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Abstract

The need to learn from positive and unlabeled data, or PU learning, arises in
many applications and has attracted increasing interest. While random forests
are known to perform well on many tasks with positive and negative data, recent
PU algorithms are generally based on deep neural networks, and the potential of
tree-based PU learning is under-explored. In this paper, we propose new random
forest algorithms for PU-learning. Key to our approach is a new interpretation
of decision tree algorithms for positive and negative data as recursive greedy
risk minimization algorithms. We extend this perspective to the PU setting to
develop new decision tree learning algorithms that directly minimizes PU-data
based estimators for the expected risk. This allows us to develop an efficient PU
random forest algorithm, PU extra trees. Our approach features three desirable
properties: it is robust to the choice of the loss function in the sense that various
loss functions lead to the same decision trees; it requires little hyperparameter
tuning as compared to neural network based PU learning; it supports a feature
importance that directly measures a feature’s contribution to risk minimization.
Our algorithms demonstrate strong performance on several datasets. Our code is
available at https://github.com/puetpaper/PUExtraTrees.

1 Introduction

Positive and unlabeled learning (PU learning) has attracted increasing interest recently, due to its
broad applications, including disease gene identification [24], landslide susceptibility modeling [29],
inference of transcriptional regulatory network [23], cybersecurity [30] and many others [2].

Existing algorithms generally reduce PU learning to solving one or more supervised learning problems.
A naive approach is to simply learn a classifier by treating all unlabeled examples as negative, but
unlabeled examples can be either positive or negative. Various approaches have been developed to
better handle the uncertainty on the labels of the unlabeled examples. A common approach follows an
iterative two-step learning process: the first step identifies reliable negative examples, then the second
step learns a model using the positive examples, the reliable negative examples and possibly unlabeled
examples [22, 15]. Another common approach transforms the PU dataset into a weighted fully labeled
dataset [20, 12, 11, 16]. The transformed dataset is often constructed so that the empirical risk on the
transformed dataset provides a good estimate of the true risk. Depending on the assumptions on how
PU data is generated, different transformations have been developed.

While random forests are known to perform well for many supervised learning problems and in
principle tree-based learning methods can be applied in the above approaches, little work has been
done to explore the potential of tree-based methods for PU learning. On the other hand, current
state-of-the-art PU learning methods are often based on deep neural networks [16, 6]. This is partly
due to the recent advances of deep learning, which allows training of powerful neural network models
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with relatively little effort. In addition, while it is easy to train a neural network to minimize different
loss functions, it is not clear how this can be done for tree-based methods (without overfitting the
dataset), because existing tree-based methods have not been designed to directly minimize the loss. In
particular, it is not clear how this can be done for nonstandard risk estimators such as the non-negative
PU risk (nnPU), which has already been observed to work well with neural networks [16].

We fill this gap by providing a theoretically justified approach, which we call recursive greedy risk
minimization, to learn random forests from PU data in this paper. Our contributions are as follows

• A new interpretation to existing decision tree learning algorithm that links the impurity
reduction based learning algorithms to empirical risk minimization.

• Efficient new decision tree and random forest algorithms that directly minimize PU-data
based estimators for the expected risk.

• Our approach has three desirable properties: it is robust to the choice of the loss function
in the sense that various loss functions lead to the same decision trees; it requires little
hyperparameter tuning as compared to neural network based PU learning; it supports a
feature importance that directly measures a feature’s contribution to risk minimization.

• Our algorithms demonstrate strong performance on several datasets.

We briefly review decision tree learning and PU learning in Section 2, introduce our recursive greedy
risk minimization approach for decision tree learning in Section 3 and the PU version of extra trees in
Section 4, present experiment results in Section 5, discuss related works in Section 6, and conclude
in Section 7.

2 Background

Decision tree learning from positive and negative data A decision tree is generally constructed
by recursively partitioning the training set so that we can quickly obtain subsets which are more or
less in the same class.

Algorithm 1: LearnDT(κ, S)
1 Notations: κ - node; S - dataset; f - feature; t -

threshold;
2 if termination criterion is met then
3 Compute the prediction value at κ using S;
4 else
5 Choose an optimal split (f, t);
6 Create two child nodes κf>t and κf≤t for κ;
7 LearnDT(κf>t, Sf>t);
8 LearnDT(κf≤t, Sf≤t);
9 end

Algorithm 1 shows a generic decision tree
learning algorithm. We start with a single
node associated with the entire set of train-
ing examples. When we encounter a node
κ associated with a set S of training ex-
amples, we compute the prediction value
at κ if the termination criterion is met. If
not, we first compute an optimal split (f, t)
for the dataset S, where a split (f, t) tests
whether a feature f is larger than a value
t, and the quality of a split is usually mea-
sured by its impurity reduction. Based on
the test’s outcome, we create two child nodes κf>t and κf≤t, split S into two subsets Sf>t and Sf≤t,
and finally continue the learning process with (κf>t, Sf>t) and (κf≤t, Sf≤t).

Given an impurity measure Impurity(S), a split (f, t)’s impurity reduction is

IR(f, t;S) := Impurity(S)− |Sf>t|
|S|

Impurity(Sf>t)−
|Sf≤t|
|S|

Impurity(Sf≤t). (1)

Typically, the Gini impurity G(S) and the entropy H(S) are used as the impurity measure:

G(S) := 1− q2+ − q2− = 2q+(1− q+), H(S) := −q+ ln q+ − q− ln q−, (2)

where q+ and q− are the proportions of positive and negative examples in S respectively.

We will use IRGini(f, t;S) and IRentropy(f, t;S) to denote the impurity reduction when using the Gini
impurity and the entropy impurity respectively.

PU learning We assume that the input x ∈ Rd and label y ∈ {−1,+1} follow an unknown
joint distribution p(x, y) = p(x | y) p(y). In the fully supervised case, the training data is generally
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assumed to be independently sampled from p(x, y). In the PU setting, one common assumption
on the data generation mechanism [11, 10, 16] is that the positive examples P = {x(p)

i }
np

i=1 are
sampled independently from the P marginal pp(x) := p(x | y = 1), and the unlabeled examples
U = {x(u)

i }
nu
i=1 are sampled independently from the marginal p(x) = p(x,+1) + p(x,−1). Clearly,

we have p(x) = π pp(x) + (1− π) pn(x), where π := p(y = +1) is the positive rate and pn(x) :=
p(x | y = −1) is the N marginal.

The objective is to learn a score function g : Rd → R (which corresponds to a classifier that outputs
+1 iff g(x) > 0) such that it minimizes its expected risk

R(g) := E(x,y)∼p(x,y) ℓ(g(x), y), (3)

where ℓ : R× {−1,+1} → R is a loss function that gives the loss ℓ(v, y) incurred by predicting a
score v when the true label is y. We focus on the quadratic loss ℓquad(v, y) = (1− vy)2 , the logistic
loss ℓlogistic(v, y) = ln(1 + exp(−vy)) , the savage loss ℓsavage(v, y) = 4/(1 + exp(vy))2 and the
sigmoid loss ℓsigmoid(v, y) = 1/(1 + exp(vy)) in this paper.

The risk can be written in terms of positive and unlabeled data as [11]

R(g) = π Ex∼pp(x) ℓ(g(x),+1) + Ex∼p(x) ℓ(g(x),−1)− π Ex∼pp(x) ℓ(g(x),−1). (4)

This gives the following unbiased PU-data based risk estimator

R̂uPU(g) :=
∑
x∈P

wpℓ(g(x),+1)−
∑
x∈P

wpℓ(g(x),−1) +
∑
x∈U

wuℓ(g(x),−1), (5)

where wp = π/np and wu = 1/nu.

While the uPU risk estimator is unbiased, it has a negative component that provides extra incentive
for the classifier to try hard to fit to the positive examples, thus potentially making the risk negative
and leading to overfitting. The non-negative risk estimator

R̂nnPU(g) :=
∑
x∈P

wpℓ(g(x),+1) + max

{
0,

∑
x∈U

wuℓ(g(x),−1)−
∑
x∈P

wpℓ(g(x),−1)

}
(6)

alleviates this problem by forcing the sum of the negative term and the term defined on the unlabeled
data to be non-negative, as the sum acts as an estimate for risk on negative examples

3 Recursive Greedy Risk Minimization

3.1 Decision trees for positive and negative data

We first introduce our recursive greedy risk minimization approach in the fully labeled case. Consider
the empirical risk of g : Rd → R on a labeled training set D = {(x1, y1), . . . , (xn, yn)}: R̂(g) =∑

(x,y)∈D wℓ(g(x), y), where w = 1/|D|. If g predicts a constant v on a subset S = {(x, y)} of
the training examples, then the contribution to the total empirical risk is the partial empirical risk
R̂(v;S) :=

∑
(x,y)∈S wℓ(v, y). The optimal constant value prediction is v∗S = argminv∈RR̂

∗(v;S)

with a minimum partial empirical risk R̂∗(S) := R̂∗(v∗S ;S).

If we switch from a constant value prediction rule to a decision stump that uses the split (f, t), then
the minimum partial empirical risk for such a decision stump is R̂∗(Sf>t) + R̂∗(Sf≤t), thus the risk
reduction for the split (f, t) is

RR(f, t;S) := R̂∗(S)− R̂∗(Sf>t)− R̂∗(Sf≤t). (7)

In the following, when we need to make the loss function explicit, we will use subscript to indicate
that. For example, R̂∗

quad(S) and RRquad(f, t;S), are the minimum partial empirical risk for a
constant-valued prediction on S and the risk reduction for the split (f, t) on S when using the
quadratic loss.

When we choose the (f, t) with maximum risk reduction in Algorithm 1, we obtain a recursive greedy
risk minimization algorithm that recursively zooms in to an input region with a constant prediction,
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then improves the prediction rule in a greedy manner by replacing it with the decision stump with
minimal empirical risk in that region.

The first main result shows that the Gini impurity reduction and entropy reduction of a split are
just scaled versions of the risk reductions when using the quadratic loss and the logistic loss respec-
tively. This implies that the standard impurity reduction based decision learning algorithm is in fact
performing recursive greedy risk minimization. All proofs are in the appendix.

Theorem 1. (a) For any S ⊆ D, we have R̂∗
quad(S) = 2|S|wG(S). As a consequence, for any

S ⊆ D and any split (f, t) [4],

RRquad(f, t;S) = 2|S|wIRgini(f, t;S). (9)

(b) For any S ⊆ D, we have R̂∗
logistic(S) = |S|wH(S). As a consequence, for any S ⊆ D and any

split (f, t),

RRlogistic(f, t;S) = |S|wIRentropy(f, t;S). (10)

3.2 Decision trees for positive and unlabeled data

We are now ready to introduce a recursive greedy risk minimization approach to PU learning. We do
this by making two changes to Algorithm 1: the fully labeled dataset S is replaced by a set P ′ ⊆ P of
positive examples and a set U ′ ⊆ U of unlabeled examples, and the split (f, t) is chosen to optimize
a PU version of the risk reduction.

uPU risk reduction We first consider the simpler case of the uPU estimator. Similarly to the fully
labeled case, if g predicts a constant v on P ′ and U ′, then the contribution to the total empirical uPU
risk is

R̂uPU(v;P
′, U ′) :=

∑
x∈P ′

wpℓ(v,+1)−
∑
x∈P ′

wpℓ(v,−1) +
∑
x∈U ′

wuℓ(v,−1).

The optimal constant value prediction is v∗P ′,U ′ = argminv∈RR̂
∗
uPU(v;P

′, U ′) with a minimum
empirical risk R̂∗

uPU(P
′, U ′) := R̂∗

uPU(v
∗
P ′,U ′ ;P ′, U ′). The uPU risk reduction for the split (f, t) on

(P ′, U ′) is

RRuPU(f, t;P
′, U ′) := R̂∗

uPU(P
′, U ′)− R̂∗

uPU(P
′
f>t, U

′
f>t)− R̂∗

uPU(P
′
f≤t, U

′
f≤t). (8)

The following result shows that the optimal risk R̂∗
uPU(P

′, U ′) has a closed-form formula and is
thus efficiently computable. As a consequence, the uPU risk reduction for a split (f, t) is efficiently
computable.
Proposition 1. Consider arbitrary P ′ ⊆ P and U ′ ⊆ U ′. Let Wp = |P ′|wp, Wn = |U ′|wu−|P ′|wp,
and v∗ :=

Wp

Wp+Wn
.

(a) When using the quadratic loss, we have

R̂∗
uPU(P

′, U ′) =

{
−∞, v∗ = +∞,

4(Wp +Wn)v
∗ (1− v∗) , otherwise.

(11)

(b) When using the logistic loss, we have

R̂∗
uPU(P

′, U ′) =


(Wp +Wn) (−v∗ ln(v∗)− (1− v∗) ln(1− v∗)) , 0 < v∗ < 1,

0, v∗ ∈ {0, 1},
−∞, v∗ > 1.

(12)

Intuitively, if P ′ ⊆ P and U ′ ⊆ U are the examples in a node κ in the decision tree, then the weights
Wp and Wn serve as unbiased estimates of the probabilities p(x ∈ κ, y = 1) and p(x ∈ κ, y = −1)
respectively. See Appendix C for details. Thus v∗ =

Wp

Wp+Wn
serves as an estimate of the probability

of positive examples. Note that Wp ∈ [0, 1], while Wn ≤ 1 is unusual in that it contains a negative
component and hence can be negative. Consequently, v∗ is non-negative, but it can be larger than 1
though. In particular, if Wp +Wn = |U ′|wu = 0, then v∗ = +∞.
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nnPU risk reduction For the case of the nnPU estimator, define

R̂nnPU(v;P
′, U ′) :=

∑
x∈P ′

wpℓ(v,+1) + max

{
0,

∑
x∈U ′

wuℓ(v,−1)−
∑
x∈P ′

wpℓ(v,−1)

}
.

We can then similarly define the risk reduction for the nnPU estimator.

The following result shows that in the nnPU case, the optimal risk R̂∗
uPU(P

′, U ′) also has a closed-
form formula and is thus efficiently computable.
Proposition 2. Using the same notations as in Proposition 1, we have the following results.

(a) When using the quadratic loss, we have

R̂∗
nnPU(P

′, U ′) =

{
0, v∗ > 1

4(Wp +Wn)v
∗ (1− v∗) , otherwise.

(14)

(b) When using the logistic loss, we have

R̂∗
nnPU(P

′, U ′) =

{
(Wp +Wn) (−v∗ ln(v∗)− (1− v∗) ln(1− v∗)) , 0 < v∗ < 1

0, otherwise.
(15)

It is important to note that while in the uPU case, if P ′ is partitioned into P ′
1 and P ′

2, and U ′ into
U ′
1 and U ′

2, then we have R̂uPU(u;P
′, U ′) = R̂uPU(u, P

′
1, U

′
1) + R̂uPU(u, P

′
2, U

′
2), we only have

R̂nnPU(u;P
′, U ′) ≤ R̂nnPU(u, P

′
1, U

′
1) + R̂nnPU(u, P

′
2, U

′
2). Thus recursive greedy risk minimiza-

tion minimizes an upper bound of the partial empirical risk rather than the partial empirical risk. This
can be considered as a regularization mechanism. In fact, we observe nnPU risk to work better than
the uPU risk in our experiments, which is consistent with the findings in [16].

Optimizing the split With the above closed-form formula, we can then efficiently compute the
risk reduction for a given split (f, t) on (P ′, U ′). While there are infinitely many possible t values
to choose from, note that they often split the dataset in the same way, and if f ’s values split R
into multiple intervals, we only need to consider t1 < t2 < . . . < tm, each chosen from an
interval so that we cover all possible cases. While computing the risk reduction for each (f, ti)
takes O(|P ′|+ |U ′|) time, we can efficiently get the risk reductions for all of (f, t1), . . . , (f, tm) in
O((|P ′|+ |U ′|) ln(|P ′|+ |U ′|) +m) time, by sorting the examples according to their f values, and
going through the thresholds in a sorted order. See Appendix E for details.

Invariance properties An interesting property of the greedy recursive learning approach is that
it is robust to the choice of the loss function in the sense that different loss functions can lead to
identical decision trees, as shown in the result below.
Proposition 3. The R̂∗(S) value is the same for the quadratic loss and the savage loss.

Another interesting property is that the optimal prediction among −1 and +1 are often the same
when we use different estimators and different loss functions.
Proposition 4. If a node contains the examples P ′ ⊆ P and U ′ ⊆ U , v∗ is as defined in Proposition 1,
and the prediction is chosen from {−1,+1} to minimize the empirical risk estimate on P ′ and U ′,
then the optimal prediction is 21(v∗ > 0.5)− 1 for both the uPU and nnPU risk estimate and all the
loss functions in Section 2. Intuitively, we predict +1 iff the estimated proportion of positive data at
the current node is larger than 0.5.

4 PU Extra Trees

With our PU decision tree algorithms, we can obtain a PU random forest algorithm by adapting the
random forest algorithm [3] for positive and negative data: repeatedly obtain bootstrap samples for
both the positive data and the unlabeled data, then train a PU decision tree for each sample with
optimal split chosen over a randomly sampled subset of features each time. While choosing the
optimal split from a subset of features makes training each decision tree faster, it is still the most
expensive part in the tree construction process and can potentially be very slow on a large dataset. We
describe a more efficient version that we used in our experiments below. In addition, we introduce a
new feature importance score that directly measures a feature’s contribution to risk minimization.
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PU ET (Extra Trees) We develop a more efficient random forest algorithm by using the random-
ization trick in the Extra Trees algorithm [13] to further reduce the computational cost for finding
an optimal split below. Besides sampling only a subset of features, only one random threshold for
each sampled feature is considered. We implemented a more general version which allows sampling
multiple random thresholds for a sampled feature. A complete pseudocode for PU ET is given in
Appendix H.

Termination criteria Decision trees can overfit the training data if allowed to grow until each
leaf has just one example. Learning is generally terminated early to alleviate overfitting. In our
implementation, we terminate when all feature values are constant, when a maximum tree depth dmax

is reached, when the node size falls below a threshold smin, or when the node is pure. A node is said
to be pure if the impurity measure takes value −∞ in the uPU setting, or value 0 in the nnPU setting.

Risk reduction importance Our feature importance, called risk reduction importance, is the total
risk reduction for a feature across all nodes in all the trees. The risk reduction importance of a feature
f is defined as

∑
κ∈Kf

RR(fκ, tκ;Pκ, Uκ), where Kf is the set of nodes using f as a splitting
feature, (fκ, tκ) is the split for node κ, and (Pκ, Uκ) is the set of PU data at κ. This can be averaged
across multiple trees in a random forest. The risk reduction importance in PU learning is similar
to the Gini importance as defined in, for example, [4], whereby the size of the nodes is taken into
account. This is beneficial as otherwise features often used in splitting small datasets may appear very
important as compared to features used in splitting large datasets, even though it does not contribute
as much to reducing the risk and improving classification performance. To demonstrate the effect
of taking data size into account, a normalized risk reduction can be defined by dividing the risk
reduction by the total weight of the examples.

5 Experiments

In this section we compare PU Extra Trees with several other PU learning methods. Selected tree-
based methods include NaivePUET whereby ET is trained on the PU dataset by simply treating
U data as N data; PUBaggingET which uses PUBagging from [23] with ET base classifier; and
SupervisedET where ET is trained on the original fully labeled dataset (expected to be an upper
bound for tree based PU methods). To further study the effectiveness of our PU Extra Trees algorithm
we also compare against neural network based methods including a baseline method uPU [11, 10]
and two state of the art methods nnPU [16] and Self-PU [6]. We ran experiments on heterogeneous
devices. In particular, random forests were trained using 32GB RAM and one of Intel i7-10700,
Intel i7-11700 or AMD Epyc 7702p CPU. Neural networks were trained on one of NVIDIA RTX
A4000 or NVIDIA RTX A6000 GPU due to the lack of identical devices. While the running times
are not always comparable and thus not provided in the main text, experiments show that our current
implementation of PU ET takes seconds to train a single-tree random forest on modest hardware. See
Appendix I for details.

Datasets We consider a selection of common datasets for classification from LIBSVM [5], as
well as MNIST digits [19], the intrusion detection dataset UNSW-NB15 [25] and CIFAR-10 [17] to
demonstrate the versatility of our method. Table 1 is a summary of the benchmark datasets.

Table 1: Benchmark datasets. ∗: random 80%-20% train-test split was used as no train-test splits
were provided.

Name # Train # Test # Feature π
mushrooms∗ 6499 1625 112 0.52
20News 11 314 7 532 300 0.56
covtype.binary∗ 464 809 116 203 54 0.51
epsilon 400 000 100 000 2 000 0.5
MNIST 60 000 10 000 784 0.5
CIFAR-10 50 000 10 000 3 072 0.4
UNSW-NB15 175 340 82 331 39 0.68

The 20News, epsilon, MNIST and CIFAR-10 datasets were processed in the same way as in [16]
for consistency. Definitions of labels (‘positive’ vs ‘negative’) are as follows: For 20News, ‘alt.,
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comp., misc., rec.’ vs ‘sci., soc., talk.’; for MNIST, ‘0,2,4,6,8’ vs ‘1,3,5,7,9’; for CIFAR-10, ‘airplane,
automobile, ship, truck’ vs ‘bird, cat, deer, dog, frog, horse’; for UNSW-NB15, all attack types
make up the P class and the benign data makes up the N class; for mushroom and covtype, the most
prominent class makes up the P class; and epsilon dataset is provided with P and N classes. GloVe
pre-trained word embeddings [27] were used for 20News with average pooling over each document.
Each feature in the covtype and UNSW-NB15 datasets was scaled between 0 and 1 when using uPU
and nnPU as there is a large mismatch in scales between the features which seemed to significantly
reduce performance of the methods. No such scaling of the data is required for PU ET as performance
does not seem to be affected in such cases.

To convert the PN data to PU data we follow the experimental setup in [16] whereby 1000 positive
examples are randomly sampled to form the P set, and the entire dataset is used for the U set. In
practice it may be the case that π is not known a-priori, in which case there are methods for estimating
π using only PU data, for example, in [7], or [28].

Model hyperparameters Following common practice [26, 13], the default hyperparameters for
PU ET are: 100 trees, no explicit restriction on the maximum tree depth, sample F = ⌈

√
d⌉ features

out of a total of d features and sample T = 1 threshold value when computing an optimal split. The
size of the bootstrap sample for PUBaggingET is set to the default value of the dataset size.

The architectures for the neural networks used in uPU, nnPU and Self-PU were copied from
[16] for the 20News, epsilon, MNIST and CIFAR-10 datasets. A 6 layer MLP with ReLU
was used for MNIST, Covtype, Mushroom and UNSW-NB15; a similar model was used for ep-
silon while the activation was replaced with Softsign; a 5 layer MLP with Softsign was used
for 20News. All hidden layers had width 300 for the MLPs. The model for CIFAR-10 was the 13
layer CNN: (32*32*3,1)-[C(3*3,96,1)]*2-C(3*3,96,2)-[C(3*3,192,1)]*2-C(3*3,192,2)-C(3*3,192,1)-
C(1*1,192,1)-C(1*1,10,1)-1000-1000-1, where the input is a 32*32 RGB image, C(3*3,96,1) means
96 channels of 3*3 convolutions with stride 1 followed by ReLU, [.]*2 means there are two such
layers. For the remaining datasets we used a 6-layer MLP with ReLU [18, 14] (more specifically,
d-300-300-300-300-1). For each dataset the neural networks were trained for 200 epochs. The batch
size, learning rate, use of batch-norm (for datasets not included in [16]), weight decay and choice of
optimiser were tuned for each dataset.

It is noteworthy that we spend little effort to tune PU ET hyperparameters and simply use the same
hyperparameters on all datasets. In addition, PU ET seems to be robust to hyperparameter choice
in that the default selection tends to result in strong predictive performance with decreased training
times. See Appendix J for results from hyperparameter tuning experiment. On the other hand, neural
nets are sensitive to hyperparameter choice, and significant tuning is often needed for each dataset.

5.1 Classification performance

To take into account of the randomness in the learning algorithms, we train each model five times
on the same dataset, then report the mean and standard deviation of the accuracy and the F-score.
Results for uPU, nnPU and Self-PU were reproduced to the best of our ability, particularly on the
datasets that were included in the original results section of the respective papers.

Effect of loss function and risk estimator on PU ET We first evaluate the effect of different loss
functions and risk estimators for PU ET. The results are shown in Table 2 and Table 3. PU ET with
nonnegative risk estimator seems to perform about as well using either quadratic or logistic loss.
Unbiased risk estimator seems to lead to overfitting, but less so with logistic loss. Logistic loss leads
to better performance than quadratic loss when using unbiased risk estimator. Note that (11) implies
that quadratic loss encourages aggressive splitting until all examples are positive as a loss of −∞ can
be achieved in this case, while (12) implies that logistic loss has a less aggressive splitting behavior
as a loss of −∞ is achieved when the total weight of positive examples exceeds the total weight of
unlabeled examples. As discussed previously, once we achieve an impurity value of −∞ in uPU,
we stop splitting. The more aggressive splitting behavior of quadratic loss leads to deeper trees that
tend to overfit more than the logistic loss in general. This is consistent with results from additional
experiments in Appendix K.

Comparison of PU ET with other tree-based PU learning methods We now compare our PU ET
algorithm with several tree-based baselines to further study the effectiveness of our novel PU tree
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Table 2: Accuracy mean% (sd) on the test set for PU ET using various PU data based risk estimators.

Dataset Unbiased risk estimator Nonnegative risk estimator
Quadratic Loss Logistic Loss Quadratic Loss Logistic Loss

Epsilon 50.04 (0.00) 50.67 (0.08) 57.39 (0.76) 57.83 (0.70)
20News 43.64 (0.05) 73.44 (0.87) 83.34 (0.22) 83.34 (0.31)
Covtype 48.72 (0.00) 72.63 (0.87) 76.51 (0.52) 75.63 (0.52)
Mushroom 0.607 (0.48) 99.02 (0.32) 99.70 (0.24) 99.36 (0.48)
MNIST 50.74 (0.0) 89.05 (0.61) 93.60 (0.39) 94.01 (0.19)
CIFAR-10 60.0.(0.01) 75.30 (0.66) 79.74 (0.37) 79.86 (0.39)
UNSW-NB15 47.18 (0.15) 83.89 (1.03) 82.24 (0.86) 81.51 (1.58)

Table 3: F mean% (sd) on the test set for PU ET using various PU data based risk estimators.

Dataset Unbiased risk estimator Nonnegative risk estimator
Quadratic Loss Logistic Loss Quadratic Loss Logistic Loss

Epsilon 0.00 (0.00) 4.18 (0.59) 39.52 (1.19) 40.25 (1.38)
20News 0.43 (0.17) 72.65 (1.11) 85.33 (0.22) 85.26 (0.28)
Covtype 0.11 (0.01) 68.44 (1.25) 75.19 (0.37) 74.20 (0.58)
Mushroom 39.02 (1.19) 99.04 (0.32) 99.71 (0.24) 99.38 (0.47)
MNIST 0.00 (0.00) 88.06 (0.74) 93.49 (0.42) 93.90 (0.19)
CIFAR-10 0.02 (0.04) 61.33 (1.44) 71.31 (0.43) 71.67 (0.53)
UNSW-NB15 7.97 (0.47) 86.33 (0.87) 85.65 (0.59) 85.17 (1.15)

learning method. The results are shown in Table 4 and Table 5. The results support the effectiveness of
our algorithm. Our PU ET with nnPU risk estimator and quadratic loss significantly outperforms both
NaivePUET and PUBaggingET, particularly in terms of F-scores. PU ET shows strong performance
even as compared to SupervisedET, though often using a small proportion of the positive labels only.

Table 4: Accuracy mean% (sd) on the test set for various tree based methods. †: Original dataset with
full supervision was used during training.

Dataset SupervisedET† PU ET NaivePUET PUBaggingET
Epsilon 73.55 (0.08) 57.39 (0.76) 50.04 (0.00) 50.04 (0.00)
20news 85.39 (0.12) 83.34 (0.22) 43.63 (0.05) 43.75 (0.06)
Covtype 95.90 (0.02) 76.51 (0.52) 48.71 (0.00) 48.71 (0.0)
Mushroom 100 (0.00) 99.70 (0.24) 53.85 (0.32) 62.76 (0.84)
MNIST 98.11 (0.05) 93.60 (0.39) 50.74 (0.00) 50.74 (0.00)
CIFAR-10 85.02 (0.19) 79.74 (0.37) 60.00 (0.00) 60.0 (0.00)
UNSW-NB15 86.57 (0.05) 82.24 (0.86) 44.95 (0.01) 44.97 (0.02)

Table 5: F mean% (sd) on the test set for PU ET using various PU data based risk estimators. †:
Original dataset with full supervision was used during training.

Dataset SupervisedET† PU ET NaivePUET PUBaggingET
Epsilon 72.96 (0.08) 39.52 (1.19) 0.00 (0.00) 0.00 (0.00)
20news 87.40 (0.11) 85.33 (0.22) 0.38 (0.19) 0.82 (0.18)
Covtype 95.97 (0.02) 75.19 (0.37) 0.05 (0.01) 0.06 (0.01)
Mushroom 100 (0.00) 99.71 (0.24) 19.68 (2.04) 45.3 (0.84)
MNIST 98.09 (0.05) 93.49 (0.42) 0.00 (0.00) 0.00 (0.00)
CIFAR-10 80.30 (0.24) 71.31 (0.43) 0.01 (0.02) 0.02 (0.02)
UNSW-NB15 88.96 (0.04) 85.65 (0.59) 0.08 (0.06) 0.11 (0.06)

Comparison of PU ET with neural network methods We compare PU ET with nnPU risk
estimator and quadratic loss against uPU neural nets, nnPU neural nets and Self-PU. The results are
shown in Table 6 and Table 7. PU ET shows strong performance in terms of both accuracy and F
score on a wide variety of datasets compared to neural network based models.
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Table 6: Accuracy% mean (sd) on the test set for PU ET with nonnegative risk estimator and quadratic
loss and three neural network based PU learning methods. ∗: Self-PU was run without self-calibration
due to limitations with available hardware.

Dataset PU ET Neural Network
uPU nnPU Self-PU

Epsilon 57.39 (0.76) 61.79 (2.57) 73.80 (0.49) 50.05 (0.0)
20News 83.34 (0.22) 44.95 (1.09) 74.11 (3.65) 62.87 (2.89)
Covtype 76.51 (0.52) 72.38 (1.23) 71.64 (0.66) 54.67 (0.40)
Mushroom 99.70 (0.24) 98.09 (1.03) 99.04 (0.54) 99.25 (0.61)
MNIST 93.60 (0.39) 55.95 (1.17) 93.08 (0.46) 93.13 (0.41)
CIFAR-10 79.74 (0.37) 62.68 (2.95) 81.87 (04.20) 88.22 (0.51)∗

UNSW-NB15 82.24 (0.86) 76.62 (0.01) 76.63 (0.02) 76.73 (0.18)

Table 7: F mean% (sd) on the test set for PU ET with nonnegative risk estimator and quadratic loss
and three neural network based PU learning methods. ∗: Self-PU was run without self-calibration
due to limitations with available hardware.

Dataset PU ET Neural Network
uPU nnPU Self-PU

Epsilon 39.52 (1.19) 43.44 (8.14) 71.53 (0.46) 0.00 (0.00)
20News 85.33 (0.22) 12.95 (3.82) 78.05 (3.81) 71.78 (6.85)
Covtype 75.19 (0.37) 69.56 (1.77) 68.29 (0.93) 0.501 (2.55)
Mushroom 99.71 (0.24) 98.13 (1.02) 99.06 (0.53) 99.27 (0.60)
MNIST 93.49 (0.42) 19.13 (3.82) 92.77 (0.60) 92.96 (0.47)
CIFAR-10 71.31 (0.43) 32.43 (25.03) 76.01 (7.62) 85.51 (0.60)∗

UNSW-NB15 85.65 (0.59) 82.47 (0.01) 82.48 (0.02) 80.18 (0.28)

5.2 Feature Importance

Interpretability is a desirable property of machine learning algorithm, but neural networks are often
hard to interpret. In contrast, tree based methods are generally easier to interpret. We illustrate our
risk reduction importances of both PU ET and PN (positive-negative) ET on the UNSW-NB15 and
the MNIST datasets (lighter color indicates a higher score) in Figure 1 and Figure 2 respectively .
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Figure 1: Risk reduction importances on UNSW-NB15. Left: PU ET. Right: PN ET.

For MNIST, the plot of the importance scores for PU ET for each digit often suggests the shape
of the digit. On the other hand, the Appendix provides some additional figures that show that the
normalized risk reduction importance makes many more pixels more important. This observation
is consistent with our discussion in Section 4. Interestingly, the importances for PU ET appear to
be very similar to those for PN ET (visually similar importance maps for MNIST, and qualitatively
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similar importance values which give similar feature rankings for UNSW-NB15). This suggests that
the PU model is likely quite similar to the PN model.

Figure 2: Risk reduction importances learnt from ET classifier on MNIST digits. Top: PU ET with
nonnegative risk estimator and quadratic loss. Bottom: PN ET with Gini impurity.

6 Related Work

PU learning was initially studied in [9, 8, 21], and many approaches have been developed based on
different assumptions on the data generation mechanism.

The two-step approach discussed in the introduction have been adopted in many papers with numerous
instantiations. We refer the readers to [2] for a comprehensive list.

Another important line of work, which is most related to our work and has achieved the state-of-
the-art performance recently, minimizes a risk estimate based on a weighted dataset of positive and
negative examples obtained by transforming the PU dataset [20, 12, 11, 16]. Our work follows the
risk minimization approach, but we develop general risk minimization algorithms for learning tree
models, that allows exploiting the under-explored potential of random forests.

Numerous works have been done on tree-based methods, and random forest algorithms are among
the most successful ones [3, 13, 1]. In the PU learning literature, PU decision trees were explored in
early works [8, 21], and PU bagging [23] has been explored for SVMs [23] and decision trees [29].
All of these approaches do not aim to directly minimize the risk.

Our recursive greedy risk minimization framework gives a new interpretation to existing tree learning
algorithms for positive and negative data, and allows us to develop new algorithms for positive and
unlabeled data. In addition, our approach allows us to formulate a new feature importance score that
directly measures a feature’s contribution to risk minimization.

7 Conclusions

Random forests perform very well on fully supervised learning methods, but its potential in PU
learning has been under-explored due to the strong emphasis on neural networks and the lack of a
principled method for learning decision trees from PU data. We fill this gap in this paper. We first
consider learning from positive and negative data, and develop a recursive greedy risk minimization
approach for learning decision trees, and show that with suitable choice of loss functions, its
instantiations are equivalent to standard impurity-based decision tree learning algorithms. We extend
this approach to the PU setting, and develop a very efficient random forest algorithm which requires
little hyperparameter and yet strong performance against the state-of-the-art PU learning algorithms.
Our approach supports a new feature importance score that directly measures a feature’s contribution
to risk mnimization.

Our work opens up some new opportunities to build tree models. First, decision trees can easily
overfit the training set, and various heuristics have been used in practice to alleviate overfitting. Our
recursive greedy risk minimization framework provides an alternative way to control the size of the
learned decision by always expanding the node with the largest risk reduction until the risk reduction
is smaller than a threshold or when the tree size is larger than a threshold. Second, we focused on
quadratic loss and logistic loss in our experiments, but we can also study alternative losses such as
the hinge loss, or double hinge loss.
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