystal descriptors. A minimally useful invariant should have no false
negatives. Most isometry invariants are discontinuous [60] or incomplete [46], hence fail condi-
tions (1.1bcd) in Problem 1.1. The fastest and generically complete invariants are PDD in this paper.

Only the couple of recently discovered invariants satisfy the practially important condi-
tions (1.1a,b,c,d,f): isosets [3] and PDD in this paper, see Fig. 7. The advantage of PDD is their
near-linear time in Theorem 5.1. Pairwise comparisons of millions of real crystals are urgently needed
to avoid the paper mills based on duplicates [7], whose new cases are reported in appendix A.

So all ‘state-of-the-art’ tools were too slow for large experiments such as 200B+ pairwise comparisons
of all 660K+ periodic crystals in the Cambridge Structural Database (CSD). Hence it is possible to
compare PDD with the past tools only on smaller datasets. The appendices below include

Appendix A: details of extra experimental comparisons with the state-of-the-art tools;
Appendix B: a pseudo-code with examples and instructions for the attached code;

Appendix C: rigorous proofs of all theoretical results in the main paper.
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A Appendix A: details of experimental comparisons with the state-of-the-art

This appendix provides extra details for large-scale experimental comparisons of the new invariant
PDD with the most widely used past tools: the Root Mean Square Deviation (RMSD) for comparing
finite subsets [13] and 1-PXRD similarity based on powder X-ray diffraction patterns. The popularity
of these tools does not help to resolve the key question for crystals : ‘the same or different?’ [54].

The key advantage of Pointwise Distance Distributions (PDD) for searching (near-)duplicates and
nearest neighbors in huge datasets is their hierarchical nature. The weighted averages of columns in
the PDD matrix form the simpler AMD vectors (Average Minimum Distances), which can be quickly
subtracted and compared. Since the Earth Mover’s Distance (EMD) between PDD matrices can be
only larger than the L, distance between their AMD vectors by Theorem 4.2, it suffices to compute
the slower EMD only on pairs of crystals whose AMD vectors are very close to each other.

Any crystal dataset can be further organized into hierarchical families whose levels are parameterized
by the number ¢ of atomic neighbors. The ¢-th level of this hierarchy can consist of disjoint or
overlapping clusters of crystals that have close values of the i-th coordinate AMD; in the vector
AMD(S; k) = (AMDy,...,AMDy). Indeed, L..(AMD(S;k), AMD(Q;k)) > |AMD;(S) —
AMD,(Q)|. Hence, any crystals with distant values of AMD,; cannot have close AMD vectors.

We use the public dataset of 5679 T2 crystals base on the same T2 molecule and predicted by 12-week
supercomputer simulations [38]. Only five were synthesized: T2-«, T2-0, T2-v, T2-§, T2-c. The
supplementary folders include CIFs of all mentioned crystals, which can be opened by any text editor
and visualised by the free software Mercury. Fig. 8 shows 10 PDD curves of T2-¢ corresponding
to the 10 isometrically unique atomic positions within the T2 molecule. The rotation through 120°
around an axis keeps the T2 molecule and the whole infinite crystal T2-¢ invariant, while the three
oxygen atoms shown in red simply rotate their positions. Hence all oxygen atoms have the same
ordered distances to their neighbors and their PDD curves coincide. The same conclusion holds for six
nitrogens whose positions are isometrically equivalent in T2. Carbon atoms have five non-isometric
positions, which generate five unique PDD curves in Fig. 8. All 10 PDD curves provide a finer
classification of atomic types not only by chemical elements, but by their geometric positions within
a molecule. For every atom, the first distance for k£ = 1 is the bond distance to its closest neighbor,
see the zoomed beginnings of PDD curves. Though chemical elements can be included into the PDD
matrix as an extra column, the above shows that the PDD invariants can infer this chemistry.

— C1
— C2
6 — C3
C4
C5
5 H1
— H2
— H3
4 N1
— 01

2 ' ) / P
/ s c/%
C-H|1.000 / wF T2 molecule
| CHI1.000, 1.246 . Qi - 0.880
1\ of 46 atoms
0 70 a0 60 80 100

k

Figure 8: Each curve shows distances d, from one atom of a T2 molecule to k-th neighbor in the
T2-¢ crystal. The 46 atoms form 10 groups, one for each atom in the asymmetric unit: three oxygens
form one type with the PDD curve in red, 23 carbons have 5 non-isometric positions in T2 with PDD
curves in 5 shades of gray. The zoomed part shows the initial bond distances in A = 10719 m
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A key challenge in visualization is to justifiably represent invariant data in a simple form. Past
algorithms such as t-SNE [59] and UMAP [42] are stochastic and can produce different outputs from
repeated runs on the same input. Hence we used the more recent deterministic TreeMap [50] to
draw a Minimum Spanning Tree (MST). Informally, any MST can be considered as an optimal road
network between cities. Such a network can be drawn in many different ways; the most valuable new
data is the distances between PDDs of crystals but the MST is drawn only for visualization. Similarly,
positions of cities and distances between them are more important than a sketch of a road network.
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Figure 9: State-of-the-art visualization of a CSP dataset, modified from Fig. 2d in [23]. Every
predicted crystal has two coordinates (density, energy). The arrows show the predicted crystals that
were manually matched to the five experimental crystals T2-a, T2-3, T2-v, T2-6, T2-¢.

Fig. 10 illustrates key advantages of the invariant-based visualization in the right picture compared
with the energy landscape in the left picture extracted from the state-of-the-art [23] in Fig. 9. Briefly,
the MST based on stronger isometry invariants PDD(S; 100) provides more information about crystal
similarity than the cloud of points (density, energy). In the past, simulated versions were manually
searched to match experimental crystals only by density. Measuring the energy of an experimental
crystal needs an explosion disintegrating this crystal. For the experimental crystal T2-§, dozens of
simulated crystals were searched in the vertical strip in the left picture of Fig. 10. Simulated crystal
14 was visually chosen in [23] as the best match for T2-4.

The new PDD invariant automates the search for closest crystals, because PDD can be computed for
all types of simulated and experimental crystals. The MST in the right picture of Fig. 10 includes
T2-9 as a red dot close to the near duplicate crystals 14 and 15, which were not filtered out by
past tools because of very different unit cells and motifs in Fig. 6. There were many other pairs
of crystals with almost identical values of (density, energy), for example crystals 5920 and 0049,
whose structures were found away from each other in the MST. When comparing this pair by the
COMPACK algorithm, only one molecule is matched in Table 4. The resulting zero value of RMSD
only means that crystals 5920 and 0049 are different (no similarity found), while EMD provides a
proper distance. Fig. 10 (right) shows crystals 5920, 0049 in different branches of the MST.

The 4950 comparisons of 100 crystals by COMPACK took 3 hours 53 min (2.825 sec per comparison),
which is 3 orders of magnitude slower than EMD on PDD invariants. Table 3 says that over half
the time (56%) only one molecule is matched, which means that no similarity was found between
crystals based on identical molecules. In fact, in 95% of cases three or fewer molecules are matched,
which is also considered a non-match for the default number of 15 maximum matched molecules.
The number of matched molecules rarely exceed 10 (0.5%), and only 6 comparisons matched 15/15.
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Figure 10: Left: a vertical ‘strip’ of the energy landscape from Fig. 9 in the density range [1.2, 1.25]
around the density of the experimental crystal T2-9. Some of the lowest energy crystals are highlighted
by their IDs in the T2 dataset reported in [23]. Right: MST of the simulated crystals on the left plus
the experimental crystal T2-§ in red, based on PDD(.S; 100). All simulated crystals are colored by
lattice energy according to the key in the bottom right corner.

Table 4: The traditional COMPACK algorithm [13] measures similarity by attempting to match up
to 15 (by default) molecules from two crystals. The low values 1, 2, 3 (of 15) mean that only a few
molecules could be aligned in the two crystals with a small enough Root Mean Square Deviation
(RMSD), so this is not considered a match.

QQ\P‘ QQ\‘) @@ Q“o’oc oA : @\b 6°’\q °>°’q9 °>°’%b(
0014 | 15 15 3 1 1 1 2 2 2
001515 15 3 1 1 1 2 2 2
0049 | 3 3 15 1 10 2 1 1 1
0098 1 1 1 15 1 1 1 1 1
4274 1 1 10 1 15 2 2 2 2
5916 1 1 2 1 2 15 10 10 10
5919 | 2 2 1 1 2 10 15 15 15
5920 | 2 2 1 1 2 10 15 15 15
5924 | 2 2 1 1 2 10 15 15 15

We also compare the new invariant to powder X-ray diffraction patterns (PXRD), a popular way
of measuring similarity between structures. We note that unlike Earth mover’s distance between
PDDs, the ‘distance’ between PXRDs is not a proper metric on the space of crystals, and so is not
appropriate to use it to continuously explore the space. Our experiments show that 1—PXRD (since a
PXRD score of 1 means identical) fails to satisfy the triangle inequality on the T2 dataset over 8% of
the time, and the RMSD values given by COMPACK similarly fail to satisfy this axiom, see Table 5.

Our second dataset has all 12576 structures in the Drug Subset [12] of the Cambridge Structural
Database (CSD). Though the CSD is the world’s largest collection of more than 1.1M crystals, it is
effectively a huge folder of Crystallographic Information Files (CIF) with limited search functions,
for example by a chemical composition.
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Crystal 1 | Crystal2 | RMSD Crystal 1 | Crystal 2 | 1-PXRD

T2-v T2-a 2.805 T2-0001 | T2-0029 0.187
T2-v T2-€ 0.184 T2-0001 | T2-5333 0.110
T2-a T2-€ 0.231 T2-0029 | T2-5333 0.0683

Table 5: Triples of crystals where the commonly used tools RMSD and PXRD fail the traingle
inequality axiom required of a proper metric. The CIFs are in the supplementary materials.

The CSD Drug subset only includes small-molecule crystal structures containing a drug molecule,
typically smaller than the T2 molecule. Since larger than necessary values of k£ don’t affect distances
to closer neighbors, we tried k = 100 and k& = 200 for the CSD Drug Subset.

After computing PDD(S; k), we use a standard EMD algorithm for distances between the distribu-
tions. A Minimum Spanning Tree can be computed from a smaller graph on PDD invariants not
requiring all pairwise distances. Since distances asymptotically approach PPC(S)/k, we used the
instantly computable Point Packing Coefficient PPC(.S) to find 3000 neighbors for each of 12576
crystals. For k = 200, the computations of 12576 x 3000 EMD distances (excluding all repetitions)
took 7 hours 39 min (1.238 ms per comparison, 2.19 sec per crystal for all 3000 neighbors).

The key contribution is the new invariant data for edge-lengths of the MST, which can be visualized
by TreeMap [50] or any other graph drawing algorithm. The continuity and invariance of Pointwise
Distance Distributions in Theorems 3.2 and 4.3 guarantee that any crystal data analysis based on
these invariants is theoretically justified. Since a Minimum Spanning Tree has no cycles, some close
crystals might appear at terminal vertices of distant branches, which could be connected to form a
cycle. Drawing a graph with cycles will require more sophisticated algorithms. However, the new
invariants can be used for a justifiable search of similar crystals without visualization.

We also have interactive versions of full Minimum Spanning Trees of the T2 dataset and CSD drug
subset. In any Javascript-enabled browser one can zoom these TreeMaps, color the vertices by
properties, hover over any vertex to get more information. Though aspirin and paracetamol are
chemically different, their crystal structures are found in close branches confirming their similar
properties.

The ‘structure’ of a crystal was previously measured by only one continuous isometry invariant: the
physical density equal to the weight of atoms within a unit cell, divided by the cell volume. All other
descriptors are either non-invariants, e.g. powder diffraction patterns depend on various thresholds
and are not always reliable, or are discontinuous under perturbations, e.g. symmetry groups.

The main contribution is replacing the single-value density by much stronger more isometry invariants
PDD. Comparing crystals by only their densities was the latest ‘state-of-the-art’ in [23], where 5
forms of 9 experimental crystals were initially matched to dozens of simulated crystals with close
densities. Then hundreds of crystals were visually inspected to select the five matches in Fig. 9.

Now a ‘structure’ of a crystal can be much better represented by many more numerical invariants
in PDD. Fig. 11 is the first justified map of (a discretely sampled) space of T2 crystals, because
the underlying distance between PDD invariants satisfies all metric axioms and continuity under
perturbations by [52] and Theorem 4.3.

The map in Fig. 11 shows a Minimum Spanning Tree built on 5679+9 crystals. Each crystal is
a vertex. The distance between any crystals is the Earth Mover’s distance between the first order
PDD invariants. The most interesting vertices in the T2 map are experimental crystals shown in
red, because their energies are impractical to measure. The map shows experimental crystals with
simulated predictions for the first time, because past plots such as in Fig. 9 need all energy values.

Fig. 11 is a substantial advancement in visualizing crystal datasets, because the underlying invariants
PDD(S; k) are much more informative than a single-value density. The nine experimental crystals
(red dots) clearly split into five groups marked by T2-a, T2-3, T2-v, T2-6, T2-c. These nine
experimental crystals have no known energies and cannot appear in the past energy landscapes. The
four red dots at the very top represent slightly different forms of a T2- crystal synthesized at different
temperatures.
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Figure 11: A Minimum Spanning Tree of 9+5679 T2 crystals drawn by TreeMap [50]. The distance
between any crystals .S, Q is the EMD(PDD(S; 125), PDD(Q; 125)). The color bar in the top left
corner shows energy values. The minimum of -223.69 kJ/mol corresponds to 0 in Figure 9. Nine
experimental crystals, which form the families T2-«, T2-3, T2-v, T2-0, T2-¢, are shown in red,
because their energies are not experimentally measured (a crystal is disintegrated only by a blow up).

The map can be interactively explored by opening the file T2L_PDD125_TMap.html from the
supplementary materials in any browser in the same folder with the corresponding JavaScript files. In
the interactive version one can color vertices by a property, which can be changed in the drop-down
menu in the bottom right corner. For example, all crystals with low energies appear in yellow colors.

In Fig. 11 six of nine experimental T2 crystals have the codes DEBXITO1. . . 06, though they split
into two groups (unique polymorphs): four nearly identical crystals T2-vy and two nearly identical
crystals T2-5. Our final experiment on all 229K molecular organic crystals found thousands of such
pairs in the Cambridge Structural Database.

In addition to the five pairs of isometrically identical crystals discussed in section 6, a search on the
CSD using PDD on molecular centers instead of atomic centers revealed nine pairs of structures
which were almost identical, listed in table 6. The supplementary code includes a script to compare
the previously mentioned five pairs by PDD, however the code to compute molecular centers is
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Figure 12: A Minimum Spanning Tree of 12576 structures in the Drug Subset of the Cambridge
Structural Database. The distance between any crystals S, @ is EMD(PDD(S; 100), PDD(Q; 100)).
All structures from the same family are shown in one random color.

private, so it was not possible to include a script reproducing the results below. Instead, the .CIFs for
each of these crystals is included in the folder identical_by_mol_centers and can be manually
inspected (or opened in visualization software) to see the similarity.

B Appendix B: examples and instructions for the attached code and data files

B.1 Pseudocode for computing Pointwise Distance Distributions (PDD)

The algorithm accepts any periodic point set S C R™ in the form of a unit cell U and a motif M C S.
The cell is given as a square n X n matrix with basis vectors in the columns, and the motif points in
Cartesian form lying inside the unit cell. For dimension 3, the typical Crystallographic Information
File (CIF) with six unit cell parameters and motif points in terms of the cell basis is easily converted
to this format. Otherwise, the unit cell and motif points can be given directly, in any dimension.

Specifically, the PDD function’s interface is as follows:

Input:
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CSDID 1 CSDID 2 EMD (k = 100)
ADESAG REWPOB 1.45 x 10°°
ROWBIQ TUHMOA 9.00 x 10~*
BESNOCO! | XILXIA 3.93 x 10—3
GIMHOA XORCOX 5.63 x 103
FUQMAG | GAVFEP 6.73 x 1073
COXJIJ DUPZIY 6.79 x 1073
HAPNOE HAPNUK 7.15 x 1073
LETYAM UKUWUT 8.66 x 1073
DUCPUN XUWMEIO1 9.88 x 103

Table 6: Selection of pairs of structures from the CSD with exactly zero EMD when compared by
molecular centers. The closest pair ADESAG and REWPOB have identical fractional coordinates
except for one difference at the fifth decimal place, a difference 100 times smaller than the typical
threshold for considering two sites identical (0.00IA).

* motif: array shape (m,n). Coordinates of motif points in Cartesian form.
* cell: array shape (n,n). Represents the unit cell in Cartesian form.
* k: int > 0. Number of columns to return in PDD(S; k).

Output:

¢ pdd: array with k& + 1 columns.

Before giving the pseudocode, we outline some of the key objects and functions in use:

* A generator g, which creates points from the periodic set .S to find distances to,

* KDTrees (canonically k is the dimension here, in our case it’s denoted n), data structures
designed for fast nearest-neighbour lookup in n-dimensional space.

Once g is constructed, next (g) is called to get new points from the infinite set S. The first call
returns all points in the given unit cell (i.e. the motif), and successive calls returns points from unit
cells further from the origin in a spherical fashion.

A KDTree is constructed with a point set 7', then queried with another (), returning a matrix with
distances from all points in ) to their nearest neighbors (up to some given number, k below) in 7', as
well as the indices of these neighbors in 7.

The functions collapse_equal_rows and lexsort_rows, which perform the collapsing and lexi-
cographical sorting steps of computing PDD (Definition 3.1) respectively, are assumed to be imple-
mented elsewhere.

The following pseudocode finds PDD(.S; k) for a periodic set S described by motif and cell:

def PDD(motif, cell, k):

cloud = [] # contains points from S
g = point_generator (motif, cell)

# at least k points will be needed
while len(cloud) < k:
points = next(g)
cloud.extend(points)

# first distance query

tree = KDTree(cloud)

D_, inds = tree.query(motif, k)
D = zeros_like(D_.)
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# repeat until distances don’t change,
# then all nearest neighbors are found
while not D ==

D =D_

cloud.extend(next(g))

tree = KDTree(cloud)

D_, inds = tree.query(motif, k)

pdd = collapse_equal_rows(D_)
pdd = lexsort_rows(pdd)
return pdd

B.2 Instructions for the attached PDD code and specific examples

A Python script implementing Pointwise Distance Distributions along with examples can be found
in the zip archive included in this submission. Python 3.7 or greater is required. The dependency
packages are NumPy (< 1.22), SciPy (> 1.6.1), numba (> 0.55.0) and ase (> 3.22.0); if you do
not wish to affect any currently installed versions on your machine, create and activate a virtual
environment before the following.

Unzip the archive and in a terminal navigate to the unzipped folder. Install the requirements by
running pip install -r requirements.txt. Then run python followed by the example script
of choice, and then any arguments (outlined below), e.g.

$ python kite_trapezium_example.py

trapezium: [(0, 0), (1, 1), (3, 1), (4, 0)]

PDD:

[[0.5 1.41421356 2. 3.16227766]
[0.5 1.41421356 3.16227766 4. 1]

kite: [(0’ 0)3 (1, 1)5 (13 _1)’ (43 O)]

PDD:

[[0.25 1.41421356 1.41421356 4. ]
[0.5 1.41421356 2. 3.16227766]
[0.25 3.16227766 3.16227766 4. 1]

EMD between trapezium and kite: 0.874032
List of included example scripts and their parameters:

e kite_trapezium_example.py prints the PDDs of the finite 4-point sets K (kite) and T'
(trapezium) in Fig. 3, along with their Earth mover’s distance.

* 1D_sets_example.py shows that the 1D periodic sets in Fig. 3 are distinguished by their
PDDs for any parameter 0 < r < 1. This script requires the parameter r to be passed after
the file name, e.g. ‘python 1D_sets_example.py 0.5’.

* T2_14_15_example.py compares the crystals shown in Fig. 6, whose original .CIFs are
included. This optionally accepts the parameter k controlling the number of columns in the
computed PDD, e.g. ‘python T2_14_15_example.py --k 50’ compares by PDD with
k = 50. If not included, k& = 100 is used as the default.

¢ CSD_duplicates_example.py computes and compares the PDDs of the 5 pairs of iso-
metric crystals from the CSD discussed in section 6, giving distances of exactly zero. This
optionally accepts the parameter k controlling the number of columns in the computed PDD,
in the same way as T2_14_15_example.py above.

If you wish to run the code on your own sets or CIF files, you can use the functions exposed in the
main script pdd. py. Use pdd.read_cif () to parse a cif and return a crystal, or define one manually
as a tuple (motif, cell) with NumPy arrays. Pass this as the first argument to pdd.pdd () with
an integer k as the second to compute the PDD. Pass two PDDs to pdd.emd () to calculate the Earth
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mover’s distance between them. For finite sets, the function pdd.pdd_finite() accepts just one
argument, an array containing the points, and returns the PDD.

C Appendix C: rigorous proofs of Theorems 3.2, 4.2,4.3,4.4, 5.1.

Proof of Theorem 3.2. For any periodic point set S C R™, we first show scaling up a unit cell U to a
non-primitive cell keeps PDD(S; k) invariant. It suffices to scale up a cell U by a factor of I, say
along the first basis vector ; of U, then the number 1 of motif points of S is multiplied by .

Then D(S; k) from Definition 3.1 has the larger size Im X k but (due to periodicity) consists of
I-tuples of identical rows of distances from points p + 01,7 = 0,...,l — 1, to their k neighbors
within S. Hence PDD(.S; k) remains invariant, under all isometries due to the result below.

Now we show that the matrix D(S; k) from Definition 3.1, hence PDD(S}; k), is independent of a
primitive unit cell. Let U, U’ be primitive cells of a periodic set S C R™ with a lattice A. Any point
q € SN U’ can be translated by some ¢ € A to a point p € S N U and vice versa. These translations
establish a bijection between the motifs S N U <> S N U’ and preserve distances. So PDD(S; k) is
the same for both U, U’.

Now we prove that PDD(S; k) is preserved by any isometry f : S — ). Any primitive cell U of S
is bijectively mapped by f to the unit cell f(U) of @, which should be also primitive. Indeed, if @ is
preserved by a translation along a vector ¢ that doesn’t have all integer coefficients in the basis of
f(U), then S = f~1(Q) is preserved by the translation along f~! (%), which doesn’t have all integer
coefficients in the basis of U, so U was non-primitive. Since U and f(U) have the same number of
points from S and Q = f(5), the isometry f gives a bijection between the motifs of .S, Q.

For any finite or periodic sets .S, @), since f maintains distances, every list of ordered distances from
p; € SN U toits first £ nearest neighbors in S, coincides with the list of the ordered distances from
£ (ps) to its first & neighbors in Q). These coincidences of distance lists give PDD(S; k) = PDD(Q; k)
after collapsing identical rows. O

AMD100_Linf vs PDD100_Linf for all T2 comparisons

3.0¢

2.51

TN
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PDD100_Linf

Iy
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0.5

0.0

00 05 1.0 25 3.0

15
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Figure 13: Tllustration of Theorem 4.2. The coordinates of each point are the L. -based distances
between AMD(S; 100), AMD(Q; 100) and PDD(S; 100), PDD(Q); 100) for all pairs .5, Q) of 5679
T2 crystals reported in [23].

Proof of Theorem 4.2. Considering PDD(S; k) as a weighted distribution of rows, AMD(S; k) is
its centroid from [14, section 3]. The lower bound follows from [14, Theorem 1]. O
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Lemma C.1. For some e > 0, let g : S — Q be a bijection between finite or periodic sets such
that |a — g(a)| < eforall a € S. Then, foranyi > 1, let a; € S and b; € Q) be the i-th nearest
neighbors of points a € S and b = g(a) € Q, respectively. Then the Euclidean distances from the
points a, b to their i-th neighbors a;, b; are 2e-close to each other, i.e. ||a — a;| — |b — b;|| < 2¢. A

Proof. Shifting the point g(a) back to a, assume that a = g(a) is fixed and all other points change
their positions by at most 2. Assume by contradiction that the distance from a to its new ¢-th
neighbor b; is less than |a — a;| — 2. Then all first new ¢ neighbors by, ..., b; € Q of a belong to
the open ball with the center a and the radius |a — a;| — 2¢.

Since the bijection g shifted every by, ..., b; by at most 2¢, their preimages g~ (b1),...,g (b;)
belong to the open ball with the center @ and the radius |a@ — a;|. Then the i-th neighbor of a within S
is among these % preimages, i.e. the distance from « to its i-th nearest neighbor should be strictly less
than the assumed value |a — a;|. We get a contradiction assuming that the distance from a to its new
i-th neighbor b; is more than |a — a;| + 2¢. O

Lemma C.2. Fore > 0, let g : S — Q be a bijection between finite or periodic sets so that

la — g(a)| < e forall a € S. Then g changes the vector Ry(S) = (Ja — a1l,...,|a — ax|) of the
first k minimum distances from any point a € S to its k nearest neighbors ay, . . . ,ay, € S by at most
2¢ in the Loo-distance. So if by, ..., by € Q are the k nearest neighbors of b = g(a) within QQ and
}_?:b(S) = (|b—=0b1],...,|b— bg|) is the vector of the first k minimum distances from b = g(a), then
the Loo-distance | R, (S) — By(Q)]oe < 2e. [ ]

Proof. By Lemma C.1 every coordinate of the vector ﬁa(S) changes by at most 2¢. Hence the
Loo-distance from R, (.S) to the perturbed vector Ry(Q) is at most 2¢. O

Proof of Theorem 4.3. The bottleneck distance is dp (.S, Q) = inf sup |a — g(a)| between point
g9:5
sets S, Q. Then for any 6 > 0 there is a bijection g : S — @ such that sup |a g(a)] < dp(S,Q)+9.
a€s

If the given sets .S, () are finite, one can set § = 0. Indeed, there are only finitely many bijections
S — @, hence the infimum in the definition above is achieved for one of them.

By [21, Lemma 4.1], if the sets .S, Q are periodic, they have a common lattice A. Any primitive cell
Uof Aisaunitcell of S,Q,i.e. S=A+(SNU)and Q = A+ (Q NU). Since the bottleneck

distance ¢ = dp(95,Q) < @ we can define a bijection ¢ from every point @ € S to a closest point
g(a) € Q. If U is a non-primitive unit cell of S, the distance matrix D(S; k) can be constructed as
in Definition 3.1, but each row will be repeated n(.S) times, where n(.S) is Vol[U] divided by the
volume of a primitive unit cell of S. So we can assume that S, @) share a unit cell U and have in
U the same number m(S) = m(Q), say both are equal to m. For any k& > 1, we first define the
simple 1-1 flow from the rows of D(S; k) to the rows of D(Q; k) by setting f;; = L and f;; = 0
for i # j, where 7,7 = 1,..., m. Recall that Definition 3.1 collapses all rows of D(S; k) that are
identical to each other to a single row, similar for D(Q; k). By summing up weights of collapsed
rows, the above flow induces a flow from all distance vectors in PDD(S; k), e.g. R;(S) in the i-th
row of PDD(S; k), to all distance vectors in PDD(Q); k).

—

Then EMD(PDD(S; k), PDD(Q; k) < + Z |R;(S) — R;(Q)]s, because EMD minimizes the
(

cost over all flows in Definition 4.1. Since | ) Ri(Q)| < 2(dp(S, Q) + ) by Lemma C.2, we
get EMD(PDD(S; k), PDD(Q; k)) < -~ Z 2(d(S,Q) +9) = 2(dp(S,Q) + 0). Since the last

inequality holds for any small § > 0, we get EMD(PDD(S k),PDD(Q; k)) < 2dp(S, Q). O

For any point p in a lattice A C R", the open Voronoi domain V(A;p) = {¢ € R" | |¢ — p| <
l|g — p'| for any p’ € A — p} is the neighborhood of all points ¢ € R™ that are strictly close to p than
to all other points p’ of the lattice A [22].
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The Voronoi domains V' (A; p) of different points p € A are disjoint translation copies of each other
and their closures tile R, so UpcaV (A;p) = R™.

For a generic lattice A C R?, V/(A; p) is a centrally symmetric hexagon. Points p, p’ € A are Voronoi
neighbors if their Voronoi domains share a boundary point, so V(A; p) N V (A, p") # 0.

Below we always assume that any lattice A is shifted to contain the origin 0, also any periodic point
set S = A + M has a point at 0.

Definition C.3 (neighbor set N (A) and basis distances). For any lattice A C R", the neighbor set (of
the origin 0) is N(A) = AN B(0;7) — {0} for a minimum radius v such that N (A) is not contained
in any affine (n — 1)-dimensional subspace of R"™ and N (A) includes all n + 1 nearest neighbors
(within A) of any point ¢ € V(A; p).

For any point q¢ € V(A;0), consider all n-tuples (p1, . .., pn) of points p; € N(A) such that the

vectors pi, ..., Pn, form a linear basis of R™. Order py, ..., py, by their distances to q. Choose
a lexicographically smallest list of basis distances d;(q) < --- < d,,(q) from the point q over all
n-tuples (p1, ..., pn) described above. |

The lattice Z?2 has the neighbor set N(Z2) = {(£1,0), (0, +1)}. If A is generated by (2,0), (0, 1),
the neighbor set N (A) C A includes the 3rd neighbors (0, £2) of the points (0, £0.4) € V(A;0).

Indeed, if Definition C.3 has a radius r < 2, then A N B(0;7) — {0} = {(0,£1)} but the y-axis
does not generate R2. For ¢ = (0, 0.4), considering all pairs (p;, p2) among the four possibilities
((0,£1), (£2,0)), we find the basis distances d1(q) = 0.6 < da(g) = v/0.42 + 22 for the 2nd and
3rd lattice neighbors p; = (0, 1) and py = (£2,0) of q.

Lemma C.4 (N(A) bounds). The neighbor set N(A) of any lattice A is covered by B(0;2R(A)),
where the packing radius R(A) is the minimum R > 0 such that Upca B(p; R) = R™. |

Proof of Lemma C.4. Any point p in the closure V'(A;0) has n + 1 lattice neighbors (within A)
among the origin 0 € A and at least 2(2" — 1) Voronoi neighbors of 0.

In R™, any vertex of the boundary of V(A;0) is equidistant to at least 2 + 1 points of A (the origin 0
and its n Voronoi neighbors). The longest of these distances is the covering radius (A ). The closed
ball B(0;2R(A)) covers all Voronoi neighbors of 0, hence all points of N (A). O

The condition of a linear basis in Definition C.3 guarantees that n + 1 linearly independent vectors
D1, - .., Pn uniquely identify a point ¢ by their basis distances dy(q), . . ., dn(q).

Definition C.5 (a distance-generic periodic point set). A periodic point set S = A + M C R™ with
the origin 0 € A C S is called distance-generic if the following conditions hold.

(C.5a) p, § are not orthogonal for any points p,q € SNV (A;0).

(C.5b) For any vectors i, T between any two pairs of points in S, if |i| = 1|9] < 2R(A) forl = 1,2,
then i = £l and 7 € A.

(C.5¢) For any point q € V (A;0), let dy be the distance from q to its closest neighbor py = 0 within
A. Take any p1, . .., pn in the neighbor set N (A) with distances d; < -+ < d,, to q.

The n + 1 spheres C(p;; d;) with the centers p; and radii d;, i = 0,...,n, can meet at the single
point q € V(A;0) only if dy < --- < d,, are the basis distances of q, hence p, .. ., py, form a linear
basis of R™, only for at most two tuples p1, . .., pn, € N(A) symmetric in 0. |

Condition (C.5b) means that all inter-point distances are distinct apart from necessary exceptions due
to periodicity. Since any periodic set S = A + M C R" is invariant under translations along vectors
of its lattices A, condition (C.5b) for |#] < 2diam[U] can be checked only for vectors from all points
in the Voronoi domain V'(A;0) to all points in the extended domain 3V (A;0).

Condition (C.5b) allows us to recognize lattice distances from any point p € M to its lattice translates
A + pin the row of PDD(S; k) representing p. Indeed, only a lattice distance d appears in the row
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together with 2d (and possibly with higher multiples) by condition (C.5b). Any lattice distance d and
its multiple are repeated twice in every row, because any lattice is centrally symmetric.

All conditions of Definition C.5 can be written as algebraic equations via coordinates of motif points
and basis vectors of a unit cell. Almost all n + 1 spheres in R” have no common points, so condition
(C.5¢) forbids very singular situations, which can be practically checked since the neighbor set N (A)
is finite for any lattice A containing 0. Hence any periodic point set can be made distance-generic by
almost any perturbation of points and lattice basis.

Proof of Theorem 4.4. Assuming that PDD(S; k) is realizable by a periodic point set S = A + M,
we will reconstruct all motif points p € V(A;0), uniquely up to the central symmetry of R™ with
respect to 0. The given number m of points in a unit cell U of S is a common multiple of all
denominators in rational weights of the rows in the given matrix PDD(.S; k). Enlarge PDD(S; k)
replacing every row of a weight w by mw identical rows of weight %

One can assume that the origin 0 € A belongs to the motif M of S and is represented by the first
row of PDD(S; k). If PDD(S; k) has m > 2 rows, we will reconstruct all other m — 1 points of .S
within the open Voronoi domain V (A;0). No points of .S can be on the boundary of V' (A;0) due to
condition (C.5b) on distinct distances.

Remove from each row of PDD(S; k) all lattice distances between any points of A. Then every
remaining distance is between only points p, ¢ € S such that p—q ¢ A. Any pointq € SNV (A;0) —
{0} has its first lattice neighbour 0 at the distance dy = |¢| and a lexicographically smallest list of basis
distances d1(q) < - -+ < d,,(q) from q to its further n lattice neighbors py,...,p, € N(A) CA—0
such that the vectors p1, . . ., P, form a basis of R™. All basis distances are distinct due to (C.5b). By
Lemma C.4 they appear once in both rows of the points 0, ¢ € S in PDD(S; k) after dy = |q|.

Though the basis distances of ¢ may not be the n smallest values appearing after dg = |q| in the first
and second rows of 0 and ¢, we will try all n-distance subsequences d} < - -+ < d/, shared by both
rows. Similarly, we cannot be sure that n 4 1 closest neighbors of ¢ in A form an affine basis of R".
Hence we try all n-tuples of points p1, . .., p, € N(A;0) whose vectors form a linear basis of R".

For all finitely many choices above, we check if the n + 1 spheres S(p;; d;), which are 1D circles
(for n = 2) or 2D spheres (for n = 3), meet at a single point in V' (A;0), which is the reconstructed g.

Condition (C.5¢) guarantees that these n + 1 spheres can intersect at a single point in the open
Voronoi domain V' (A;0) only if the three conditions of Definition C.5 hold. Firstly, the vectors
D1, - - ., Dn should form a linear basis of R”. Secondly, if some distances d; < --- < d,, are the
basis distances from ¢ to pq, . .., p, only if this list is the lexicographically smallest over all tuples
{p1,...,pn} C N(A) that form a linear basis. Thirdly, the single-point intersection happens only for
two subsets {p1,...,pn} C N(A) related by the central symmetry with respect to 0. This symmetry
is an isometry preserving the lattice A and the distances dy < d; < --- < d,,. Making a choice by
this inevitable ambiguity, we uniquely identify a point ¢ € SNV (A;0) — {0} relative to the fixed A.

If the matrix PDD(.S; k) has m > 3 rows, any further point p € (S — {0, ¢}) N V(A;0) will be
uniquely determined as follows. Similarly to the point ¢ above, we determine a position of p using its
basis distances do(p) < di(p) < -+ < dn(p) to points 0 = pg, p1,--.,Pn € N(A). At the end of
reconstruction, we have a final choice between £p symmetric with respect to the origin 0.

Since the second point q is already fixed, the third point p is also restricted by the distance |p — ¢
appearing once only in the second and third rows of PDD(S; k). The distance |p — g| doesn’t help to
resolve the ambiguity between £p only if ¢ belongs to the bisector of points equidistant to £p. In
this case, p, 0, ¢ form a right-angle triangle, which is forbidden by condition (C.5a). Hence p and any
further point of S NV (A;0) is uniquely determined by g and A. O

Proof of Theorem 5.1. 1Tt follows from [25, Theorem 14], which finds & nearest neighbors of m points
in (a motif of) S before averaging these k-th distances for AMD(S; k). Instead of averaging, to
get PDD(S; k), it remains only need to lexicographically sort m lists of ordered distances in time
O(kmlogm). Indeed, a comparison of two ordered lists of the length k takes O(k) time. O
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