
Supplementary Material for
OST: Improving Generalization of DeepFake
Detection via One-Shot Test-Time Training

Liang Chen1 Yong Zhang2∗ Yibing Song2 Jue Wang2 Lingqiao Liu1∗
1 The University of Adelaide 2 Tencent AI Lab

{liangchen527, zhangyong201303, yibingsong.cv, arphid}@gmail.com
lingqiao.liu@adelaide.edu.au

In this supplementary material, we provide,

1. Preprocessing steps and details in Section 1.

2. Additional experiments regarding the generalizability comparisons under different image compres-
sion levels and resolutions in Section 2;

3. Evaluations with calibration and other metrics in Section 3;

4. Extending of our method to the video detection task in Section 4.

5. Time consumption and computational complexity comparisons against other models in Section 5.

6. Visualizations of the embedded representations in Section 6.

1 Preprocessing steps and Details

Following the settings in FF++ [8], we extract 270 frames from each training video to construct the
training set. The extracted and aligned face images are resized to the size of 256× 256 and are then
normalized to the range of [−1, 1]. For our model and all the reimplement methods, we do not apply
any data augmentation steps for the training data. We implement the model in PyTorch, and we
compute the AM-Softmax loss [11] with cosine margin under the default hyper-parameter settings
(γ = 0.0, m = 0.5, s = 30, and t = 1.0). All the methods are running on the same machine (a
Nvidia Tesla v100 GPU with 32G memory).

2 Generalizations to Different Compression Levels and Resolutions

Generalizations to different compression levels. Given the fact that real-world images are usually
stored by different compression levels, it is crucial that deployed deepfake detectors are not easily
subverted by the varying image compression levels. To evaluate the generalizability of the compared
models [8, 5, 7, 6] regarding different compression levels, we separately train them on the F2F data
and test them on the DF and FS data with different compression levels.

The results in terms of ACC and AUC are listed in Table 1. We note that when the training and test
images are with the same compression level, almost all the compared models can obtain remarkable
performances. However, some methods [8, 5, 6] suffer from large performance drop when trained
on the HQ data while test on the LQ data. The results are not surprising. The main reason is that
these methods rely on the low-level image patterns which will be largely destroyed when the images
are highly compressed. On the contrary, the proposed method is substantially less affected by the
compression levels, outperforming all other methods. The results demonstrate the effectiveness of
our method when confronting different image compression levels.

∗Corresponding authors. This work is done when L. Chen is an intern in Tencent AI Lab.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Training set Method
Test set

LQ HQ
DF FS DF FS

F2F (LQ)

Xception 0.621 / 0.666 0.557 / 0.504 0.666 / 0.698 0.536 / 0.559
Face X-ray 0.570 / 0.675 0.549 / 0.511 0.589 / 0.690 0.517 / 0.529

F3Net 0.631 / 0.698 0.554 / 0.560 0.629 / 0.719 0.546 / 0.578
RFM 0.605 / 0.699 0.573 / 0.580 0.637 / 0.732 0.549 / 0.627
SRM 0.631 / 0.727 0.561 / 0.552 0.627 / 0.753 0.528 / 0.550
Ours 0.718 / 0.809 0.609 / 0.663 0.786 / 0.896 0.584 / 0.634

F2F (HQ)

Xception 0.544 / 0.546 0.516 / 0.511 0.648 / 0.749 0.695 / 0.753
Face X-ray 0.518 / 0.578 0.529 / 0.525 0.558 / 0.662 0.813 / 0.859

F3Net 0.529 / 0.571 0.517 / 0.521 0.663 / 0.798 0.565 / 0.677
RFM 0.529 / 0.556 0.518 / 0.515 0.604 / 0.794 0.530 / 0.646
SRM 0.576 / 0.592 0.536 / 0.533 0.574 / 0.792 0.695 / 0.754
Ours 0.695 / 0.750 0.591 / 0.606 0.853 / 0.950 0.754 / 0.826

Table 1: Additional generalizability comparisons across different compression levels in terms of ACC
/ AUC. Our method achieves comparable performance against existing methods. LQ and HQ denote
the highly compressed and lightly compressed data in the FF++ datasets [8].

Resolution DF F2F FS NT Avg.
DFDC DFD DF1.0 DFDC DFD DF1.0 DFDC DFD DF1.0 DFDC DFD DF1.0

200× 200 0.741 0.855 0.962 0.782 0.862 0.959 0.790 0.794 0.947 0.713 0.812 0.937 0.846
320× 320 0.755 0.916 0.937 0.721 0.858 0.948 0.843 0.801 0.939 0.760 0.823 0.931 0.853
256× 256 0.757 0.869 0.938 0.798 0.880 0.947 0.802 0.824 0.909 0.752 0.841 0.929 0.854

Table 2: Ablation studies regarding using images with different resolutions.

Evaluations using images with different resolutions. Following the setting in previous works
[5, 6], faces from the training and test datasets are resized to 256× 256. To evaluate if the resolution
can also influence the generalizability of the detector, we conduct ablation studies by using samples
with different resolutions during training and test. Specifically, we evaluate our model on images
with resolutions of 200 × 200 and 320 × 320. Results are listed in Table 2. We observe that the
differences between the three different resolutions are rather subtle, indicating that image resolution
is not an influential factor for generalization.

3 Evaluations of Different Methods with Calibration and Other Metrics

Calibration for better generalizing. Following the setting in [12], we calibrate the model with
a randomly selected pristine and deepfake pair from the test dataset. We first augment the image
pair for 128 times to obtain a small calibration set. Then the small calibration set is passed into our
detection model to get the logits, which are then fitted by a logistic regression. Similarly, we take
the weight and bias learned from the logistic regression to adjust the output of our model. After
applying the bias and a sigmoid function to the output logit, we can finally obtain the calibrated
probability. Comparisons of accuracies from different methods before and after calibration are listed
in Table 4. We observe that our method still outperforms existing methods for both calibrated and
uncalibrated results. Meanwhile, we note the calibration does not improve the accuracy in all cases.
This phenomenon is consistent with the observations in [12].

Evaluation with other metrics. To evaluate how the compared methods perform on pristine and
deepfake separately, we also report true positive (TP), true negative (TN), false negative (FN), false
positive (FP), and true negative rate (TNR) for them. The methods are trained with the FF++ dataset
and evaluated using DFDC, DFD, and DF1.0 datasets. Results are shown in Table 3. We observe that
the TNR of our method is much larger than other methods, indicating that our method is more likely
to detect a given deepfake image. In comparison, TNRs for other methods are around 0.5, which
shows that these methods can hardly identify a fake image.

2



Dataset (P/N) DFDC (1533/1613) DFD (921/7963) DF1.0 (10050/10050) Avg.
Metric TP TN FN FP TP TN FN FP TP TN FN FP TNR

Xception [8] 1410 700 123 913 783 5375 138 2588 8857 2064 1193 7986 0.415
Face X-ray [5] 1288 784 245 829 814 4984 107 2979 9435 3118 615 6932 0.453

F3Net [7] 1387 679 146 934 902 4465 19 3498 9338 4880 712 5170 0.511
RFM [10] 1109 1192 424 421 763 6191 158 1772 9731 2835 319 7215 0.521
SRM [6] 1348 841 185 772 874 5302 47 2661 10037 3712 13 6338 0.502

Ours 1032 1214 501 399 781 6602 140 1361 8336 9816 1714 234 0.898

Table 3: Performances on pristine and deepfake separately. Here TP, TN, FP, and FN represent true
positive, true negative, false positive, and false negative, respectively. P/N are the numbers of the
positive (pristine) and negative (deepfake) samples in the corresponding dataset.

Method DFDC DFD DF1.0
Original Calibrated Original Calibrated Original Calibrated

Xception [8] 0.671 0.704 0.693 0.688 0.543 0.622
Face X-ray [5] 0.659 0.674 0.653 0.649 0.625 0.684

F3Net [7] 0.657 0.691 0.604 0.659 0.707 0.693
RFM [10] 0.731 0.702 0.783 0.796 0.625 0.649
SRM [6] 0.696 0.688 0.695 0.714 0.684 0.677

Ours 0.714 0.703 0.831 0.858 0.903 0.881

Table 4: Performances comparisons for detectors before and after calibration. We show the accuracy
of recent detectors trained on the FF++ dataset and test them on different benchmarks. The calibration
refers to the two-shot classifier calibration in [12], and the original results are uncalibrated.

4 Extending to Video Detection

Recent studies have also designed deepfake detectors especially for the video detection task. Different
from the image detector which takes a single image as the input, the video detector usually takes a
sequence of video frames as input. Moreover, besides the spatial information, temporal information
hidden in the consecutive frames is also mined for the video detectors. But it is noteworthy that any
image detectors can be extended to the video detection task theoretically, while the video detectors
cannot be used for the image classification task.

In this section, we extend our image detector for the video detection task. Specifically, for each video,
we sample one frame every five frames to collect a total of twenty five images. Then, we average the
predictions over sampled images for the final classification of each video. Following the protocol
in [4], we test the compared models on each of the four methods in the FF++ dataset after training on

Method Training on remaining three
DF F2F FS NT Avg.

video detector

CNN-GRU 0.976 0.858 0.476 0.866 0.794
LipForensics scratch 0.930 0.988 0.567 0.983 0.867
LipForensics finetune 0.984 0.994 0.804 0.993 0.944

LipForensics 0.997 0.997 0.901 0.991 0.971

image detector

Xception 0.939 0.868 0.512 0.797 0.779
CNN-aug 0.875 0.801 0.563 0.678 0.729

Patch-based 0.940 0.873 0.605 0.848 0.817
Ours 0.991 0.942 0.899 0.826 0.915

Table 5: Generalization comparisons in the term of AUC with state-of-the-art methods when extended
to the video detection task. The image detectors use average results from different frames within a
video for classification. The compared methods are tested on each forgery data in the FF++ dataset
while training on the remaining three. The results of CNN-GRU [9], LipForencis [4], Xception [8],
CNN-aug [12], and Patch-based [1] are directly cited from [4].

3



Deepfake
Face2Face
FaceSwap
NeuralTextures
Real

Deepfake
Face2Face
FaceSwap
NeuralTextures
Real

(a) Baseline (b) Ours

Figure 1: T-SNE visualization of features from different models.

Xceptiion [8] Face X-ray [5] F3Net [7] RFM [10] SRM [6] Ours
TC (s) 0.015 0.017 0.019 0.015 0.037 0.062 + 0.074

CC (MACs(G)) 6.01 6.01 6.05 6.01 13.81 18.03

Table 6: Time consumption (TC) and computational complexity (CC) comparisons. All methods
are evaluated on the same device with a 256× 256 image. The inference time of our method takes
0.062 seconds, and our pseudo sample generating process takes 0.074 seconds. Our method takes
two forwards and one backward, thus requiring more flops.

the remaining three. Table 5 lists the results from both the image detectors and video detectors. It is
not surprising that the state-of-the-art video detector outperforms all the methods since the temporal
information is well explored in their algorithms. Meanwhile, we note our method outperforms other
image detectors by a large margin, and it also performs competitively against the video predictor
(i.e. CNN-GRU [9] and LipForencis scratch [4]) even without any temporal information. The results
demonstrate the effectiveness of our method when extended to the video detection task.

5 Time Consumption and Computational Complexity Comparisons

To comprehensively evaluate the proposed method, we provide the time consumption and compu-
tational complexity comparisons in Table 6. All the compared methods are evaluated on the same
device using a 256 × 256 image. All the models are implemented with the Xception baseline [3],
thus the computational complexities are nearly the same for most models except for SRM [6] which
uses a dual branch network architecture. Because our model includes two forwards and one backward
operations during inference, thus the corresponding computational complexity is more than others.
Meanwhile, our method involves the generation of pseudo training samples which uses CPU for
the task mostly (except for the learning-based generating method [2]). Thus, it requires much more
running time than others. However, it is noteworthy to point out that in this relatively early stage, the
deepfake detection community considers little on time consumption but more on the accuracy. We
will explore possible speedup techniques such as model compression and distillation in future work.

6 Visualizations of the Embedded Representations

This section presents the plots of the 2D orthogonal projection of the extracted patterns from our
model and that from the baseline model (i.e. Xception [8]). Specifically, we show the t-SNE
visualization of the extracted features from the FF++ dataset with different detectors in Figure 1. We
observe that both the two models can well separate pristine and deepfake, but the distributions of real
and fake representations are rather different. Although the different forgeries are all considered one
class, the baseline detector seems to reveal unique artifacts of each face manipulation algorithm as
shown in Figure 1 (a). In contrast, the fake representations extracted from our OST model are more
mixed together, which indicates our model tends to explore more common features for classification,
which can boost generalization when encountering forgeries created by unknown methods.

4



References
[1] Lucy Chai, David Bau, Ser-Nam Lim, and Phillip Isola. What makes fake images detectable? understanding

properties that generalize. In ECCV, 2020.

[2] Renwang Chen, Xuanhong Chen, Bingbing Ni, and Yanhao Ge. Simswap: An efficient framework for
high fidelity face swapping. In ACM MM, 2020.

[3] François Chollet. Xception: Deep learning with depthwise separable convolutions. In CVPR, 2017.

[4] Alexandros Haliassos, Konstantinos Vougioukas, Stavros Petridis, and Maja Pantic. Lips don’t lie: A
generalisable and robust approach to face forgery detection. In CVPR, 2021.

[5] Lingzhi Li, Jianmin Bao, Ting Zhang, Hao Yang, Dong Chen, Fang Wen, and Baining Guo. Face x-ray for
more general face forgery detection. In CVPR, 2020.

[6] Yuchen Luo, Yong Zhang, Junchi Yan, and Wei Liu. Generalizing face forgery detection with high-
frequency features. In CVPR, 2021.

[7] Yuyang Qian, Guojun Yin, Lu Sheng, Zixuan Chen, and Jing Shao. Thinking in frequency: Face forgery
detection by mining frequency-aware clues. In ECCV, 2020.

[8] Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias Nießner.
Faceforensics++: Learning to detect manipulated facial images. In ICCV, 2019.

[9] Ekraam Sabir, Jiaxin Cheng, Ayush Jaiswal, Wael AbdAlmageed, Iacopo Masi, and Prem Natarajan.
Recurrent convolutional strategies for face manipulation detection in videos. Interfaces (GUI), 3(1):80–87,
2019.

[10] Chengrui Wang and Weihong Deng. Representative forgery mining for fake face detection. In CVPR,
2021.

[11] Feng Wang, Jian Cheng, Weiyang Liu, and Haijun Liu. Additive margin softmax for face verification.
IEEE SPL, 25(7):926–930, 2018.

[12] Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A Efros. Cnn-generated images
are surprisingly easy to spot... for now. In CVPR, 2020.

5


