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Abstract

State-of-the-art deepfake detectors perform well in identifying forgeries when
they are evaluated on a test set similar to the training set, but struggle to maintain
good performance when the test forgeries exhibit different characteristics from
the training images, e.g., forgeries are created by unseen deepfake methods. Such
a weak generalization capability hinders the applicability of current deepfake
detectors. In this paper, we introduce a new learning paradigm specially designed
for the generalizable deepfake detection task. Our key idea is to construct a test-
sample-specific auxiliary task to update the model before applying it to the sample.
Specifically, we synthesize pseudo-training samples from each test image and create
a test-time training objective to update the model. Moreover, we propose to leverage
meta-learning to ensure that a fast single-step test-time gradient descent, dubbed
one-shot test-time training (OST), can be sufficient for good deepfake detection
performance. Extensive results across several benchmark datasets demonstrate that
our approach performs favorably against existing arts in terms of generalization to
unseen data and robustness to different post-processing steps.

1 Introduction

Deep neural network models have brought remarkable advances to image editing and generation
techniques. While such progress is revolutionizing the multimedia production industry, it also creates
negative social impacts since it has never been easier to create highly deceivable forgery images.
Among those new technologies, deepfake, which uses deep learning models to substitute the identity
of one person with another or alter the facial features in a portrait, is particularly harmful since it
can lead to severe digital crime and undermine the social trust system. To counteract such a negative
impact, deepfake detection technique is developed to automatically recognize pristine or forgery and is
receiving increasing attention in the research community [28, 35, 57, 23, 42, 4, 39, 58, 16, 24, 22, 9].

So far, existing deepfake detection methods achieve favorable performances when training and test
forgeries are from the same dataset and generated by the same deepfake method. In practice, the test
forgeries are usually generated by unknown methods or applied with different image postprocessing
approaches. This discrepancy will inevitably create a distribution drift between training and test
data. Unfortunately, existing deepfake detectors do not generalize well, and their performance tends
to decrease significantly when evaluated across datasets. This phenomenon inspires recent studies
[28, 42, 35, 57, 39] on improving model generalizations to recognize face forgeries generated from
unseen methods. For example, a two heads network is proposed in [28] to discriminate face forgeries
by amplifying blending artifacts. In [42], a face forgery frequency network is developed to mine
forgery patterns in frequency domains for better generalization. Detail discrepancies are investigated
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Figure 1: A glimpse of the proposed one-shot test-time training framework during online predictions.
For every test sample xe, we first synthesize a pseudo-training sample xfo based on xe. Then the
pretrained detector can be updated via a supervised learning step with xfo , i.e. xfo is with a known
label as fake. The final result is obtained by applying the updated detector to the test sample.

in [35], and facial source feature inconsistencies are discovered in [57] to detect face forgeries,
respectively. These methods try to explore common features among the training forgeries for better
classification. But the test data often exhibit different characteristics, and the learned common features
may not be shared by them. Since the test samples are not seen in the training stages, obtaining good
generalization seems unreachable for current detectors.

This work introduces a new learning paradigm specially-designed for the generalizable deepfake
detection task. Specifically, we allow the detector to "see" the test samples before making the final
prediction by conducting an additional "training step" at the test time. One challenge of this idea is
that the label of the test image is unavailable for the training objective. We overcome this problem by
synthesizing a pseudo-training sample based on the test image and using it to update the deepfake
detection model online. In a common deepfake detection setting [28, 57], no matter real or forgery
for the evaluated test sample, we are confident that the synthesized pseudo sample is a forgery. This
unique property enables our detector to train on the synthesized sample that has similar content to the
test sample, thus better adapting to the test characteristic.

Moreover, we propose to use only one-step gradient descent, dubbed one-shot test-time training
(OST), to update the model online for better computational efficiency. A glimpse of OST is shown in
Figure 1. To ensure that such an OST scheme can always lead to a decent model without overfitting
the pseudo-training sample, we employ meta-learning to train a good initial model in a similar
style as MAML [19]. Note that although test-time training (TTT) has been previously proposed
for the general image classification task [46], our approach adopts a different TTT objective that is
more specific for deepfake detection. Meanwhile, as both suggested by a recent work [34] and our
experimental study, the general-purposed self-supervised TTT algorithm in [46] may fail to bring any
improvements but could even deteriorate the detection accuracy. On the contrary, our OST method
can significantly improve the generalization performance of the deepfake detector and could attain
superior performances over the existing solutions in multiple benchmark datasets.

2 Related Works

In this section, we conduct a brief survey on the most relevant arts, including existing deepfake
detection methods and test-time training (TTT)-based works.

2.1 Deepfake Detection

Since the deepfake forgeries have led to great threats to societal security, it is of paramount importance
to develop effective detectors against it. By formulating the detecting as a vanilla binary classification
problem (i.e. pristine or forgery), current end-to-end trained detectors [43] with a simple Xception
baseline [11] can obtain a high detection accuracy. Besides, with more powerful network structures
and more informative image features embedded in the network inputs, existing methods [3, 2, 53, 36,
42, 17, 6, 39] are able to achieve even more remarkable success when the training and test forgeries
are synthesized by the same deepfake algorithms. Thus, the real challenge in this task lies in how to
generalize a learned detector to forgeries created by unseen methods.

Several works have been devoted to addressing the generalizing problem recently [28, 33, 7, 9, 8,
24]. For example, [28] suggests that the blending operation is ubiquitous in the current deepfake
synthesizing process. As a consequence, they propose to detect the blending boundaries hidden
in the forgeries and use them as classification clues. Moreover, [33] shows that the up-sampling

2



step in synthesizing models can bring artifacts to the synthesized forgeries, and they use the phase
spectrums of the forgeries to capture these artifacts. As existing forgery synthesizing steps often
involve two images from different identities and different sources, [35] suggest using high-pass filters
from SRM [20] to reveal detail discrepancies of the forgeries. A similar idea is adopted in [57],
where they use the cue of the source feature inconsistency within the forged images for detection.
Although these methods are effective in many cases, the low-level artifacts they rely on are sensitive
to post-processing steps that vary in different datasets, thus jeopardizing their generalization. Some
other works propose to borrow features from other tasks, such as lips reading [23], facial image
decomposition [60], and landmark geometric [47], to imply the abnormity of forgeries. Although
these features can bring certain improvements, there is a great chance that future deepfake algorithms
will be designed based on these detectors to synthesize more natural forgeries, causing even bigger
threats to societal security.

Compared to existing detectors, the advantages of our method are as follows: (1) we adopt a MAML-
based OST framework to enable the fast adaptation of the learned detector to the test data, which
improves generalization regardless of the varying post-processing steps; (2) OST does not rely on
hand-crafted or borrowed features, which leaves fewer traces for the deepfake algorithms to attack.

2.2 Test-time Training

The concept of TTT was firstly introduced in [46] for generalization to out-of-distribution test data,
where a self-supervised rotation prediction task is utilized with the main classification task during
training, and only the self-supervised task is adopted to help improve the visual representation during
inference, which indirectly improves semantic classification. This framework is theoretically proved
to be effective [46] and is further used in other related areas [30, 51, 41, 5, 55]. For example, [30]
proposes a reconstruction task within the main pose estimation framework, which can be trained
by comparing the reconstructed image with the ground truth borrowed from other frames. [51]
demonstrate that the predictions with lower entropy have lower error rates, and they use entropy to
provide finetuning signals when given a test image. Instead of only minimizing the entropy of the
predicted posterior, [41] also suggests maximizing the noise robustness of the feature representation
during test. In some recent works [5, 55], the TTT framework has also been utilized within a model
agnostic meta-learning (MAML) paradigm [19] which allows the trained model to be optimized in
a way such that it can quickly adapt to any test images. To enable fast adaptation, these works use
contrastive loss [5] or smooth loss [55] to finetune the models during the meta-test phase.

However, despite some encouraging results, current TTT methods aim to select empirical self-
supervised tasks, which is at high risk of deteriorating the performance when the tasks are not
properly selected [34]. This work introduces a new learning paradigm specially designed for the
deepfake detection task. Recall that a forgery can be easily synthesized by blending two different
images [28, 57]. We thus use a newly synthesized forgery as a pseudo-training sample to finetune
the pretrained detector during inference. Our method is easy to implement and can avoid the tedious
work of selecting an effective self-supervised task.

3 Proposed Method

Our method consists of an offline meta-training step and an online test-time training step. The online
test-time-training step will first generate a pseudo-training sample for each test image and then
perform a single gradient descent update to obtain the sample-specific model parameters. The offline
meta-training mimics the online test-time-training operation by sampling episodes from training data.
In the following, we first describe the test-time-training step, involving both pseudo-training sample
creation and one-shot update. Then we elaborate on the meta-learning process.

3.1 Online Test-Time Training

In the following, we assume that a deepfake detection model θ̃ has already been learned. The OST
process will create an updated model parameter θ∗ that is adaptive to each individual test image. This
is achieved by first generating a pseudo-training sample and then using it to form a mini-training set
and update model parameters via one-shot training.
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Figure 2: Pipeline for generating pseudo training samples. Forgeries 1, 2, 3 (from top to bottom)
in the right are produced by the alpha, Poisson [40], and learning-based blending [10] methods,
respectively.

Algorithm 1 One-shot online training

Require: Pretrained detector f(·, θ̃), learning rate γ, test sample xe, training dataset D.
1: Ramdomly select xr from D, and synthesize forgery xfo by blending xe and xr
2: Evaluate the one-shot loss

∑
xs∈{xf

o ,xr}
L(f(xs, θ̃), ys)

3: Update parameters with gradient descent: θ∗ = θ̃ − γ
∑

xs∈{xf
o ,xr}

∇θ̃L(f(xs, θ̃), ys)

4: Get the final classification result by evaluating the updated detector f(·, θ∗) in the test sample xe

Generating pseudo-training samples: As shown in Figure 2, For every test sample xe, we first
randomly select a template image xr from the training dataset and align these two images in geometry
based on their landmarks. Then, we can extract a convex hull using the landmarks of xe and obtain
the deformed final mask by applying random deformation and blurring on the convex hull. With
the deformed mask, we can crop the corresponding color corrected face content from xr. Finally,
with xe, the deformed mask, and the cropped face, we can obtain the pseudo training sample xfo by
using alpha or Poisson [40] blending methods as shown in the right side of Figure 2. Note that when
using the leaning-based blending [10] method, we can directly use xr and xe as input and output xfo ,
which does not require the alignment, cropping, or correction steps. In the following OST step, we
randomly select a forgery as xfo . These pseudo-training samples are labeled as negative (i.e., fake).
Note that although we are unknown about whether the test image is pristine or forgery (i.e., real or
fake), we are confident that the synthesized pseudo image is a forgery.

One-shot online training: In practice, we use the images with known labels (i.e., the randomly
sampled template image xr and the synthesized image xfo ) to form a mini-training set. The label of
xr is provided by the training set, e.g., it can be real or fake dependent on the sampled image, while
xfo is always fake since it is a synthesized image. Then we can perform gradient descent to update
the model. In our design, we only perform a single step gradient descent, dubbed one-shot online
training. Formally, the initial model parameter is updated via

θ∗ = θ̃ − γ
∑

xs∈{xf
o ,xr}

∇θ̃L(f(xs, θ̃), ys), (1)

where ys is the labels to xs; L(f(xs, θ̃), ys) is the one-shot loss; L(·, ·) is the loss function for the
deepfake detector, i.e., the AM-Softmax loss [52] in this paper inspired by the previous work [35];
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Algorithm 2 Offline meta-training
Require: Meta-batch size T , learning rates λ and γ, training dataset D.

1: while not done do
2: for each t in T do
3: Sample x1r and x2r from D, and synthesize forgeries xf1 , xf2 by blending x1r , x2r
4: Obtain support set (xs, ys) and query set (xq, yq) using our split strategy
5: Evaluate the inner loss Lt(f(xs, θ), ys)
6: Compute adapted parameters with gradient descent: θ′t = θ − γ∇θLt(f(xs, θ), ys)
7: end for
8: Evaluate the meta loss

∑
t Lt(f(xq, θ

′
t), yq)

9: Update the models with gradient descent: θ ← θ − λ∇θ 1
T

∑
t Lt(f(xq, θ

′
t), yq)

10: end while
Return: f(·, θ̃)

γ is the step size. After the updating step, we can obtain the final result by applying the updated
detector f(·, θ∗) to the test sample xe. The algorithm of the OST scheme is shown in Algorithm 1.

Understand the effect of one-shot test-time training: The proposed test-time-training algorithm
can also be understood as a domain adaptation method. Specifically, in OST, each image is viewed as
a specific domain defined by its content, and the unseen test image will have a domain gap to the
training data. The pseudo-training sample created by using the above procedure is more relevant to
the test image than the training samples since xfo is synthesized based on the test image. Thus a fast
training on the sample could make the detector adapt better to the test image. More evidence on the
above analysis is presented in Sec. 5.2.

3.2 Offline Meta-training

The proposed offline meta-training step is to ensure that a good initialization can be learned for the
online OST step. To this end, a MAML [19] style meta-training scheme is utilized. Specifically, we
construct a training episode by first randomly sampling two images x1r and x2r from D, and then
create two synthesized forgery images xf1 and xf2 with different blending operations, say, one with
alpha blending and one with Poisson blending. Then we will use x1r and xf1 to perform one-shot
training. The updated model is evaluated on x2r and xf2 , and the incurred loss is used to update the
model parameters with step size λ. In the above design, x1r and xf1 are akin to the support set, and
xf2 and x2r are akin to the query set in standard meta-learning. Note that we include both x2r and xf2
in the query set. They represent two different scenarios: x2r is an image from the original training
domain while xf2 represents an image from a new (synthesized randomly) domain. Including both the
two images encourages the model works well for the existing domain and be able to generalize to a
new domain. Formally, the updating process in one episode can be written as:

θ ← θ − λ
∑

xq∈{x2
r,x

f
2}

∇θL(f(xq, θ′), yq), s.t. θ′ = θ − γ
∑

xs∈{x1
r,x

f
1}

∇θL(f(xs, θ), ys). (2)

Eq. 2 is also referred to as meta update and inner update in a standard MAML-like paradigm,
where L(f(xq, θ′), yq) and L(f(xs, θ), ys) are referred to as the meta and inner losses. The overall
algorithm for the offline meta-training is illustrated in Algorithm 2.

4 Experiments

This section first presents the setups and then shows extensive experimental results to demonstrate the
superiority of our approach. Please refer to the supplementary material for more experimental results.

4.1 Settings

Training and test datasets. Following the protocols in existing deepfake detection methods [28, 35,
57], we use the data in the Faceforencis++ (FF++) dataset [43] for training. This dataset contains
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Method DF F2F FS NT Avg.
DFDC DFD DF1.0 DFDC DFD DF1.0 DFDC DFD DF1.0 DFDC DFD DF1.0

Xception [43] 0.654 0.808 0.617 0.708 0.695 0.745 0.708 0.657 0.605 0.646 0.724 0.838 0.700
Face X-ray [28] 0.609 0.811 0.668 0.633 0.679 0.766 0.646 0.625 0.795 0.613 0.645 0.866 0.696

F3Net [42] 0.682 0.812 0.658 0.679 0.729 0.761 0.679 0.641 0.651 0.672 0.826 0.932 0.727
RFM [50] 0.758 0.833 0.717 0.736 0.711 0.732 0.714 0.593 0.714 0.726 0.816 0.846 0.741
SRM [35] 0.679 0.855 0.720 0.687 0.801 0.775 0.671 0.705 0.771 0.656 0.791 0.936 0.754

Ours 0.757 0.869 0.938 0.798 0.880 0.947 0.802 0.824 0.909 0.752 0.841 0.929 0.854

Table 1: Generalizability comparisons with state-of-the-art methods in the term of AUC. The best
results are in bold. The first row denotes the training data, and the second row shows the corresponding
test dataset. Our method performs favorably among the models compared.
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Figure 3: Generalizability comparisons under different post-processing operations in the term of
AUC. The compared methods undergo five different levels of four particular types of post-processing
steps. “Average” denotes the mean across all post-processing steps at each intensity level. Our method
performs competitively against existing arts.

1000 videos, in which 720 videos are used for training, 140 videos are reserved for verification, and
the rest are used for test. Each real video in this dataset are manipulated with four deepfake methods,
including DeepFake (DF) [13], Face2Face (F2F) [49], FaceSwap (FS) [18], and NeuralTexture
(NT) [48], to generate four fake videos. Each video in FF++ is processed to have three video qualities,
namely raw, lightly compressed (HQ), and heavily compressed (LQ), and the HQ version is adopted
by default unless otherwise stated.

To comprehensively evaluate the generalizability of our method, we use four more benchmark datasets
for test, including the DeepfakeDetection (DFD) [12] which consists of 363 real and 3068 fake videos
created by the improved DF technique; Deepfake Detection Challenge (DFDC) [15] that contains
over 1,000 real and over 4,000 fake videos manipulated by multiple Deepfake, GANbased, and
non-learned methods; DeeperForensics-1.0 (DF1.0) [25] that is composed of over 11,000 fake videos
generated by their DFVAE method, and the CelebDF [32] dataset that contains 408 real videos and
795 synthesized videos generated by the improved DF method. The forgeries in the training and test
datasets do not overlap both in their contents and creating methods.

Implementation details. We use Xception [11] as the backbone network, and the parameters are
initialized by the weights pretrained on the ImageNet [14]. We use DLIB [44] for face extraction and
alignment, and we resize the aligned faces to 256 × 256 for all the sampled frames in the training
and test datasets. We use the Adam optimizer [26] for optimizing the network with β1 = 0.9 and β1 =
0.999, and the meta-batch size is set to be 20. The learning rates for the inner update (i.e. γ in Eq. (1)
and (2)) and meta update (i.e. λ in Eq. (2)) are fixed as 0.0005 and 0.0002 for both the offline and
online training phases.

4.2 Generalizability Comparisons

We compare our method with several state-of-the-arts, including Xception [43], Face X-ray [28],
F3net [42], RFM [50], and SRM [35], to demonstrate its superior generalizability. To ensure fair
comparisons, we use the provided codes of Xception, RFM, and SRM from the authors, and we
reimplement Face X-ray and F3Net rigorously following the companion paper’s instructions and train
these models under the same settings.
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Method Training dataset DFDC CelebDF
AUC ↑ ACC ↑ ERR ↓ AUC ↑ ACC ↑ ERR ↓

MLDG [27]

FF++

0.682 0.607 0.370 0.609 0.595 0.418
LTW [45] 0.690 0.631 0.368 0.641 0.634 0.397
MT3 [5] 0.775 0.667 0.307 0.701 0.664 0.319

Ours 0.833 0.714 0.250 0.748 0.673 0.312

Table 2: Comparisons with models based on meta learning in terms of AUC, ACC, and ERR.

[59] [1] [31] [37] [54] [38] [29] [36] [33] [56] Ours
FF++ 0.701 0.847 0.930 0.664 0.473 0.966 0.968 0.932 0.969 0.998 0.982

CelebDF 0.538 0.548 0.646 0.550 0.546 0.575 0.563 0.734 0.724 0.674 0.748
Table 3: Extensive evaluations with other state-of-the-arts (i.e. Two-stream [59], MesoNet [1], FWA
[31], VA-MLP [37], Headpose [54], Capsule [38], SMIL [29], Two-branch [36], SPSL [33], and
MADD [56]) in the term of AUC. The compared models are trained on the FF++ dataset [43] while
testing on both FF++ [43] and CelebDF [32]. Our method performs favorably against existing arts.

Generalizing to different datasets. Forgeries in different datasets are often created by different
deepfake methods. In a real-world scenario, suspicious images are likely to be created by unseen
methods from unseen sources, thus the generalizability to different datasets would be crucial. To
evaluate the generalizability, we conduct experiments by training the compared methods on each of
the four data in FF++ (i.e. DF, F2F, FS, and NT) and test them on the benchmark datasets, including
DF1.0, DFD, DFDC. The experimental setting is not trivial since all the deepfake methods that
synthesize the test forgeries are unseen in the training dataset.

Experimental results in the term of Area Under Curve (AUC) are listed in Table 1. Existing arts
[43, 28, 42, 35] rely on imperceptible artifacts for generalizing, but these artifacts may appear with
different patterns in forgeries from different datasets, thus limiting their generalizing. RFM [50]
suggests mining more regions in the detected images for classifying. However, this approach still
cannot avoid the domain gap between the training and test samples. In comparison, our method
suggests finetuning the pretrained detector on the test data, and it enables adaptation to the new
data before evaluation, thus improving generalizing. Meanwhile, we can observe that our method
outperforms other models in most cases, and it surpasses the second best [35] by 10% in the term of
overall performance, which clearly demonstrates the advantages of the proposed OST strategy for
generalizing to new forgeries.

Generalizing to different post-processing steps. For real-world deepfake detection requirements,
it is of paramount importance that a detector can generalize to different post-processing steps. We
conduct experiments with different post-process steps to evaluate the generalizability of our method.
Specifically, we train the compared models on the original FF++ data and test them on FF++ samples
that were exposed to various unseen post-processing steps.

Following [25], we consider four popular post-processing steps, including changes in color saturation,
changes in color contrast, Gaussian blur, and resize: downsample the image by a factor then upsample
it to the original resolution. Note that all the models are trained without these augmentations, so
that these post-processing steps are unseen during training. The results are plotted in Figure 3.
It is evident that our method can better generalize to unseen post-process operations than other
models [43, 28, 42, 35, 50]. In particular, the changes in color saturation and color contrast
can hardly affect our model, while state-of-the-arts suffer from performance declines to different
extents. Moreover, OST maintains higher performances than all the compared models when the post-
processing steps affect the high frequency content of the images (i.e. blurring and resizing), where
existing arts undergo significant deterioration. We attribute this to their reliance on the imperceptible
low-level clues, which will be damaged by these steps. We also include comparisons regarding
another post-processing step (i.e. compression), please refer to the supplementary material for details.

4.3 State-of-the-art Comparisons

Comparisons with other models based on meta learning. The idea of using meta learning to boost
the generalization of the deepfake detector has been explored in the previous work, such as that in
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Method DF F2F FS NT Avg.
DFDC DFD DF1.0 DFDC DFD DF1.0 DFDC DFD DF1.0 DFDC DFD DF1.0

Baseline 0.742 0.841 0.910 0.693 0.816 0.924 0.735 0.750 0.913 0.736 0.848 0.895 0.817
TTT [46] 0.717 0.862 0.859 0.666 0.820 0.891 0.733 0.684 0.833 0.677 0.825 0.863 0.786

TENT [51] 0.749 0.851 0.915 0.707 0.826 0.916 0.725 0.752 0.915 0.748 0.840 0.886 0.819
Ours 0.757 0.869 0.938 0.798 0.880 0.947 0.802 0.824 0.909 0.752 0.841 0.929 0.854

Table 4: Ablation studies regarding the effectiveness of the proposed OST. The metric is AUC. The
baseline model is our method without the online training step (but using synthesized images at the
training stage). We reimplement TTT [46] and TENT [51] with our MAML-based framework using
the same self-supervised task from [46] and entropy minimization task from [51].

LTW [45]. Inspired by MLDG [27], which uses meta-learning to solve the domain generalization
problem, LTW assumes forgeries from different deepfake methods as different domains, so the
generalizable deepfake detection task can be regarded as a domain generalizing problem. In this
experiment, we compare our method with LTW and MLDG. Note that both of these models require
the training dataset to contain more than one forgery creating methods. We thus train the models on
the FF++ dataset and test them on CelebDF and DFDC datasets. Moreover, we also reimplement
and evluate a recent meta learning-based method MT3 [5] which uses a contrastive loss between the
original sample and its augmentation to update the parameters during inference.

Results are shown in Table 2, where the figures are directly cited from the reported statistics in
[45]. We observe that the proposed method outperforms others in terms of ACC, AUC, and EER.
The main reason is that although LTW and MLDG can learn good initializations via meta learning,
their detectors cannot finetune on the unknown test domains, thus limiting the overall performances.
Meanwhile, the contrastive loss may be less effective in the deepfake detection task which limits the
generalizability of MT3. In comparison, our pretrained detector can adapt to the test samples via
OST, and our designed pseudo training task is specially designed for the deepfake detection task, thus
being more effective than other arts.

Comparisons with other state-of-the-art detectors. We further evaluate our method against several
more state-of-the-art algorithms, including the Two-stream [59], MesoNet [1], Headpose [54], FWA
[31], VA-MLP [37], Capsule [38], SMIL [29], Two-branch [36], SPSL [33], and MADD [56]. All
the models are trained on the FF++ dataset and tested on FF++ and CelebDF datasets. We cite the
figures from [33] directly for some compared models. Results in the term of AUC are listed in Table
3. Our method achieves favorable performance when generalizing to CelebDF while still maintaining
a good result on FF++ compared with all the other methods.

5 Algorithm Analysis

In this section, we first conduct ablation studies to validate the effectiveness of our OST algorithm.
Then, we illustrate why the pseudo samples can lead to better generalization. Besides, we discuss how
sample selection affects our OST algorithm and the adaption of our method to a regular framework.

5.1 Ablation Studies

Our ablation studies on evaluating the proposed OST method consist of the comparisons of our model
to the following two configurations. The first one is the baseline configuration that does not perform
online training but include all the other operations, e.g., augmentation of domains via synthesized
images. The second one is a self-supervised test-time-training (i.e., TTT algorithm in [46]). In TTT,
we use MAML as offline meta-learning and a rotation prediction task [21] for training and test, which
is the same as that in [46]. The same framework is applied for the third variant TENT [51] which aims
to minimize the prediction entropy via inference. The data collection, split, and other implementation
configurations remain the same to ensure fair comparisons.

We train the baseline method, TTT, TENT, and our method on four types of data in the FF++
dataset. Then, we evaluate these learned detector models on the DFDC, DFD, and DF1.0 datasets.
Table 4 shows the evaluation results by using the AUC metric. These results indicate that our
OST method improves baseline by 4%. This improvement shows the effectiveness of our online
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DFDC DFD DF1.0 CelebDF

‖f(xr, θ̃))− f(xe, θ̃))‖ 2.06 1.06 0.94 1.43
‖f(xfo , θ̃))− f(xe, θ̃))‖ 1.63 0.82 0.61 1.03

Table 5: Average feature distances of the test samples (i.e. xe) from different test sets to the training
sample (i.e. xr) and their corresponding pseudo-training forgeries (i.e. xfo ). Distance between xe and
xfo is closer than that between xe and xr in all cases.

Method DF F2F FS NT Avg.
DFDC DFD DF1.0 DFDC DFD DF1.0 DFDC DFD DF1.0 DFDC DFD DF1.0

NN 0.790 0.857 0.944 0.806 0.841 0.938 0.791 0.831 0.914 0.760 0.858 0.931 0.855
Avg 0.773 0.898 0.956 0.768 0.820 0.929 0.773 0.809 0.924 0.751 0.847 0.940 0.849

X w/o OST 0.761 0.836 0.928 0.729 0.774 0.912 0.755 0.784 0.894 0.739 0.825 0.906 0.820
X w/ OST 0.763 0.845 0.962 0.733 0.785 0.943 0.766 0.812 0.946 0.775 0.889 0.929 0.846

Ours 0.757 0.869 0.938 0.798 0.880 0.947 0.802 0.824 0.909 0.752 0.841 0.929 0.854

Table 6: Effects of different sampling and learning process. We select the training sample to be
blended by using nearest neighbor sampling, and average sampling. The detection results are shown
on the first and second rows, respectively. We use the Xception network without and with our OST
scheme (i.e. X w/o OST and X w/ OST) to show if our method can still thrive in a regular framework.
The results are shown on the third and fourth rows, respectively.

test-time training method. On the other hand, we observe that TTT does not improve the baseline
performance. This corresponds to the observation in [34] that an inappropriate self-supervised
task (i.e., rotation prediction task) in the TTT scheme may jeopardize the main deepfake detection
performance. Meanwhile, the small entropy regularization in TENT may not be as effective in the
binary classification task as it in the multi class classification task, explaining why its improvements
over the baseline model is subtle. Overall, the experiments show that our OST method is more
generalizable than the existing TTT-based methods [46, 51] for the deepfake detection task.

5.2 Explanation for OST: Pseudo Samples Can Mitigate the Diverged Data Distributions

In section 3.1, we explain that the effect of OST is by training the detector on a synthesized pseudo-
training sample that is closer to the test images than the original training data. This is due to the
synthesized image being created based on the test image. In this subsection, we further provide some
experimental evidence for this argument.

We experimentally validate the above analysis by computing the feature distance of test samples (i.e.,
xe) to the training samples (i.e. xr), and their corresponding pseudo-training samples (i.e. xfo ). We
use test samples from the four test sets (i.e. DFDC, DFD, DF1.0, CelebDF) for evaluation, and the
euclidean distance is adopted as the evaluation metric. Table 5 show the results. We observe that in
all test sets, the average distance between xfo and xe is smaller than that between xr and xe. These
results consistently correspond to our aforementioned analysis. As a result, we can conclude that
the generated pseudo-training samples are with features that reside in the intermediate state of the
training and test data. By finetuning the detector with pseudo-training samples that are close to test
samples, we can make the model better adapt to the domain defined by the test sample.

5.3 Further Analysis

Sample selections. During forgery synthesis, we randomly select one training sample to blend with
the test sample. To investigate whether the random selection is an effective approach, we conduct
ablation studies where our random selection is compared to the other two configurations. The first
configuration is the nearest neighbor sampling (i.e. NN sampling). For each test sample, we select
the training sample whose feature distance is closest for blending. The second configuration is
the average sampling (i.e. Avg sampling), where we average the training sample performance for
evaluation. We use these configurations on four types of data on FF++ datasets, and evaluate their
performance on DFDC, DFD, and DF1.0 datasets. The first and second rows of Table 6 show the
results. We observe that the differences of the average performance among these three sampling

9



Steps DF F2F FS NT Avg. TC(s)
DFDC DFD DF1.0 DFDC DFD DF1.0 DFDC DFD DF1.0 DFDC DFD DF1.0

1 step 0.757 0.869 0.938 0.798 0.880 0.947 0.802 0.824 0.909 0.752 0.841 0.929 0.854 0.065
2 step 0.759 0.902 0.927 0.794 0.892 0.942 0.797 0.830 0.922 0.758 0.836 0.947 0.859 0.121
3 step 0.783 0.860 0.942 0.804 0.906 0.934 0.801 0.840 0.929 0.747 0.843 0.948 0.861 0.181

Table 7: Performances of using different gradient descent steps. Improvements brought by more
updating steps are subtle, while the time consumptions (TC) are proportional to the updating steps.

strategies (i.e. NN sampling, Avg sampling, and random sampling) are small (less than 0.01). The
small difference indicates that the sampling strategies during inference are not critical in our model.
To this end, we use the random sampling strategy for efficiency considerations.

OST adaptions. Our learning framework is based on MAML which can adapt to new tasks efficiently.
We analyze how our OST method functions when we substitute MAML with a regular training scheme.
The training data is kept the same, and the backbone is still Xception. Results are shown in the
third and fourth rows of Table 6. We observe that OST with regular end-to-end network training
performs on par with the MAML framework. On the other hand, the detection performance decreases
when the model does not employ our OST process. These results indicate that our method suites
regular training configurations and improves prevalent network backbones. However, the MAML
framework enables a faster adaption during online inference (i.e., 10 times faster for each test sample).
In practice, we utilize the MAML framework and integrate our OST method.

Multiple Gradient Descent Steps. To study if more updating steps can improve the detection, we
conduct ablation studies by using different gradient descent steps during evaluation. The model is
trained on the FF++ dataset, and it is evaluated on the DFDC, DFD, and DF1.0 datasets. As shown
in Table 7, the accuracies of using more gradient descent steps are not improved greatly while the
computational times are proportional to the gradient descent steps. Meanwhile, using more gradient
descent steps also requires much more memory costs in an MAML-based framework. We thus use
only one gradient descent step in our method as a compromise between efficiency and accuracy.

6 Conclusion and Discussions

In this paper, we propose a new learning paradigm specially designed for the generalizable deepfake
detection task. To recap briefly, for each test sample, we suggest finetuning the pretrained detector
with a pseudo-training sample, which is synthesized by blending the test samples and a randomly
selected template image, before the classification step. We empirically find that the proposed online
training scheme enables the pretrained model to adapt to the sample-specific statistics, thus facilitating
the generalizability. We implement our method in a MAML-based scheme to enable fast adaptation
to different test samples, which shows superior performance against state-of-the-art algorithms for
generalization to unseen forgeries and various post-processing operations.

Limitations and future works. As the pseudo-training samples are synthesized following existing
deepfake pipelines, our method cannot be applied to the scenario when the fake images are created
following other protocols, such as the case when fake images are totally synthesized by GAN-based
methods. It is our future work to develop methods that aim for both deepfakes and GAN-synthesized
fake images. Meanwhile, DLIB is used in our forgery synthesizing pipeline to detect and extract
facial landmarks. Considering that there are circumstances that DLIB may fail, which may also fail
OST at the same time. Thus, a more effective facial detecting method is promotive for OST.

Ethic statement. This work is designed to help people better fight against the abuse of deepfake
technology. It does not involve any human or animal subjects, and there is no violation of personal
privacy while conducting experiments. We do not anticipate any potentially harmful consequences to
our work. Through our study and releasing our code, we hope to raise stronger research and societal
awareness towards the problem of generalizable deepfake detection.
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