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1 Computations in the Bézier Buttress

This sections seeks to explain how the KL-divergence is computed using the Bézier buttress. It further
explains more detailed parametrisation in the architecture. For completeness we here give a forward
pass to compute Var (f(x)).
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here we make the choice that {wγ}i,j := exp(vi,j)ςγi. This ensures positive weights and hence a
positive output for the variance of f . ςγ comes from the inverse squared Bernstein adjusted prior
(see Section 2). v are free parameters to be inferred in the variational posterior. This parametrisation
makes computing the KL terms easier.

We remark all the following calculation are only for one Bézier buttress. Are there multiple Bézier
buttresses, with different orderings of layers, the computations are equivalent for all of them.

For computing the KL we first recall from the paper
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For easier reference we declare
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We remind again that “hat” notation refers to parameters from variational posterior q. We also
remind that the prior variance is given Σi1,...,id =

∏d
γ=1 ςγ(iγ). Because we have included ς in the

parametrisation in the posterior Σ̂i1,...,id , they are cancelling out in the expression in S1 and S3. We
get

S1 = 1>ν1+1 expv1 · · · expvd1νd+1. (7)
where exp is element-wise on the matrices.
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For S3 we make the observation, based again on ς cancelling out in the fraction, that

log
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= − log
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That is, summing over log Σ̂i1,i2,...,id is basically counting how many paths (i.e. control points) use
viγ−1,iγ ,γ . That is determined as ψγ = τ

(νγ−1+1)(νγ+1) . Here ν0 := 0. Hence,
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where
⊕

denotes summing the elements in the matrix.

Notice how the variational parametrisation of {wγ}i,j := exp(vi,j)ςγi was carefully chosen for
easily computing S1 and S3.

S2 is more close to what described in main paper. We simply just need to square all the weights and
correct with the prior variance. That is, correct with 1/ςγ . Hence,
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where here ςγ is the diagonal matrix with ςγi along its diagonal, for i = 1, . . . , νγ . Notice further
here w are the weights in the mean Bézier buttress.

Now
KL (q(P )‖p(P )) = S1 − τ + S2 + S3, (11)

all of which are computed in a single forward pass in the Bézier buttress. τ is the number of all
control points (in one buttress).

2 Numerical results

For reproducibility we give the values used to generate Figure 4. These are given in Table 1.

year buzz houseelectric slice
Test log-likelihood

B20: −3.6209± 0.00 B20: −0.0832± 0.01 B20: 1.5987± 0.00 B3: −0.5321± 1.36 B5: −2.7831± 1.49
Test RMSE

B20: 9.0461± 0.01 B20: 0.2629± 0.00 B20: 0.0489± 0.00 B3: 0.0761± 0.01 B5: 0.0880± 0.02

Table 1: Numerical values used create Figure 4. Here is listed average and standard deviation over 3
splits. On year the test-set was not standardised to compare with baselines there.
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