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Abstract

Modern approximations to Gaussian processes are suitable for “tall data”, with a
cost that scales well in the number of observations, but under-performs on “wide
data”, scaling poorly in the number of input features. That is, as the number of input
features grows, good predictive performance requires the number of summarising
variables, and their associated cost, to grow rapidly. We introduce a kernel that
allows the number of summarising variables to grow exponentially with the number
of input features, but requires only linear cost in both number of observations and
input features. This scaling is achieved through our introduction of the Bézier
buttress, which allows approximate inference without computing matrix inverses
or determinants. We show that our kernel has close similarities to some of the
most used kernels in Gaussian process regression, and empirically demonstrate the
kernel’s ability to scale to both tall and wide datasets.

Gaussian processes (GPs) are a probabilistic approach to modelling functions that permit tractable
Bayesian inference. They are, however, notorious for their poor scalability. In recent decades, this
criticism has been challenged. Several approximate methods now allow GPs to scale to millions
of data points. Yet, scalability in the number of data points is merely one challenge of big data.
There are still problems associated with the input dimensionality – one aspect of the famed curse
of dimensionality. Burt et al. [2020] analysed the most studied approximation, the so-called sparse
inducing points methods, and showed it to be accurate for low dimensional inputs. Alarmingly,
exponentially many inducing points are still needed in high-dimensional input spaces, that is, for
problems with a large number of features. As such, despite modern GP approximations scaling to tall
data, they are still discounted when concerning wide data.

In response to this, there exist GP approximations built on simplices or grid-structures in the input
space [Wilson and Nickisch, 2015, Gardner et al., 2018, Kapoor et al., 2021]. These take advantage of
attractive fast linear algebra, but are often limited by memory in higher dimensions. Their advantage
is the ability to fill the input space with structured points, so all observations have a close neighbour.

We propose a new kernel for GP regression that requires neither matrix inversion nor determinant
calculation – GPs’ two core computational sinners. Additionally, we cover the input space1 with
exponentially many points, but introduce an approximation that grows only linearly in computational
complexity. That is, our method scales linearly in both the number of data points and the number of
input dimensions, whilst being space-filling in the input domain.

GPs are indispensable to fields where uncertainty is a driver in decision-making mechanisms. Such
fields include Bayesian optimisation, active learning and reinforcement learning. The critical decision
mechanism is the exploration-exploitation trade-off. One ability useful in such fields is to assign
high uncertainty to unexplored regions, just as does an exact GP. We show that our proposed model
also assigns high uncertainty to unexplored regions, suggesting our model as well-suited to decision-
making problems.

1A limiting assumption of our kernel is its restriction to a box-bounded domain in the input space.
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Control point Points in hypercube (input space)

Figure 1: Left: Illustration of 3d control points (orange) and the 2d grid spanning the input space
[0, 1] × [0, 1]. We see how the function (or surface) f gets impacted by the control points. Right:
How the points cover the hypercube in 3 dimensions. Here a grid in 3d with orders (2, 3, 3).

1 Background

Bézier curves and surfaces are parametrised geometric objects that have found great usage in
computer-aided design and robotics [Prautzsch et al., 2002]. The simplest Bézier curve is the linear
interpolation of two points p0 and p1 in RD; the Bézier curve of order 1

c(t) = (1− t)p0 + tp1, t ∈ [0, 1]. (1)
Higher order curves are generalised in the following way: the order-ν Bézier curve is defined as

c(t) =

ν∑
i=0

Bνi (t)pi, t ∈ [0, 1]. (2)

In Bézier terms, pi are referred to as control points. Notice an order-ν Bézier curve has ν + 1 control
points. Bνi denotes the ith Bernstein polynomial of order ν. They are defined as

Bνi (t) =
ν!

i!(ν − i)!
ti(1− t)ν−i. (3)

By going from curves to surfaces we wish to extend from the scalar t to a spatial input x ∈ [0, 1]d,
for d > 1. Here, we can define Bézier d-surfaces as

cd(x) =

ν1∑
i1=0

ν2∑
i2=0

· · ·
νd∑
id=0

Bν1i1 (x1)· · ·Bνdid (xd)pi1,...,id , x = (x1, x2, . . . , xd) ∈ [0, 1]d. (4)

Figure 1 gives a visual illustration of a 2-dimensional surface embedded in R3. In the literature, it is
difficult to find any studies of d-surfaces for d > 2. This paper targets especially this high-dimensional
input case. We restrict our output dimension to 1, the regression problem, but the methods naturally ex-
tend to multidimensional outputs. The red points in Figure 1 show how each control points has an asso-
ciated location in the input space. They are placed on a grid-like structure, and the order of each dimen-
sion determines how fine the mesh-grid of the hypercube is; i.e. how dense the input-space is filled.

Gaussian processes (GPs) are meticulously studied in probability and statistics [Williams and
Rasmussen, 2006]. They provide a way to define a probability distribution over functions. This
makes them useful, as priors, to build structures for quantifying uncertainty in prediction. They are
defined as a probability measure over functions f : X → R, such that any collection of elements
(x1,x2, . . . ,xn) in X have their associated output (f(x1), . . . , f(xn)) following a joint Gaussian
distribution. This distribution is fully determined by a mean function m : X → R and a positive
semi-definite kernel function k : X ×X → R. They admit exact Bayesian inference. However, exact
inference comes at a prohibitive worst-case computational cost of O(n3), where n is the number of
training points, due to computing inverse and determinant of the kernel matrix.

Sparse Gaussian processes [Snelson and Ghahramani, 2005] overcome this burden by conditioning
on m inducing points, reducing complexity to O(nm2), where usually m << n. The inducing points,
denoted u, are then marginalised to obtain an approximate posterior of f . The variational posterior
mean and variance, at a location x∗ are then given by

E[f(x∗)] = k(x∗,Z)k(Z,Z)−1µu, (5)

Var(f(x∗)) = k(x∗,x∗)− k(x∗,Z)k(Z,Z)−1 (k(Z,Z)− Σu) k(Z,Z)−1k(Z,x∗), (6)
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under the assumption of a constant zero prior mean function. This assumption is easily relaxed if
needed. Here Z denotes the inducing locations in the input space, i.e. f(Z) = u ∼ N (µu,Σu).
Under further assumption of Gaussian observation noise ε, i.e. y∗ = f(x∗) + ε, then Titsias [2009]
showed the optimal µu and Σu are known analytically. In a sought analogy to Figure 1, Z would be
the red points and u would be the orange.

2 Bézier Gaussian Processes

Inspired by Bézier surfaces, we construct a Gaussian process f : [0, 1]d → R as

f(x) =

ν1∑
i1=0

ν2∑
i2=0

· · ·
νd∑
id=0

Bν1i1 (x1)· · ·Bνdid (xd)P i1,...,id , (7)

where P i1,i2,...,id ∼ N (ϑi1,i2,...,id ,Σi1,i2,...,id) are Gaussian variables and x = (x1, x2, . . . , xd).
Here, xγ ∈ [0, 1] for γ = 1, . . . , d. We write P , with capital letter to emphasise that it is a random
variable now. Further, we write it in boldface though we here only consider the scalar case, i.e.
regression, but the multi-output case is not fundamentally different. It is easy to verify that f satisfies
the definition of a GP since it, for any x, is a scaled sum of Gaussians. We assume that all P i1,...,id
are fully independent. With that assumption, we can make the following observation for the mean
and kernel function

µ(x) :=

ν1∑
i1=0

ν2∑
i2=0

· · ·
νd∑
id=0

Bν1i1 (x1)· · ·Bνdid (xd)ϑi1,...,id , and (8)

k(x, z) := Cov (f(x), f(z)) =

ν1∑
i1=0

· · ·
νd∑
id=0

Bν1i1 (x1)· · ·Bνdid (xd)Σi1,...,idB
ν1
i1

(z1)· · ·Bνdid (zd). (9)

The Bernstein polynomials can approximate any continuous function given the order is large enough,
thus they make a good basis for GP regression [Hildebrandt and Schoenberg, 1933]. Naturally,
selecting a prior over f comes down to selecting a prior over the random control points P . The
most common prior mean in GP regression, the constant zero function, is then easily obtained
by ϑi1,...,id = 0 for all i. By construction, the choice of Σi1,...,id needs consideration to yield a
convenient prior over f . Mindlessly setting Σi1,...,id = 1 would make Var (f(x)) collapse to zero
quickly in the central region of the domain, especially as dimensions d grow. This, of course, gives a
much too narrow prior over f .

Figure 2 (middle) shows that in the central region the standard deviation of f is smaller due to the
nature of the Bernstein polynomials. If we consider instead a two-dimensional input the standard
deviation would collapse even more, as we would then see the shrinking effect for both dimension
and multiply them. We can, however, adjust for this.

We define the inverse squared Bernstein adjusted prior to counter this effect. In all dimensions
γ = 1, . . . , d, let

ςγ = A−1γ 1νγ+1, where Ai,j =
(
B
νγ
j (i/νγ)

)2
, (10)

and νγ denotes the order of the dimension γ. Then setting Σi1,...,id =
∏d
γ=1 ςγ(iγ) ensures

that Var (f(x)) ≈ 1 over the entire domain [0, 1]d. Eq. 10 solves a linear system, such that
Var (f(i/νγ)) = 1, for i = 0, . . . , νγ . This means a prior hardly distinguishable from standard
stationary ones such as the RBF kernel. Visual representation of this prior is shown in Figure 2 (right).
This adjustment works up to νγ = 25, after which negative values occur.

Summarising, we introduced a kernel based on Bézier surfaces. An alternative viewpoint is that f is a
polynomial GP, but with Bernstein basis rather than the canonical basis. We remark that f is defined
outside the domain [0, 1]d; any intuition about the prior there is not considered, and we will not pursue
investigating data points outside this domain. Of course, for practical purposes this domain generalises
without loss of generality to any rectangular domain [a1, b1]×. . .×[ad, bd]. For presentation purposes
we keep writing [0, 1]d. Next, we show how we infer an approximate posterior given data.
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Figure 2: Left: The 21 Bernstein polynomials that make up the basis of a Bézier GP of order 20. We
observe how they each impact a ‘local’ region along the [0,1] domain. Middle: If not accounting for
the Bernstein polynomials behaviour, the variance is of f is more narrow in the central region. Right:
By adjusting, see Eq. 10, we can enforce a uniform variance over the domain.

2.1 Variational inference

Let P denote the set of all P i1,...,id . As the prior of f is fully determined by the random control
points P , the posterior of f is determined by the posterior of these. As per above, we set the prior

p(P ) =

ν1∏
i1=0

ν2∏
i2=0

· · ·
νd∏
id=0

p(P i1,...,id) :=

ν1∏
i1=0

ν2∏
i2=0

· · ·
νd∏
id=0

N (0,Σi1,...,id), (11)

where Σi1,...,id =
∏d
γ=1 ςγ(iγ). We utilise variational inference to approximate the posterior of the

control points, and hence f . This means we introduce variational control points. We assume they are
fully independent (usually called the mean-field assumption), and have free parameters for the mean
and variance, such that P i1,...,id ∼ N (ϑ̂i1,i2,...,id , Σ̂i1,i2,...,id).

Assume we have observed data D = {xj , yj}nj=1. The key quantity in variational inference is the
Kullback-Leibler divergence between the true posterior p(P |y) and the variational approximation
– which we denote q(P ). The smaller divergence, the better approximation of the true posterior.
Without access to the true posterior, the quantity is not computable. However, it has been shown this
divergence is equal to the slack in Jensen’s inequality used of the log-marginal likelihood: log p(y).

log p(y) = log

∫
p(y|P )p(P )dP ≥

∫
log

(
p(y|P )p(P )

q(P )

)
q(P )dP (12)

= Eq(P ) [log p(y|P )]− KL (q(P )‖p(P )) . (13)

Knowing this, we can approximate the true posterior with q(P ) by maximising Eq. (13). This is the
evidence lower bound, and it is maximised with respect to the variational parameters ϑ̂i1,i2,...,id
and Σ̂i1,i2,...,id . This is fully analytical when the variational parameters and a Gaussian likelihood is
assumed.

We assume our observation model is disturbed with additive Gaussian noise, which in other words
means our likelihood is Gaussian

p(yj |P ) := N
(
yj |f(xj), σ

2
)
, σ2 > 0, (14)

for each j = 1, . . . , n and we assume they are independent conditioned on P . With these assumption
the first term in Eq. (13) becomes

Eq(P ) [log p(y|P )] = −1

2

n∑
j=1

log(2π) + log(σ2) +

(
yj − Eq(P )[f(xj)]

)2
+ Varq(P ) (f(xj))

σ2
,

(15)
where Eq(P )[f(xj)] and Varq(P )(f(xj)) are given as Eq. (8) and (9) respectively, but with the
variational parameters ϑ̂i1,i2,...,id and Σ̂i1,i2,...,id used.
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Figure 3: A Bézier buttress visualised. Here, the input dimension is 3, hence 3 layers. Each layer
has 4 nodes, since each dimension has order 3. There exist 43 paths from source (left square) to sink
(right square), each path represents one unique control point. We can sum over all control points by
sequential matrix multiplication from source to sink.

The second term in Eq. (13) enjoys the independence of control points to split into sums

KL (q(P )‖p(P )) =

ν1∑
i1=0

ν2∑
i2=0

· · ·
νd∑
id=0

KL (q(P i1,...,id)‖p(P i1,...,id)) (16)

=

ν1∑
i1=0

ν2∑
i2=0

· · ·
νd∑
id=0

Σ̂i1,i2,...,id

Σi1,i2,...,id

− 1 +
ϑ̂
2

i1,i2,...,id

Σi1,i2,...,id

+ log
Σi1,i2,...,id

Σ̂i1,i2,...,id

 . (17)

When inspecting the evidence lower bound, Eq. (13), we see it has a data term forcing control points
to fit the data, and a KL-term to make control points revert to the prior. Knowing how control points
are allocated in the input domain, we expect control points in regions of no data revert to the prior.
This is similar to what stationary kernels do in said regions. We verify visually in Section 4.

All together, Bézier GPs can be adjusted to have priors similar to stationary GPs, and have analogous
posterior behaviour, which is favourable to many practitioners. But Bézier GPs scale. None of
the terms in the evidence lower bound require matrix inversions or determinants. It is simple to
mini-batch over the data points, utilising stochastic variational inference [Hoffman et al., 2013], to
scale it to large n. However, nearly all terms require evaluations of huge sums if the input dimension
is high. The next section is aimed at this problem.

2.2 Scalability with the Bézier buttress

Until this point, we have omitted addressing the number of random control points needed for Bézier
GPs. Let us denote this number τ . It can quickly be checked that τ =

∏d
γ=1(νγ + 1). This

implies that to evaluate f we must sum over τ summands, which as d increases, quickly becomes
computationally cumbersome. τ increases exponentially with d. It is justifiable to view the random
control points as inducing points; after all, they are Gaussian variables in the output space. Thus, it
would be extremely valuable to manage exponentially many of them.

To overcome this, we introduce the Bézier buttress2. We assume parameters of the random control
points, say ϑ, can parametrise ϑi1,i2,...,id =

∏d
γ=1 wiγ−1,iγ ,γ , where w0,i1,1 := wi1,1. This assump-

tion is the key of the Bézier buttress. Figure 3 provides visualisation. It visualises a source-sink
graph, where each unique path from source to sink represents one unique control point with above
parametrisation. The cyan highlighted path represents the ϑ1,2,3 = w1,1w1,2,2w2,3,3, where we
multiply the values along the path from source to sink. Notice last edges have value 1.

In the Bézier buttress there are d layers, one for each input dimension, and νγ + 1 nodes in each layer
γ = 1, . . . , d. Borrowing from neural network terminology, a forward-pass is a sequential series of
matrix multiplications which are element-wise warped with non-linearities, such as tanh or ReLU. If

2A buttress is an architectural structure that provides support to a building.
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we let our sequence of matrices be w1,w2, . . . ,wd, where wγ is the matrix with entries {wi,k,γ}i,k.
Let 1ν denote the vector of size ν with 1 in all entries, then fixing ’the input’ to 1>ν1+1 and the last
matrix to 1νd+1, a forward pass is

1>ν1+1w1w2 · · ·wd1νd+1 =

ν1∑
i1=0

ν2∑
i2=0

· · ·
νd∑
id=0

ϑi1,i2,...,id . (18)

We see this forward pass computes a sum over all control points means. Naturally, we construct a
Bézier buttress for summing over variances too, which must be restricted to positive weights. It was
these sums that formed our bottleneck, in this parametrisation it is just a sequence of matrix products.

What about computing f? It comes down to a use of ‘non-linearities’ in the buttress. Multiplying
element-wise the Bernstein polynomials as seen in Figure 3 (visualised only on 3rd layer), a forward
pass computes either E[f(x)], or Var(f(x)) if using squared Bernstein polynomials. Each control
point is then exactly multiplied by the correct polynomials from its way from source to sink. Notice,
the ‘input’ is fixed to 1 in the source, but the observed x is appearing via the Bernstein polynomials
along the way. We can write this too as a sequence of matrix products

E[f(x)] =

ν1∑
i1=0

ν2∑
i2=0

· · ·
νd∑
id=0

Bν1i1 (x1)· · ·Bνdid (xd)ϑi1,...,id = 1>ν1+1w1Bx1
· · ·wdBxd1νd+1, (19)

where Bxγ is a diagonal matrix with the νγ + 1 Bernstein polynomials on its diagonal. For the
variance of f(x) there exists a similar expression, of course with squared polynomials, and with the
positive weights associated with the variance Bézier buttress.

On this inspection, all terms needed to compute Eq. (15) are available. All terms for the KL
divergences are algebraic manipulations of Eq. (18) – these are explicit in the supplementary material.
The key takeaway for Bézier buttress is that we parametrise each random control point as a product
of weights. This can be seen as an amortisation, and we do inference on these weights rather than
the control points themselves. Hence, no matrix inversions are needed to backpropagate through our
objective, and a forward pass is only a sequence of matrix products.

2.3 Marginalising matrix commutativity

Matrix multiplication is not commutative. This implies the ordering of the matrices in Eq. (18) matter,
which again implies how we order the input dimensions in the Bézier buttress is of importance. This is
the price for the computational benefit this parametrisation gives. An ordering of the input dimensions
is somewhat unnatural for spatial regression, so we present a way to overcome this in approximate
Bayesian manner. Define f = f1 + f2 + · · ·+ fr, where each of these individual fk, k ∈ {1, . . . , r},
are Bézier GPs with a random permutation of the ordering in the associated Bézier buttress. In
other words, we let f be an ensemble of Bézier GPs to (approximately) marginalise over all possible
orderings. The number of all possible orderings quickly becomes too large for which to account; in
practice, we set r in a feasible region, say 20, which gives satisfactory empirical performance.

Another lens on this is that each control point is a sum of r control points – each control point’s
standard deviation is scaled by r−1, to obtain the same prior as so far discussed. Oddly, we have
then circumvented the problem of too many control points by introducing even more control points.
That is, each control point mean parametrise ϑi1,i2,...,id =

∑r
k=1

∏d
γ=1 witk(γ)−1,itk(γ),tk(γ), where

tk denotes a random permutation of (1, . . . , d). We remind again that similar expression exist for
control point variances, restricted to positive weights.

As remarked, inference comes down to a forward pass in the Bézier buttress, a sequence of d matrix
multiplications. Assume all dimension are of order ν, then the computational complexity of one
forward pass is O

(
d(ν + 1)2

)
. Now we need r forward passes to marginalise the ordering, and n

forward passes, one for each observation, leaving final complexity of O(nrdν2). Linear in n and d.

3 Related Work

Variational inference in GPs was initially considered by Csató et al. [1999] and Gibbs and MacKay
[2000]. In recent times, the focus has shifted focus to scalable solutions to accommodate the big

6



data era. In this respect, Titsias [2009] took a variational approach to the inducing points methods
[Quinonero-Candela and Rasmussen, 2005]; later Hensman et al. [2013] further enhanced scalability
to allow for mini-batching and a wider class of likelihoods. Still, the need for more inducing points is
of importance, especially as the number of input features grows.

The response to this has mostly revolved around exploiting some structure of the kernel. Wilson
and Nickisch [2015] and Wu et al. [2021] exploit specific structure that allow for fast linear algebra
methods; similar to our method inducing locations tend to lie on grid. These grids expand fast as the
input dimension increases, as also pointed out earlier in the article. Kapoor et al. [2021] remedy this
by instead of a rectangular grid, they consider the permutohedral lattice, such that each observation
only embeds to d+ 1 neighbours instead of 2d, as in [Wilson and Nickisch, 2015].

Another approach to allowing for more inducing points is incorporating nearest neighbour search
in the approximation [Kim et al., 2005, Nguyen-Tuong et al., 2008]. Tran et al. [2021] introduced
sparse-within-sparse where they have many inducing points in memory, but each time search for the
k-nearest ones to any observation. They discard the remaining ones as they have little to no influence
on the observation. Wu et al. [2022] made a variational pendant to this method.

Lastly, when dealing with high-dimensional inputs it is worth mentioning feature learning. That is,
learning more low-dimensional features where GPs have better performance. The success of deep
models has been transported to GPs by Damianou and Lawrence [2013] and later scaled to large
datasets in [Salimbeni and Deisenroth, 2017]. Another approach is Deep Kernel Learning [Wilson
et al., 2016, Bradshaw et al., 2017], where feature extraction happens inside the kernel function;
lately Ober et al. [2021] has investigated the limitations and benefits of these models.

We have treated structured control points as our version of inducing points; and by parametrising
them with a Bézier buttress, we limit the expansion of grids to linear growth in parameters. We are
not the first to consider the Bernstein polynomials as a basis for learning functions. Petrone [1999b]
used it to model kernel estimate probability density functions, and several follow up works [Petrone,
1999a, Petrone and Wasserman, 2002]. Hug et al. [2020] recently introduced Bézier GPs, but with
a focus on time series [Hug et al., 2022]. Our emphasis has been on spatial input; even the Bézier
surface literature contain close to nothing on more than 2-dimensional surfaces.

4 Evaluation

We split our evaluation into four parts. First, we visually inspect the posterior on a one dimensional
toy dataset to show how the control points behave, and indicate that there indeed is a stationary-
like behaviour on the domain of the hypercube. Next, we test empirically on some standard UCI
Benchmark datasets, to gives insight into when Bézier GPs are applicable. After that, we switch to tall
and wide data – large both in the input dimension and in number of data points. These experiments
give certainty that the method delivers on its key promise: scalability. Lastly, we turn our eyes to the
method itself and investigate how performance is influenced by the ordering of dimensions.

Care is needed in optimising a Bézier GP – not all parameters are born equal. We split optimisation
into two phases. First, we optimise all variational parameters, keeping the likelihood variance σ2

fixed as τ−1, with τ being the number of control points. After this initial phase, we optimise σ2 with
all variational parameters fixed. We let both phases run for 10000 iterations with a mini-batch size of
500, for all datasets. Both phases use the Adam optimiser [Kingma and Ba, 2015], the first phase with
learning rate 0.001, and the second with learning rate 0.01. If not following a such a bespoke training
scheme, we see a tendency for the posterior to revert to the prior, because the KL-term becomes too
dominating initially. This training scheme is designed for the Gaussian likelihood, but we wish to
emphasise that, in principle, the loss function is accurate for any choice of likelihood.

4.1 One dimensional visual inspection

We hypothesised the objective function, Eq. 16, would ensure, within the hypercube domain, that f
reverts to its prior in regions where data is scarce. To verify this we construct a small dataset to inspect.
We generate one-dimensional inputs uniformly in the regions [0, 0.33] and [0.66, 1]; we sample 20
observation in each region. The responsive variable is generated as y(x) = 3 sin(16x). According
to the hypothesis, f should in the region [0.33, 0.66], tend towards zero in mean, and increase its
variation here. We use a BézierGP of order 20 to model the observations, since they are highly
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Figure 4: Left: Posterior distribution of f . Middle: Posterior and prior distribution of control points.
Right: Posterior variance as function over the domain. Variance increases in scarce data regions.

power protein energy boston bike keggdirected concrete elevators

n 9568 45730 768 506 17379 48837 1030 16599
d 4 9 8 13 17 20 8 18

Test log-likelihood

m = 100 −2.7789± 0.04 −2.9307± 0.01 −1.6450± 0.07 −2.4993± 0.27 −0.6661± 0.03 0.6498± 0.03 −3.1839± 0.07 0.9167± 0.02SGPR
m = 500 −2.7440± 0.04 −2.8479± 0.04 −0.7707± 0.13 −2.4592± 0.33 −0.4680± 0.04 0.7133± 0.03 −3.0658± 0.08 0.9373± 0.02

SimplexGP −3.4416± 0.06 −3.2745± 0.04 NA NA −1.0932± 0.19 −2.3241± 5.13 −4.0338± 0.02 −0.2633± 0.01

ν = 5 −2.8015± 0.04 −2.9585± 0.01 −0.6197± 0.25 −45.479± 18.6 0.4724± 0.14 0.6589± 0.06 −3.4612± 0.62 0.9534± 0.02
ν = 10 −2.7736± 0.04 −2.9257± 0.01 −0.7163± 0.46 −197.23± 140.5 0.7020± 0.18 0.6789± 0.06 −4.5613± 1.20 0.9565± 0.02BezierGP
ν = 20 −2.7391± 0.05 −2.8902± 0.01 −0.6504± 0.62 −139.42± 52.7 0.7475± 0.32 0.6939± 0.06 −7.7174± 2.70 0.9058± 0.03

Test RMSE

m = 100 3.8806± 0.15 4.5272± 0.04 1.1562± 0.11 2.9372± 0.65 0.4665± 0.02 0.1279± 0.00 5.8980± 0.54 0.0968± 0.00SGPR
m = 500 3.7383± 0.16 4.1755± 0.16 0.5664± 0.12 2.8233± 0.65 0.3829± 0.02 0.1212± 0.01 5.3522± 0.80 0.0948± 0.00

SimplexGP 3.1147± 0.26 4.1271± 0.13 NA NA 0.2876± 0.07 2.6439± 2.29 5.4457± 0.75 0.1256± 0.01

ν = 5 3.9750± 0.15 4.6620± 0.04 0.4348± 0.08 4.7007± 0.91 0.1474± 0.02 0.1319± 0.03 4.8127± 0.86 0.2939± 0.85
ν = 10 3.8675± 0.15 4.5112± 0.04 0.4157± 0.11 5.6712± 1.76 0.1100± 0.01 0.1735± 0.22 4.7917± 0.94 1023.5± 4e3BezierGP
ν = 20 3.7427± 0.18 4.3538± 0.04 0.3573± 0.11 4.9404± 2.93 0.0821± 0.01 80.05± 348.4 4.9829± 0.95 7e11± 3e12

Table 1: Results on eight standard UCI Benchmark datasets. We list test-set log-likehood and RMSE,
both are averages over 20 train/test splits. On top are test log-likelihoods (higher is better), and
bottom is test RMSE (lower is better). NA indicates Cholesky error.

non-linear. Figure 4 shows the posterior distribution of f to the left; we observe f tends towards the
prior in the middle region. The middle plot illustrates the distribution, both prior and posterior, of
the 21 control points. There is a clear tendency for the central-most points to align the posterior and
posterior, enforcing this behaviour in f . The non-equal priors are due to the inverse-squared Bernstein
adjusted prior which ensures a uniform variation in f over the domain, see Figure 2. The plot to the
right in Figure 4 shows the behaviour foundational to practitioners of Bayesian optimisation and
active learning etc., the variance increase away from data regions.

4.2 UCI Benchmark

We evaluate on eight small to mid-size real world datasets commonly used to benchmark regression
[Hernandez-Lobato and Adams, 2015]. We split each dataset into train/test-split with the ratio 90/10.
We do this over 20 random splits and report test set RMSE and log-likelihood average and standard
deviation over splits. We choose baselines to be SGPR, following the method from Titsias [2009];
we do both for 100 and 500 inducing variables. SimplexGP is another baseline, they suggest their
approximation is beneficial for semi-high dimensional inputs (between 3 and 20) [Kapoor et al.,
2021], hence they are an obvious baseline. SimplexGP usually use a validation set to choose the
final model. This is due to a highly noisy optimisation scheme using a high error-tolerance (1.0) for
conjugate gradients. We remedy this by setting the error-tolerance to (0.01), which harms scalability,
but we can omit using a validation set for better comparability. Wang et al. [2019] recommend this
error-tolerance, but remark it is more stable for RMSE than for log-likelihood. For BézierGP, we fix
the number of permutations to r = 20, and vary the order in ν = 5, 10, 20. The order is identical
over input dimensions. The inputs are pre-processed such that the training set is contained in [0, 1]d.

Table 1 contains the results of this experiment. We make the following observations about our
presented BézierGP. On keggdirected and elevators there are test points outside the defined domain
on some splits, which cause the RMSE to be extreme, but the likelihood is more forgiving. This
highlights the constraint of our model: it needs a box-bounded domain to be a priori known. Had
we standardised such that both test and train data were in the hypercube, BézierGP (ν = 20) would
have a average test RMSE of 0.0937. We could not reproduce results from Kapoor et al. [2021] on
keggdirected, the optimisation was too noisy and with no use of validation. On concrete, boston
and energy we see overfitting tendencies. Even though BézierGP is the optimal choice on energy
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Figure 5: Test negative log-likelihood (lower is better) and RMSE (lower is better) for large scale
regression. Colours indicate the origin of numbers: red from Salimbeni and Deisenroth [2017],
purple from Wang et al. [2019], and cyan from Kapoor et al. [2021]. Orange is ours. We observe our
BézierGP is highly competitive on large datasets.

there is a mismatch between train and test error. On concrete this shows in better test RMSE, than the
baselines, but the variance is overfitted yielding non-optimal likelihood. We conjecture this happens
because the n/d-ratio is low; which makes it more likely to overfit the control points – especially for
higher orders ν. Knowing these model fallacies, we observe that BézierGP outperforms on baselines
on multiple datasets, most notably the 17-dimensional bike dataset.

4.3 Large scale regression

Figure 5 shows the results of regression tasks in regimes of high dimensions and one in high number
of observations. Here, we follow exactly the experimental setup of either Salimbeni and Deisenroth
[2017] or Wang et al. [2019]. If the latter, we use the validation-split they use as training data. Our
optimisation scheme for BézierGP is consistent with above, except for slice, where the first training
phase runs for 30000 iterations. We discard test points that are not in the [0, 1]d domain – in no
situation did this remove more than 0.001% of the test set. The number after DGP, denotes the
number of hidden layers in a Deep GP [Salimbeni and Deisenroth, 2017], after SGPR and SVGP
it denotes the number of inducing points. SVGP refers to the method from Hensman et al. [2013].
After B, it denotes the order used in BézierGP.

power (24) protein (362880) bike (3e14)

RMSE LL RMSE LL RMSE LL

r = 1 4.1476 −2.8418 4.8416 −2.9962 0.1477 0.4813
r = 10 3.8028 −2.7549 4.4306 −2.9080 0.0926 0.7275
r = 20 4.2514 −2.8826 4.3713 −2.8943 0.0853 0.5454
r = 30 3.8257 −2.7551 4.3377 −2.8867 0.0775 0.8372
r = 40 3.6612 −2.7190 4.3449 −2.8886 0.0848 0.5024
r = 50 3.7841 −2.7503 4.2614 −2.8686 0.0718 0.9009

Table 2: Performance in test RMSE and log-
likelihood against the number of permutations, r,
on three datasets. In parenthesis shows the num-
ber of possible permutations of input dimensions.
Higher dimensional datasets show improving per-
formance with increasing r.

On year, we observe our (non-deep) model is
on-par with 2-layered Deep GPs, and closer to
3 in RMSE. The highest dimensional dataset,
slice, sees us in the low n/d-ratio again, and
we are again faced with a too flexible model.
This is why we report results for orders 3 and
5, rather than 20, since the overfitting kicks
in. Even for these small orders the test log-
likelihood has high variance and under-performs
compared to RMSE. With respect to RMSE it
is top-performer signalling again it is overfitting
the variance. On the remaining two datasets
BézierGP is best-performing among baselines.

4.4 Influence of number of permutations

All experiments so far used r = 20; that is, 20
random permutations of the ordering of dimension used in the Bézier buttress. For a problem with
input dimension d, there exist d! possible permutations. Table 2 shows results with varying r; for
each dataset, the results are over the same train/test split (0.9/0.1). We fixed ν = 20. Up to some
noise in the optimisation phase, we see for the two highest dimensional datasets, protein and bike,
performance improves with higher r. Bike has over 50% reduction in RMSE from r = 1 to r = 50.

Table 2 emphasises the results we have presented are not optimised over hyperparameter r and ν.
They also illustrate an interesting direction of future research: optimising these hyperparameters. We
chose permutations by random sampling, but choosing them in a principled deliberate manner could
yield good performance with a computationally manageable r. This result indicates, at least, protein
and bike would see increased performance in Table 1 from better (or just more) permutations.
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5 Discussion

We introduced the Bézier Gaussian Process – a GP, with a polynomial kernel in the Bernstein basis,
that scales to a large number of observations, and remains space-filling for high number of input
features (limited to a box-bounded domain). We illustrated that, with slight adjustments, the prior
and posterior have similar behaviour to ‘usual’ stationary kernels. We presented the Bézier buttress, a
weighted graph to which we amortise the inference, rather than inferring the control points themselves.
The Bézier buttress allows GP inference without any matrix inversion. Using the Bézier buttress, we
inferred 6385 control points for the high-dimensional slice dataset.

We highlighted weaknesses of the proposed model: most crucially the tendency of overfitting when
the n/d-ratio is low. The results demonstrate scalability in both n and d, but does not solve the
short, but wide problem. The paper did not optimise over the hyperparameters of the proposed
kernel, namely ν and r, but it showcased briefly that doing so might enhance BézierGPs empirically;
especially smart selection of the permutations is an interesting direction for future research. We
speculate that optimising over orders, on a validation set, would alleviate some of the overfitting
issues.
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the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
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(c) Did you discuss any potential negative societal impacts of your work? [No] The work

does not have any foreseeable negative societal impact.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
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of GPUs, internal cluster, or cloud provider)? [No] Our method ran on a laptop for all
but one experiment. GPUs used for some baselines.
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using/curating? [N/A] Only open source data used, no personal information.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
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applicable? [N/A]
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