
Appendix

This document is the appendix of paper “Dual-discriminative Graph Neural Network for Imbalanced Graph-level
Anomaly Detection”.

A Algorithm

This section introduces the deduction about Eq. (7) (see A.1) and the explanation about Eq. (14) (see A.2). In
addition, the time complexity analysis of iGAD is shown in A.3.

A.1

Proposition 1. Let the matrix A ∈ Rn×m, B ∈ Rm×s, and C ∈ Rs×o, and vec(·) : Rm×n → Rmn denotes
the vectorization operation on a matrix. Then, we can get:

vec(ABC) = (CT ⊗A)vec(B), (15)

where ⊗ denotes the Kronecker product. (The proof can be found in 7.1.9 in [1].)

Proposition 2. Let the matrix A ∈ Rn×m, B ∈ Ro×s, C ∈ Rm×d, D ∈ Rs×b. Then, we can get:

(A⊗B)(C⊗D) = (AC)⊗ (BD), (16)

where ⊗ denotes the Kronecker product. (The proof can be found in 7.1.6 in [1].)

Proposition 3. Let the matrix A ∈ Rn×n, B ∈ Rm×m, and l ≥ 1. Then, we can get:

(A⊗B)l = (A)l ⊗ (B)l, (17)

where ⊗ denotes the Kronecker product, (·)l denotes matrix exponentiation.

Proof of Proposition 3. Based on Proposition 2, we can get (A⊗B)(A⊗B) = A2 ⊗B2. Then:

(A⊗B)l = (A⊗B)(A⊗B)(A⊗B)l−2

= (A2 ⊗B2)(A⊗B)l−2

= (A2 ⊗B2) (A⊗B)...(A⊗B)︸ ︷︷ ︸
l−2

= (A2 ⊗B2)(A⊗B) (A⊗B)...(A⊗B)︸ ︷︷ ︸
l−3

= (A3 ⊗B3) (A⊗B)...(A⊗B)︸ ︷︷ ︸
l−3

= (A(l−1) ⊗B(l−1))(A⊗B)

= (A)l ⊗ (B)l

(18)

The deduction of Eq. (7):

κ(l)(Gi, Sm) = 1T (Ai ⊗Pm)l 1

= 1T
[
(Ai)

l ⊗ (Pm)l
]
1

= 1T

[(
(Ai)

l
)T

⊗ (Pm)l
]
1

= 1Tvec
[
(Pm)lvec−1 (1) (Ai)

l
]

= 1Tvec
[
(Pm)lE(Ai)

l
]

=
∑
i

∑
j

[
(Pm)lE(Ai)

l
]
i,j

,

(19)

where Ai ∈ Rn×n and Pm ∈ Rn′×n′
are two symmetric matrices, 1 ∈ Rn′×n is a column vector and all ele-

ments are 1. We get (Ai ⊗Pm)l = (Ai)
l⊗(Pm)l based on Proposition 3 and get

[(
(Ai)

l
)T

⊗ (Pm)l
]
1 =

vec
[
(Pm)lvec−1 (1) (Ai)

l
]

based on Proposition 1, where vec−1(·) : Rab → Ra×b denotes the inverse
vectorization on a vector.

15

Algorithm 1: iGAD
Input:
T : The training set is composed of N0 normal graphs and N1 anomalous graphs;
YT : The label set of graphs in T ;
K,L,M, n′: The maximum hop of neighborhood utilized by the anomalous attribute-aware
graph convolution, the maximum length of random walk sequences, the number of anomalous
substructures, and the size of anomalous substructures;
B,E: The number of batches and epochs.
Output: Model Parameters

1 Initializing model parameters (including anomalous substructures Sm,m ∈ {1, ...,M}).
2 Calculating the proportion of normal graphs P (y = 0) = N0

N0+N1
in T and the proportion of

anomalous graphs P (y = 1) = N1

N0+N1
in T .

3 for e = 1, ..., E do
4 for = 1, ..., B do
5 // In the pseudo-code, we suppose that a batch only contain a graph Gi (i.e.,

batch_size=1).
6 h(0)(u)← Eq. (4), ∀u ∈ Gi;
7 for k = 1, ...,K do
8 h(k)(u)← Eq. (5), ∀u ∈ Gi;
9 Obtaining the node representation of node u, hu ← Eq. (3), ∀u ∈ Gi;

10 Obtaining the proposed anomalous attribute-aware graph convolution-based graph
representation hConv

Gi
of the graph Gi, hConv

Gi
← Eq. (6);

11 for l = 1, ..., L do
12 Calculating kernel values, κ(l)(Sm, Gi), m ∈ {1, ...,M} ← Eq. (7);

13 Assembling all kernel values κ(l)(Sm, Gi), l ∈ {1, ..., L}, m ∈ {1, ...,M} into a vector,
aGi ← Eq. (8);

14 Obtaining the proposed anomalous substructure-aware deep RWK-based graph
representation hker

Gi
of graph Gi, hker

Gi
← Eq. (9);

15 Obtaining the final graph representation hGi
by concatenating hConv

Gi
and hKer

Gi
;

16 Inputing hGi
in to an MLP and obtaining the prediction result on Gi, yi ← Eq. (14);

17 Calculating the PMI-based loss function, L← Eq. (13).

A.2

The overall prediction accuracy of a classifier can be approximated as 1
N′

∑N′

i=1 PΘ(yi|Gi). If we do not
consider the imbalanced labels, the y that can maximize pΘ(yi|Gi) will be regarded as the label of Gi. However,
we expect that the graph-level anomaly detection model iGAD can achieve high prediction accuracy on normal
and anomalous graphs both in mode test time. Hence, we rewrite the prediction accuracy as:

Accuracy ≈ 1

N ′

N′∑
i=1

PΘ(yi|Gi)

=
1

N ′

N′∑
i=1

PΘ(yi|Gi)

P (yi)
P (yi)

=

1∑
y=0

P (y)

 1

N ′

∑
Gi∈Ωy

PΘ(y|Gi)

P (y)

 ,

(20)

where {(Gi, yi)}N
′

i=1 is the test/validation set, Ωy = {Gi|yi = y, i = 1, ..., N ′} is the set of Gi labeled y,
y ∈ {0, 1}. 1

N′
∑

Gi∈Ωy

PΘ(y|Gi)
P (y)

can be regarded as the approximation about the prediction accuracy on all

graphs labeled y. Therefore, in test time, we need the label that can make PΘ(y|Gi)
P (y)

achieve its maximum value,

that is y∗
i = argmax

yi

PΘ(yi|Gi)
P (yi)

= argmax
yi

PΘ(Gi,yi)
P (Gi)P (yi)

= argmax
yi

fyi(Gi; Θ).

16

A.3

Computational Complexity Analysis. The computational complexity of the proposed graph convolution and
the proposed deep RWK is O(|E|) and O(L(Mn′(n + n′) + |E|), respectively, where L is the maximum
length of random walk sequences, M is the number of anomalous substructures, n′ is the size of anomalous
substructures. Because that L,M, n′ ≪ |E|, the complexity of deep RWK is O(n + |E|). In summary, the
final computational complexity of iGAD is O(n+ |E|).

B Experiments

This section introduces the details of parameter setting (see B.1) and additional parameter analysis experiments
(see B.2).

Figure 4: The patterns from left to right are 3-star, triangle, tailed triangle, and 4-cycle graphlets.

B.1

Parameter Setting. Due to the limited number of anomalous graphs, we only divide the training set and
validation set for cross-validation experiments. We take the stratified sampling to divide the training and the
validation set concerning the division ratio 80% to 20%. Stratified sampling ensures that the training set and
validation set have a consistent ratio between normal and anomalous graphs. We take the average of validation
results across 5 folds, and select a single epoch that can achieve the maximum average recall. The standard
deviation is computed at the selected epoch over the 5 folds.

We use the learning rate (0.001), batch size (128), the maximum hop of neighborhoods (K = 2), the number
of anomalous substructures (M = 5), the size of anomalous substructures (n′ = 10), the max random walk
sequence length (L = 6), the graph embedding dimension output by graph convolution (32), the graph embedding
dimension output by deep RWK (16), and the final graph embedding dimension (32), neighbor_aggregation_type
(sum), readout (mean), and the optimizer (Adam [2]). iGAD-2 utilizes pre-defined anomalous substructures, it
has the same parameter setting as iGAD except for M and n′. In addition, the parameter setting on baseline
models is listed below:

• GCN & GCN-GAD: {learning_rate: 0.001; batch_ size: 128; num_convolution_layer: 2; embed-
ding_dimension: 32; graph_pooling_type: sum; optimizer: Adam}

• GIN & GIN-GAD: {learning_rate: 0.01; batch_ size: 128; num_layers: 5; num_mlp_layers: 2;
embedding_dimension: 32; final_dropout: 0.5; neighbor_pooling_type: sum; graph_pooling_type:
sum; optimizer: Adam}

• DGCNN & DGCNN-GAD: {learning rate: 0.0001; sort_pooling_k: 6; batch_size: 128; embedding_
dimension: 128; convolution_dimension: 32-32-32-1; optimizer: Adam}

• SOPool & SOPool-GAD: {learning rate: 0.01; num_layers: 5; num_mlp_layers: 2; hidden_dimension:
64; final_dropout: 0.5; neighbor_pooling_type: sum; graph_pooling_type: sum; optimizer: Adam}

• RWGNN & RWGNN-GAD: {learning rate: 0.01; dropout: 0.2; batch_size: 128; num_hidden_graphs:
5; size_hidden_graphs: 5; max_step: 2; hidden_dimension: 32; penultimate_dimension: 32; optimizer:
Adam}

Implementation. All algorithms are implemented on Python 3.7.4, CUDA 10.1, cuDNN 7.6.5, 1 NVIDIA Volta
GPU, 384GB RAM, 2×24-core Intel Xeon Platinum 8268 Linux desktop. For GCN, GIN, DGCNN, SOPool,
and RWGNN, we use their official implementation on GitHub. For GCN-GAD, GIN-GAD, DGCNN-GAD,
SOPool-GAD, and RWGNN-GAD, we replace the cross-entropy loss in the official implementation with the
proposed PMI-based loss function.

Evaluation Metrics. We utilize AUC, Recall (average=“macro”), Recall(A), and F-score (average=“macro”) as
evaluation metrics. AUC denotes the probability that the ranking of a randomly selected anomalous graph is
higher than that of a normal graph. Recall denotes the average value of the proportion of correctly predicted
normal graphs in all normal graphs and the proportion of correctly predicted anomalous graphs in all anomalous
graphs. Recall(A) denotes the proportion of correctly predicted anomalous graphs in all anomalous graphs.
F-score comprehensively considers Recall and Precision, where Precision indicates the average value of the
proportion of true normal graphs in the graphs predicted to be normal and the proportion of true anomalous
graphs in the graphs predicted to be anomalous. Recall and Precision are a pair of negatively correlated indicators.
In this paper, we choose Recall because iGAD is supposed to recall as many anti-cancer molecules as possible.

17

x

128 64 48 32 16 8

y
8

16
32

48
64

128

F-
sc

or
e

0.55
0.59
0.63
0.67

MCF-7

x

128 64 48 32 16 8

y
8

16
32

48
64

128

Re
ca

ll

0.65
0.69
0.73
0.77

MCF-7

x

128 64 48 32 16 8

y
8

16
32

48
64

128

Re
ca

ll(
A)

0.60
0.64
0.68
0.72

MCF-7

x

128 64 48 32 16 8

y
8

16
32

48
64

128

AU
C

0.75

0.79

0.83

0.87

MCF-7

Figure 5: The parameter analysis result of iGAD on the graph dataset MCF-7. The x-axis and
y-axis denote the embedding dimension output by the proposed graph convolution and deep RWK,
respectively. The z-axis denotes the model performance w.r.t., F-score, Recall, Recall(A), and AUC.

x

128 64 48 32 16 8

y
8

16
32

48
64

128

F-
sc

or
e

0.55
0.59
0.63
0.67

PC-3

x

128 64 48 32 16 8

y
8

16
32

48
64

128

Re
ca

ll

0.70
0.74
0.78
0.82

PC-3

x

128 64 48 32 16 8

y
8

16
32

48
64

128

Re
ca

ll(
A)

0.65
0.69
0.73
0.77

PC-3

x

128 64 48 32 16 8

y
8

16
32

48
64

128

AU
C

0.80

0.84

0.88

PC-3

Figure 6: The parameter analysis result of iGAD on the graph dataset PC-3.

B.2

Parameter Analysis. Figures 5 and 6 demonstrate the influence of embedding dimension output by the proposed
graph convolution and the proposed deep RWK on the performance of iGAD on MCF-7 and PC-3, respectively.
iGAD can achieve good performance under different representation dimension settings, which verifies that iGAD
is not sensitive to the embedding dimension. In addition, we can also observe that the representation dimension
output by the proposed graph convolution has a greater impact on the performance of iGAD than that of the
proposed deep RWK.

18

References
[1] Dennis S Bernstein. Matrix mathematics. In Matrix Mathematics. Princeton university press, 2009.

[2] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[3] Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph representations.
Advances in Neural Information Processing Systems, 34:1713–1726, 2021.

19

	Introduction
	Related Work
	Preliminaries
	iGAD
	iGAD: Anomalous Attribute-aware Graph Convolution
	iGAD: Anomalous Substructure-aware Deep RWK
	iGAD: PMI-based Loss Function
	Algorithm Description & Computational Complexity

	Experiments
	Experimental Setup
	Experimental Results

	Conclusion
	Algorithm
	
	
	

	Experiments
	
	

