
A Proof of Theorem 1

Theorem 1. (a) For any S ⊆ D, we have R̂∗
quad(S) = 2|S|wG(S). As a consequence, for any

S ⊆ D and any split (f, t) [4],

RRquad(f, t;S) = 2|S|wIRgini(f, t;S). (9)

(b) For any S ⊆ D, we have R̂∗
logistic(S) = |S|wH(S). As a consequence, for any S ⊆ D and any

split (f, t),

RRlogistic(f, t;S) = |S|wIRentropy(f, t;S). (10)

Proof. (a) This result is proven in [4].

(b) By grouping the positive and negative examples, we have

R̂logistic(v;S) =
∑

(x,y)∈S

w ln(1 + e−vy) = |S|wq+ ln(1 + e−v) + |S|wq− ln(1 + ev).

The minimizer satisfies

dR̂logistic

dv
= |S|wq+

−e−v

1 + e−v
+ |S|wq−

ev

1 + ev
= 0.

Solving the equation, we have

v∗S = ln(q+/q−),

or ev
∗
S = q+/q−. Hence we have

R̂∗
logistic(S) = |S|wq+ ln

(
1 +

q−
q+

)
+ |S|wq− ln

(
1 +

q+
q−

)
= |S|wH(S).

B Proof of Proposition 1

Proposition 1. Consider arbitrary P ′ ⊆ P and U ′ ⊆ U ′. Let Wp = |P ′|wp, Wn = |U ′|wu−|P ′|wp,
and v∗ :=

Wp

Wp+Wn
.

(a) When using the quadratic loss, we have

R̂∗
uPU(P

′, U ′) =

{
−∞, v∗ = +∞,

4(Wp +Wn)v
∗ (1− v∗) , otherwise.

(11)

(b) When using the logistic loss, we have

R̂∗
uPU(P

′, U ′) =


(Wp +Wn) (−v∗ ln(v∗)− (1− v∗) ln(1− v∗)) , 0 < v∗ < 1,

0, v∗ ∈ {0, 1},
−∞, v∗ > 1.

(12)

Both the set P ′ ⊆ P and the set U ′ ⊆ U can possibly be empty, thus Wp = |P ′|wp ≥ 0, Wp+Wn =
|U ′|wu ≥ 0, and Wn = |U ′|wu− |P ′|wp can be negative, 0, or positive. Note that we do not consider
the case that P ′ and U ′ are both empty, as this only happens when no examples are allocated to a
node, which does not arise when we construct decision trees.

Proof. (a) For the quadratic loss, we have

R̂uPU(v;P
′, U ′) =

∑
x∈P ′

wp(1− v)2 −
∑
x∈P ′

wp(1 + v)2 +
∑
x∈U ′

wu(1 + v)2

= Wp(1− v)2 +Wn(1 + v)2.
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If Wp+Wn ̸= 0, then the partial empirical risk is a convex quadratic function with a unique minimizer
satisfying

dR̂uPU

dv
= −2Wp(1− v∗P ′,U ′) + 2Wn(1 + v∗P ′,U ′) = 0.

Solving the equation, we have
v∗P ′,U ′ = 2v∗ − 1.

Therefore, we have

R̂∗
uPU(P

′, U ′) = (Wp +Wn)v
∗ (1− 2v∗ + 1)

2
+ (Wp +Wn)(1− v∗) (1 + 2v∗ − 1)

2

= 4(Wp +Wn)v
∗ (1− v∗) .

If Wp +Wn = 0, then R̂uPU(v;P
′, U ′) = −2Wpv +Wp + 2Wnv +Wn. This gives v∗P ′,U ′ = +∞,

and R̂∗
uPU(P

′, U ′) = −∞.

(b) For the logistic loss, we have

R̂uPU(v;P
′, U ′) =

∑
x∈P ′

wp ln(1 + e−v)−
∑
x∈P ′

wp ln(1 + ev) +
∑
x∈U ′

wu ln(1 + ev)

= Wp ln(1 + e−v) +Wn ln(1 + ev).

The derivative of the partial empirical risk wrt v is

dR̂uPU

dv
=

Wne
v −Wp

1 + ev
.

By inspecting how the sign of the derivative changes as v changes, we can obtain

v∗P ′,U ′ =


ln(Wp/Wn), Wn > 0,Wp > 0,

−∞, Wn > 0,Wp = 0,

+∞, Wn ≤ 0.

(13)

with

R̂∗
uPU(P

′, U ′) =


(Wp +Wn)(−v∗ ln(v∗)− (1− v∗) ln(1− v∗)), 0 < v∗ < 1,

0, v∗ ∈ {0, 1},
−∞, v∗ > 1.

C Unbiased Estimates of Proportions

The weight Wp is an unbiased estimate of the probability p(x ∈ κ, y = 1) = πp(x ∈ κ | y = 1)
since π|P ′|/|P | = |P ′|wp = Wp estimates the probability πp(x ∈ κ | y = 1) without bias.

To show that Wn is an unbiased estimate of the probability p(x ∈ κ, y = −1), first note that for any x
we have (1−π)pn(x) = p(x)−πpp(x). Integrating over x ∈ κ, we have (1−π)p(x ∈ κ | y = −1) =
p(x ∈ κ)−πp(x ∈ κ | y = 1), or equivalently, p(x ∈ κ, y = −1) = p(x ∈ κ)−πp(x ∈ κ | y = 1).
Now, p(x ∈ κ) is unbiasedly estimated by |U ′|wu, and πp(x ∈ κ | y = 1) is unbiasedly estimated by
|P ′|wp.

D Proof of Proposition 2

Proposition 2. Using the same notations as in Proposition 1, we have the following results.

(a) When using the quadratic loss, we have

R̂∗
nnPU(P

′, U ′) =

{
0, v∗ > 1

4(Wp +Wn)v
∗ (1− v∗) , otherwise.

(14)

(b) When using the logistic loss, we have

R̂∗
nnPU(P

′, U ′) =

{
(Wp +Wn) (−v∗ ln(v∗)− (1− v∗) ln(1− v∗)) , 0 < v∗ < 1

0, otherwise.
(15)
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Proof. To find the minimal partial nnPU empirical risk, we begin by computing the derivative of
R̂nnPU with respect to v:

R̂nnPU(v;P
′, U ′) =

∑
x∈P ′

wp(1− v)2 +max

{
0,

∑
x∈U ′

wu(1 + v)2 −
∑
x∈P ′

wp(1 + v)2

}
= Wp(1− v)2 +max{0,Wn(1 + v)2},

dR̂nnPU

dv
= 2Wp(v − 1) + 2max{0,Wn}(v + 1).

First consider the case when v∗ > 1, then either Wp

Wp+Wn
> 1 or v∗ = +∞. The former suggests that

Wn < 0, and hence the minimizer will be 1. In the latter we have Wn = −Wp ≤ 0, again giving
us a minimizer of 1. On the other hand if 0 ≤ v∗ < 1, then we have Wp ≥ 0 and Wn > 0 and the
minimizer will be the solution to 0 = dR̂nnPU/dv.

The minimizer can thus be written succinctly as

argmin
v∈R

R̂nnPU(v;P
′, U ′) =

{
1, v∗ > 1,

2v∗ − 1, otherwise,

with minimum partial empirical risk

R̂∗
nnPU(v;P

′, U ′) =

{
0, v∗ > 1,

4(Wp +Wn)v
∗(1− v∗), otherwise.

For the logistic loss we shall again start by computing the derivative of the partial empirical risk:

R̂nnPU(v;P
′, U ′) = Wp ln(1 + e−v) + max{0,Wn ln(1 + ev)}

dR̂nnPU

dv
=

max{0,Wn}ev −Wp

1 + ev
.

In this case, the minimizer argminv∈RR̂nnPU(v;P
′, U ′) is the same as in (13). The corresponding

minimum partial risk is

R̂∗
nnPU(P

′, U ′) =

{
(Wp +Wn)(−v∗ ln(v∗)− (1− v∗) ln(1− v∗)), 0 < v∗ < 1,

0, otherwise.

E Optimizing Split Time Complexity

Algorithm 2 gives pseudocode for finding the optimal split for a given feature. Each step is annotated
with its time complexity, where n = |P ′| + |U ′|. Note that computing R̂∗ value can be done in
constant time if Wp and Wn values are given. The time complexity of Algorithm 2 is O((|P ′| +
|U ′|) ln(|P ′|+ |U ′|) +m), with m ≤ |P ′|+ |U ′|+ 1.

F Proof of Proposition 3

In addition, we show that the sigmoid loss, R̂∗
uPU(P

′, U ′) has an interesting interpretation.

Proposition 3. The R̂∗(S) value is the same for the quadratic loss and the savage loss.

Proof. We have already shown that for the quadratic loss, R̂∗(S) = 2|S|wG(S) = 4|S|wq+q−.

For the savage loss, we have

R̂(v;S) =
∑
(x,y)

w
4

(1 + evy)2
= |S|w

[
q+

4

(1 + ev)2
+ q−

4

(1 + e−v)2

]
.
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Algorithm 2: Find Optimal Threshold
Input: Feature f , set P ′ of positive examples and set U ′ of unlabeled examples.
Output: Split (f, t) that gives the largest risk reduction.

1 Sort all examples x1, . . . ,xn in P ′ ∪ U ′ by their entries in feature f . Denote the sorted
examples by x(1), . . . ,x(n) ; # O(n lnn)

2 Let the distinct f values be u1 < u2 < . . . < um+1, and choose ti = (ui + ui+1)/2,
i = 1, . . . ,m. Note m+ 1 ≤ n ; # O(m)

3 Compute the R̂∗(P ′, U ′) value by computing its Wp and Wn values ; # O(n)
4 Compute the risk reduction for (f, t1) by computing the Wp and Wn values for the child nodes ;

# O(n)
5 t∗ ← t1 ; # O(1)
6 for i = 2, . . . ,m do // O(n) in total
7 Compute the risk reduction for (f, ti). This only requires updating Wp and Wn values for

ti−1 by considering those x(i) with f values between ti−1 and ti;
8 if Risk reduction for (f, ti) > risk reduction for (f, t∗) then
9 t∗ ← ti;

10 end
11 end
12 Return: t∗.

The derivative of R̂(v;S) wrt v is

dR̂

dv
= 8|S|w−q+e

v + q−e
2v

(1 + ev)3
.

Setting the derivative to 0, we obtain v∗S = ln q+
q−

. Therefore

R̂∗(S) = |S|w
[
q+

4

(1 + q+/q−)2
+ q−

4

(1 + q−/q+)2

]
= 4|S|wq+q−,

which is the same as the R̂∗(S) value for the quadratic loss.

Proposition 5. For the sigmoid loss, we have

R̂∗
uPU(P

′, U ′) = min{Wp,Wn}. (16)

Intuitively, the above expression uses the weight of the rarer class as the impurity measure, and we
can derive a similar expression in the PN setting too. Such an impurity measure is an interesting one
that has not been used in decision tree learning.

Proof. First note that

R̂uPU(v;P
′, U ′) =

∑
x∈P ′

wp

1 + ev
−

∑
x∈P ′

wp

1 + e−v
+

∑
x∈U ′

wu

1 + e−v

=
Wp

1 + ev
+

Wn

1 + e−v

The derivative of the partial empirical risk is

dR̂uPU

dv
=

ev(Wn −Wp)

(1 + ev)2
. (17)

The equation (17) tells us that there are no stationary points in the partial empirical risk. The
minimizer v∗P ′,U ′ is given by:

v∗P ′,U ′ =


+∞, Wp > Wn,

any value, Wp = Wn,

−∞, Wp < Wn,

=


+∞, v∗ > 0.5,

any value, v∗ = 0.5,

−∞, v∗ < 0.5,
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The corresponding minimum partial empirical risk is given by

R̂∗
uPU(P

′, U ′) =

{
Wn, v∗ > 0.5,

Wp, v∗ ⩽ 0.5.
= min{Wp,Wn}. (18)

Note that we can derive similar expressions for each loss function described in Section 2, however in
this paper we only focus on the quadratic and logistic loss due to their connection with the traditional
Gini and entropy impurities, respectively.

G Proof of Proposition 4

Proposition 4. If a node contains the examples P ′ ⊆ P and U ′ ⊆ U , v∗ is as defined in Proposition 1,
and the prediction is chosen from {−1,+1} to minimize the empirical risk estimate on P ′ and U ′,
then the optimal prediction is 21(v∗ > 0.5)− 1 for both the uPU and nnPU risk estimate and all the
loss functions in Section 2. Intuitively, we predict +1 iff the estimated proportion of positive data at
the current node is larger than 0.5.

Proof. For each loss function mentioned in Section 2 we have ℓ(v, y) = a if v = y and ℓ(v, y) = b
if v ̸= y, for some 0 ≤ a < b (with a, b not necessarily common to all loss functions). The optimal
prediction based on the uPU risk estimator is +1 if R̂uPU(+1;P ′, U ′) < R̂uPU(−1;P ′, U ′), that is,
if

Wpℓ(+1,+1) +Wnℓ(+1,−1) < Wpℓ(−1,+1) +Wnℓ(−1,−1)
Wpa+Wnb < Wpb+Wna

(Wp +Wn)/2 < Wp,

which happens if v∗ > 0.5. A symmetric argument can be applied to show that the optimal prediction
is −1 when v∗ < 0.5. Continuing, observe that a, b ≥ 0, so for the nnPU risk estimator the optimal
prediction is +1 if

Wpa+max{0,Wnb} < Wpb+max{0,Wna}
(b− a)max{0,Wn} < Wp(b− a)

Wn ≤ max{0,Wn} < Wp

Wn < Wp,

which is the same result as for the uPU risk estimator. A symmetric argument shows that the optimal
constant prediction based on the nnPU risk estimator is −1 if v∗ < 0.5, and hence (if we predict −1
when v∗ = 0.5 ),

21(v∗ > 0.5)− 1 = argminv∈{−1,+1} R̂nnPU(v;P
′, U ′).

We stress that this result holds for any loss function ℓ satisfying ℓ(v, y) > ℓ(y, y) ≥ 0, with
v ̸= y. Many common loss functions satisfy this condition, including all loss functions mentioned
in Section 2 as well as the hinge loss ℓ(v, y) = max{0, 1 − vy}, the double hinge loss ℓ(v, y) =
max{0, (1 − vy)/2,−vy}, the zero-one loss ℓ(v, y) = (1 − sign(vy))/2, the ramp loss ℓ(v, y) =
max{0,min{1, (1− vy)/2}} and the exponential loss ℓ(v, y) = exp(−vy).

H Pseudocode for PU ET

Our PU Extra Trees algorithm is shown in Algorithm 3, with the learning algorithm for each individual
decision tree given in Algorithm 4, and the method used to find a split for a node in Algorithm 5. A
nice property of this algorithm is that each tree in the forest can be trained in parallel with no need to
share data between processes. Notice the similarity between Algorithm 4 and decision tree learning
in the PN setting seen in Algorithm 1, with the differences being our new method for computing
the prediction value at a specific node and the sub-routine for choosing a split for a node as in
Algorithm 5.

To construct a random forest with 100 decision trees using the randomisation trick in Extra Trees
[13], one can run PUET(100, P, U, ⌈

√
d⌉, 1).
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Algorithm 3: PUET(N,P,U, F, T )

Input: N - number of trees; P - positive examples; U - unlabeled examples; F - number of
attributes; T - number of threshold values per attribute.

Output: Collection of trained decision trees.
1 Initialise collection of decision trees T ← ∅;
2 for i = 1, . . . , N do
3 Initialise the root node κi for decision tree i;
4 Train a single decision tree T using Construct_Subtree(κi, P, U, F, T );
5 T ← T ∪ T;
6 end
7 Return: T

Algorithm 4: Construct_Subtree(κ, P ′, U ′, F, T )

Input: κ - node; P ′ - positive examples at κ; U ′ - unlabeled examples at κ; F -number of
attributes; T - number of threshold values per attribute.

Output: A (sub) decision tree Tκ.
1 if termination criterion is met then
2 Compute optimal prediction value v∗P ′,U ′ = argminv∈{−1,+1} R̂nnPU(v;P

′, U ′) for node κ;
3 else
4 Choose a split (f, t) for node κ using Find_Split(κ, F, T );
5 Create two child nodes κf>t and κf≤t for κ and split data into P ′

f>t, P
′
f≤t, U

′
f>t, U

′
f≤t;

6 Tκf>t
← Construct_Subtree(κf>t, P

′
f>t, U

′
f>t, F, T );

7 Tκf≤t
← Construct_Subtree(κf≤t, P

′
f≤t, U

′
f≤t, F, T );

8 end
9 Return: Tκ

Algorithm 5: Find_Split(κ, F, T )
Input: κ - node; F - number of attributes; T - number of threshold values per attribute.
Output: Optimal split (f, t).

1 Initialise collection of splits S ← ∅;
2 Select F attributes {f} uniformly at random from all non-constant attributes at node κ;
3 for each {f} do
4 for i = 1, . . . , T do
5 Sample a random cut-point t uniformly from the range of attribute f at node κ;
6 S ← S ∪ {(f, t)};
7 end
8 end
9 Choose splitting point (fκ, tκ) ∈ S that maximises the PU-data based risk reduction

R̂∗(P ′, U ′)− R̂∗(P ′
f>t, U

′
f>t)− R̂∗(P ′

f≤t, U
′
f≤t) for node k;

10 Return: (f, t).
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I Computational Efficiency of PU ET

We have run additional experiments to support our claim that PU ET is efficient. Our current Python
implementation of PU ET (nnPU risk with quadratic loss) takes seconds to train a single-tree random
forest on modest hardware (Intel Core i7-10700 CPU and 32 GB RAM) as shown in Table 8. Thus
training a random forest is typically must faster than training a neural net.

Table 8: Training time mean (sd) in seconds for a single tree random forest.

Dataset PU ET PN ET (ours) PN ET (sklearn)
20news 1.26 (0.03) 5.39 (0.09) 0.03 (0.01)
Mushroom 0.14 (0.02) 0.07 (0.01) 0.01 (0.01)
MNIST 5.90 (0.33) 37.90 (0.89) 0.34 (0.01)
CIFAR-10 16.32 (0.36) 119.78 (1.58) 0.97 (0.01)
UNSW-NB15 3.35 (0.38) 67.60 (1.48) 0.11 (0.01)

A Cython implementation of PU ET will be much faster: sklearn’s cython based implementation of
PN ET (with Gini impurity) often achieves a speedup of two orders of magnitude as compared to our
PN ET (with Gini impurity), on fully labeled datasets, as shown in Table 8. Note that our PN ET
implementation is the same as our PU ET implementation, except different risk measures are used in
the calculation of the splitting points.

J Hyperparameter Tuning for PU ET

We deliberately chose to not perform hyperparameter tuning for results in the main text to demonstrate
that PU ET can be reasonably effective even without significant hyperparameter tuning. We have
run some additional experiments to show that the default choice of hyperparameters offer strong
performance with the benefit of decreased training times. We trained PU ET with nnPU risk estimator
and quadratic loss by varying F (number of sampled features) and T (number of thresholds sampled
for each feature) to see their effect on training time and predictive performance. Results are given in
Table 9 and Table 10. All experiments here were performed on an Intel Core i7-10700 CPU with 32
GB RAM using MNIST digits, 5 replications, 100 trees in the forest and under the usual PU learning
experimental setup (|P | = 1000, |U | = n).

Table 9: Accuracy mean% (sd) on the test set for PU ET using various hyperparameter combinations.

F T = 10 T = 1
d 89.75 (0.71) 92.47 (0.54)
⌈
√
d⌉ 93.24 (0.28) 93.74 (0.75)
1 90.02 (0.68) 81.03 (0.09)

Table 10: Training time mean (sd) in seconds for PU ET using various hyperparameter combinations.

F T = 10 T = 1
d 15071.88 (172.07) 1771.92 (31.24)
⌈
√
d⌉ 1231.89 (26.64) 225.65 (1.65)
1 370.54 (1.22) 315.42 (5.58)

The default setting (F = ⌈
√
d⌉, T = 1) results in lower training times and relatively strong predictive

performance. This matches the findings in the original ET paper [13] where this default was able to
strike a good balance between training time and predictive performance.

K Overfitting with uPU Risk Estimators in PU ET

We performed additional experiments to empirically investigate the difference between uPU and
nnPU risk estimators in regards to overfitting. In Table 11 we report the training risks (measured
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as PU risk as data is PU) and testing risks (measured as PN risk as data is PN) using zero-one loss
ℓ0/1(v, y) = (1− sign(vy))/2 on a number of datasets. Each result is reported as mean (sd) over 5
replications. From the results we can see that the training risk is significantly smaller than the test
risk in the uPU setting as compared to the nnPU setting, confirming that uPU suffers more from
overfitting than nnPU.

Table 11: Training and testing risk of PU ET.

Dataset uPU nnPU
Quadratic Logistic Quadratic Logistic

20News Train -0.48 (0.00) -0.22 (0.01) 0.00 (0.00) 0.00 (0.00)
Test 0.56 (0.00) 0.28 (0.01) 0.15 (0.00) 0.18 (0.01)

Mushroom Train -0.36 (0.00) -0.01 (0.00) 0.00 (0.00) 0.00 (0.00)
Test 0.39 (0.01) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00)

MNIST Train -0.47 (0.00) -0.08 (0.01) 0.00 (0.00) 0.00 (0.00)
Test 0.49 (0.00) 0.11 (0.01) 0.04 (0.00) 0.06 (0.00)

CIFAR-10 Train -0.38 (0.00) -0.17 (0.01) 0.00 (0.00) 0.00 (0.00)
Test 0.4 (0.00) 0.25 (0.00) 0.16 (0.00) 0.21 (0.00)

UNSW-NB15 Train -0.58 (0.00) -0.03 (0.01) 0.02 (0.01) 0.02 (0.01)
Test 0.65 (0.00) 0.13 (0.01) 0.1 (0.01) 0.14 (0.00)

L MNIST Feature Importances

For MNIST, the plot of the importance scores for PU ET for each digit often suggests the shape of
the digit. Figure 4 shows that the normalized risk reduction importance makes many more pixels
more important. This observation is consistent with our discussion in Section 4. Interestingly, the
importances for PU ET appear to be very similar to those for PN ET using both the risk reduction
importance and normalised risk reduction importance. This suggests that the learnt PU model is
likely quite similar to the learnt PN model.

Figure 3: Risk reduction importance scores for MNIST digits. Top: PU ET with nonnegative risk
estimator and quadratic loss. Bottom: PN ET with quadratic loss.

Figure 4: Normalized risk (impurity) reduction importances for MNIST digits. Top: PU ET with
nonnegative risk estimator and quadratic loss. Bottom: PN ET with quadratic loss.

M Feature selection with risk reduction importance

We demonstrate that the risk reduction importance is more capable of selecting features which are
responsible for risk minimization and the generalization performance. We do this on the UNSW-
NB15 dataset. Figure 5 shows how the accuracy of PU ET changes on UNSW-NB15 when using
only top features selected by risk reduction importance and Gini impurity reduction importance. All
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accuracies are reported as the mean over five replications to account for randomness in sampling the
P data used during training and randomness in the decision tree construction process.

With the same number of selected features, the risk reduction importance generally leads to increased
accuracy on the test data compared to using Gini impurity reduction on the UNSW-NB15 dataset. The
difference in area under the curve is 0.84 in favour of the risk reduction importance. This confirms
that the risk reduction importance is indeed more useful for selecting features which are responsible
for risk minimization and the generalization performance.
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Figure 5: Risk reduction importance and Gini impurity reduction importance when using different
numbers of features.
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