
A Omitted Proofs from Section 2

A.1 Proof of Proposition 9

Proof. Fix a subset ⌦ ⇢ [d] with size  , and then fix a set of  monomials on ⌦ with degree at
most l, denoted by M(⌦, l). Let P(Rd

,M(⌦, l),⌦) be the induced class of polynomials. Note that
P(Rd

, l,, ) = [⌦ [M(⌦,l) P(Rd
,M(⌦, l),⌦).

It is easy to see that for any p 2 P(Rd
,M(⌦, l),⌦), it can be represented by a linear combinations

of the  monomials. Thus, the VC dimension of this class equals + 1. Then, we note that there areP 
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The concept class union argument states that for H = [mi=1Hi, the VC dimension of H is upper
bounded by O(max{V, logm+ V log logm

V }), where V is an upper bound on the VC dimension of

all Hi. In our case, we have V = + 1 and m 
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⌘
. By calculation, we can show

that the VC dimension of P(Rd
, l,, ) is upper bounded by
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+ + 1  (l+  ) log d =: d0. (A.2)

Recall that the VC theory states that for any ✏, ⌧ 2 (0, 1), as long as |SG| � C
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✏2 log

1
⌧

⌘

for some absolute constant C > 0, the following holds with probability 1� ⌧ :

sup
p2P(Rd,l,, )

����Pr[p(G) � 0]� Pr
x⇠SG

[p(x) � 0]

����  ✏. (A.3)

With the expression of d
0 in (A.2), it is not hard to see that we can set |SG| = C ·

(l·+ ) log d
✏2 log (l·+ ) log d

✏⌧ for some absolute constant C > 0 to ensure that the above holds.

When l = 2`,  = 4`2k4`,  = 2`k2`, and ✏ = ↵3

100k2`·log2`( `d
↵⌧ )

for some natural number ` � 1, by

algebraic calculation, it suffices to pick |SG| = C
0
·
`4·k8`

↵6 · log6`( `d↵⌧ ) for some sufficiently large
constant C 0. This completes the proof.

A.2 Proof of Lemma 11

Proof. By the standard tail bound of Gaussian distribution, for any x drawn from N(µ, Id), it holds
that for any given index i 2 [d], Pr[|xi � µi| � t]  2 exp(�t2/2). By taking union bound over both
index i and sample x 2 SG, we have Pr[maxx2SG maxi2[d] |xi � µi| � t]  2d |SG| exp(�t2/2).
Choosing t =

p
2 log(d |SG| /⌧) completes the proof.

A.3 Proof of Lemma 12

Proof. Let SG be the subset of T containing the samples drawn i.i.d. from N(µ, Id). Since |SG| =
2↵ · |T |, we know that SG is a representative set with probability at least 1� ⌧ in light of Prop. 9.

Consider Algorithm 1. If for all x, y 2 T , we have

kx� yk1  6�, (A.4)

then the algorithm returns only one cluster and the lemma follows immediately.

If that is not the case, we first note that, with probability at least 1� ⌧ all of the samples in SG satisfy
Eq. (A.4) due to Lemma 11. Let us condition on this event occurs from now on.
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Algorithm 1 constructs a set of disjoint L1-balls of radius 2�, of which each is centered at one
sample in T and contains at least an ↵-fraction of samples in T . Therefore, the number of such
balls is at most m = b1/↵c. Denote the set by {B1, . . . ,Bm}. Let B0

i be the ball that has the same
center as Bi but with `1-radius of 6�. In the following, we show that there exists i 2 [m], such that
Ti = T \ B0

i is ↵-good.

Consider a sample x 2 SG, for which we know that kx� µk1  �. Then, for the L1-ball
Bx := {y 2 Rd : ky � xk1  2�}, all of the samples in SG will be contained in Bx. In addition,
there must exist one Bi that intersects Bx, as otherwise Bx will be in the set {B1, . . . ,Bm}. That is,
9z 2 T, z 2 Bx \ Bi. By construction, Bx must be containted in B0

i. Therefore, all samples of SG

must be included in Ti and Ti is ↵-good.

A.4 Proof of Lemma 13

Proof. Recall that after running Algorithm 1, every subset Ti is contained in an L1-ball of radius 6�.
By Jensen’s inequality and the convexity of the L1-norm, we have for all x 2 T , kx� µT k1  6�.

Recall that we assumed p(x) = hA(x � µT ). Thus Ex⇠N(µT ,I)[p(x)] = 0 due to the definition of
harmonic polynomials. Thus, Varx⇠N(µT ,I)[p(x)] = kAk

2
2. Denote z = x� µT . Then,
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where a(j) is a d-dimensional multi-index for the j-th monomial, and ca(j) denotes its coefficient.
Observe that in the first step, p(x) is written as a linear combination of k2` Hermite polynomials,
since we are considering p 2 P(Rd

, l, k
2`
, 2`k2`). Note also that

P
j2[k2`] c

2
a(j) = kAk

2
2  1.

To bound the second factor on the right-hand side of (A.5), we use Mehler’s formula, which shows
that for any u with |u| < 1 and any natural number a,
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i ,

Since each Hea(j)(z) has degree at most l, it can be decomposed as a product of at most l univariate
Hermite polynomials. Thus, we take such product and sum over j 2 [k2`] to obtain
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To simplify the above expression, observe that
Q
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l. In addition,
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2 . Putting all pieces

together gives
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We set u = 1
� ; this is possible as � > 1. Then the exponent u2l

2 + 36l�2u
1+u = l

2�2 + 36l
1+1/�2  37l.

Without loss of generality, we may assume that � > e
37; in fact, we can always ensure this by setting

� = (C0 + e
37) ·

q
` · log `d

↵⌧ where C0 is the constant given in Algorithm 1. Thus, it follows that
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Plugging it into (A.5) completes the proof.
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B Analysis of ATTRIBUTE-EFFICIENT-MULTIFILTER

We collect a few useful facts about Hermite polynomials.

Recall that for an order-l tensor A 2 Rdl

, kAk2 denotes its L2 norm by seeing it as a long vector,
and for a polynomial p : Rd

! R, kpk2 := Ex⇠N(0,Id)[p
2(x)])1/2.

The following can be easily seen from the definition of harmonic polynomials.
Fact 20. For all order-l symmetric tensors A and its corresponding harmonic polynomial hA, we
have that khAk2 = kAk2. Moreover, if l > 0, then Ex⇠N(0,Id)[hA(x)] = 0.

Claim 21. Let v 2 Rd be a unit vector. For x 2 Rd, the polynomial p(x) = Hel(v · x) is harmonic
with respect to x with degree l. That is, there exists a tensor A = tensor(p) which is symmetric and
with order l.

B.1 Proof of Lemma 15

Proof. Recall that we denoted �⇤sparse = C1 ·
⇥
(`+ C1 log

1
↵ ) · log

2(2 + log 1
↵ )

⇤2` in Algorithm 3.

Observe that if
���⌃̃U

���
F
 �

⇤
sparse, then for any index set ⌦ ⇢ [d`] with |⌦|  k

`, we have

�max(⌃̃⌦⇥⌦) 
���⌃̃⌦⇥⌦

���
F


���⌃̃U

���
F
 �

⇤
sparse,

where �max(·) denotes the maximum eigenvalue and the second step follows from our choice of U
which maximizes the restricted Frobenius norm.

Thus, for any u 2 Rd`

with kuk0  k
`,

u
>⌃̃u  �max(⌃̃⌦⇥⌦)  �

⇤
sparse. (B.1)

Let v be a k-sparse unit vector in Rd. That is, v 2 Rd
, kvk0  k, kvk2 = 1. Consider some

symmetric order-` tensor B such that He`(v · (x � µT )) = hB(x � µT ) (Claim 21). Due to the
sparsity of v, we know that B is an outer product of ` number of k-sparse vectors; hence kBk0  k

`.
As hB(x� µT ) is a degree-` harmonic polynomial and the vector Pd,`(x� µT ) includes all Hermite
polynomials with degree exactly `, we know that we can write hB(x� µT ) = uB · Pd,`(x� µT ) for
some uB 2 Rd`

, kuBk0  k
`. Thus, we have that

E[hB(T � µT )
2] = E[(uB · Pd,`(T � µT ))

2] = u
>
B⌃̃uB  �

⇤
sparse kuBk

2
2 = �

⇤
sparse kBk

2
2 .

By Fact 20, observe that kBk22 = Ex⇠N(µT ,Id)[hB(x�µT )2] = `!, and thus we have E[He`(v · (T �
µT ))2] = E[hB(T � µT )2]  �⇤sparse`!.

As a result, we have for any k-sparse unit vector v 2 Rd that

E[He`(v · (SG \ T � µT ))
2] =

1

|SG \ T |

X

x2SG\T

He`(v · (x� µT ))
2


1

↵ · |T |

X

x2T

He`(v · (x� µT ))
2

=
1

↵
· E[He`(v · (T � µT ))

2] 
�
⇤
sparse · `!

↵
, (B.2)

where the first inequality follows from the condition that T is ↵-good, which, by Definition 10,
implies |SG \ T | / |T | � ↵.

The remaining analysis borrows the proof strategy from [DKS18b]. In particular, we will need the
following lemma.

Lemma 22 (Lemma 3.34 of [DKS18b]). For any v 2 Rd, the polynomial Hel(v · (G� µT )) has
mean (v · (µ� µT ))l and variance at most 2max(l, v · (µ� µT ))2(l�1).
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Now to ease the notation, write ✓ := v · (µ� µT ). By Cantelli’s inequality we have
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2
.

Since SG is representative, by Definition 8
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Since T is ↵-good, due to Definition 10, |SG \ T | / |SG| � 1� ↵
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80
100 , we have that
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On the other hand, due to Eq. (B.2), applying Markov’s inequality gives that for any k-sparse unit
vector v,
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"
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. (B.3)

Recall that ✓ = v · (µ� µT ). From Eq. (B.1) and (B.3), we have that for any k-sparse unit vector
v 2 Rd,

(v · (µ� µT ))
`
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.

Note that ✓` 
p
2max(`, ✓)(`�1) only when ✓  2`, and so we have that for any k-sparse unit

vector v 2 Rd,

v · (µ� µT )  2`+
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⌘ 1
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.

By choosing v = trimk(µ � µT ) and combining the above with Lemma 39, we complete the
proof.

B.2 Analysis of BASICMF

Recall the notations in BASICMF (Algorithm 4): R = (C1 · log(
1
↵ ))

l/2, � = C0 ·

q
` · log( `d↵⌧ ), and

the length of the interval [a, b], i.e. b� a, equals C1 · R · log(2 + log 1
↵ ). We will need a series of

results to prove Theorem 18. First, we note that if BASICMF returns at Step 2, then T must not be
↵-good in view of Lemma 11. Thus we only need to consider the remaining steps. In particular, we
divide the output of BASICMF into three cases:

• CASE 1: it returns TBD at Step 5.
• CASE 2: it returns one subset {(T 0

,↵
0)} at Step 9.

• CASE 3: it returns two subsets {(T1,↵1), (T2,↵2)} at Step 14.

We analyze the performance for each case in the following.
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B.2.1 Analysis of CASE 1

Proposition 23. Consider Algorithm 4. If it returns TBD and if T is an ↵-good set, then
|E[p(G)]� E[p(T )]|  O

�
(`+ log 1

↵ )
l
2
· log(2 + log 1

↵ )
�
.

Proof. We first argue that most of the good samples in T have p(x) value close to E[p(G)].

Claim 24. If T is ↵-good, then the samples x 2 T \SG that satisfy |p(x)� E[p(G)]| < R constitute
at least an

⇣
↵�

↵3

100

⌘
-fraction of T and an (1� ↵

6 �
↵3

100 )-fraction of SG.

Next, we claim that if there exists an appropriate interval [a, b] in Step 3, then the mean of p(G) is in
the interval [a�R, b+R].

Claim 25. If T is ↵-good, and the interval [a, b] contains at least (1� ↵
2 )-fraction of values of p(x)

for x 2 T , then E[p(G)] 2 [a�R, b+R].

Now by construction, if Algorithm 4 returns TBD, then

Var[p(T )]  C1 ·

✓
`+ C1 log

1

↵

◆l

· log2
✓
2 + log

1

↵

◆
. (B.4)

On the other hand, the interval [a, b] contains at least (1� ↵
2 ) fraction of values of p(x) for x 2 T .

Therefore, the contribution of the samples in [a, b] to the variance gives

Var[p(T )] �
⇣
1�

↵

2

⌘
·max

n
0,

����E[p(T )]�
a+ b

2

�����
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2

o2
. (B.5)

To see this, note that a+b
2 is the midpoint and b�a

2 is the length of interval [a, b]. When E[p(T )] is
inside the interval,

��E[p(T )]� a+b
2

��� b�a
2 < 0 and the variance is lowered bounded by 0. Otherwise,

when E[p(T )] is outside the interval, the distance from any sample in [a, b] to E[p(T )] is at least��E[p(T )]� a+b
2

��� b�a
2 � 0.

Moreover, since b� a  O((log(1/↵))l/2 · log(2 + log(1/↵))),

|E[p(T )]� (a+ b)/2| 
b� a

2
+
p
Var[p(T )] = O((`+ C log(1/↵))l/2 log(2 + log(1/↵))).

(B.6)

From the Claim 25, we also have

|E[p(G)� (a+ b)/2]| 
b� a

2
+R = O((`+ C log(1/↵))l/2 log(2 + log(1/↵))). (B.7)

By the triangle inequality, we have that |E[p(G)]� E[p(T )]| = O((`+ C log(1/↵))l/2 log(2 +
log(1/↵))).

Proof of Claim 24. Since T is ↵-good, and Var[p(G)]  1. By degree-l Chernoff bound (Lemma 40)
and definition of representative set (Definition 8), for R = (C1 · log(1/↵))l/2

Pr[|p(SG)� E[p(G)]| � R]  e
�⌦(R2/l) +

↵
3

100k2` · logl( `d↵⌧ )

 e
�C·log(1/↵) +

↵
3

100k2` · logl( `d↵⌧ )

= ↵
C +

↵
3

100k2` · logl( `d↵⌧ )


↵
3

100
,

for large enough constant C > 0.
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Proof of Claim 25. From Claim 24, at least an (↵ � ↵3
/100)-fraction of T is R-close to E[p(G)].

Also we know that at most an ↵
2 -fraction of T are not in [a, b] by the definition of the interval [a, b].

Then, there must be at least
✓
↵�
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100

◆
�
↵

2
=
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2
�

↵
3

100
=
↵

2

✓
1�

↵
2

50

◆
> 0

fraction of samples in T that are in [a, b] and R close to E[p(G)]. Therefore, E[p(G)] must be in
[a�R, b+R].

B.2.2 Analysis of CASE 2

Lemma 26. Consider Algorithm 4. If it reaches Step 7, there must exist a threshold t > 2R satisfying
the inequality thereof.

Proof. We will prove this lemma by contradiction. Assume that Algorithm 4 reaches Step 7, but for
all t > 2R, we have

Pr[min{|p(T )� a| , |p(T )� b|} � t] 
32

↵
exp(�(t� 2R)2/l) +

2↵2

k2` logl( `d↵⌧ )
.

By change of variables, we have that for any t > 2R+ b�a
2 ,
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.

Note that this inequality only holds non-trivially when t � t0 where t0 = 2R+ b�a
2 + (log 32

↵ )l/2;
namely, if t < t0, the right-hand side is at least 1.

By Lemma 13, we have maxx,y2T |p(x)� p(y)|  2k` ·�l, where � = C0 ·

q
` · log( `d↵⌧ ). Also note

that the size of the interval [a, b] equals C1 ·R · log(2 + log 1
↵ ) which is less than k

`
· �

l. Therefore,
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x2T
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2

����  3k` · �l. (B.8)

Then, we have that
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where ⇣1 holds in view of (B.8), and where ⇣2 follows since
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where ⇣3 is due to the incomplete gamma function (see Claim 3.11 of [DKS18b]), i.e.
R1
x e

�t
·

t
s�1

dt  e
�x(x+ s)s�1, for s � 1, x � 0.

In other words, had we not found an appropriate threshold t > 2R at Step 7, Algorithm 4 would have
returned at Step 5, which is a contradiction. This completes the proof.

Once we have verified the existence of such threshold t, it is easy to see that the resultant T 0 is a
subset of T , and ↵0

� ↵ by algebraic calculation. This has been already shown in [DKS18b].
Lemma 27 (Lemma 3.13 of [DKS18b]). Consider Algorithm 4. If it reaches Step 9, then the output
{(T 0

,↵
0)} is such that T 0

⇢ T and ↵0
> ↵.

Next, we show that BASICMF sanitizes the sample set, i.e. it removes more corrupted samples than
the uncorrupted ones.
Lemma 28. Consider Algorithm 4. If it reaches Step 9, and if T is ↵-good and Var[p(G)]  1, then
the output {(T 0

,↵
0)} is such that T 0 is ↵0-good.

Proof. Due to Algorithm 1, the `1-distance among all pairs of the samples are bounded. It remains
to show |SG \ T

0
| / |T

0
| � ↵

0 and |SG \ T
0
| / |SG| � 1� ↵0

/6.

We claim that for any t > 2R, the following holds:

Pr[min{|p(SG)� a| , |p(SG)� b|} � t]  2e�(t�R)2/l +
↵
3

50k2` · logl( `d↵⌧ )
. (B.9)

To see the rationale, we note that by Claim 25, we have E[p(G)] 2 [a�R, b+R]. Since E[p(G)]�R 
b, we have

Pr[p(SG)� b � t]  Pr[p(SG)� (E[p(G)]�R) � t]

= Pr[p(SG)� E[p(G)] � t�R]

 Pr[p(G)� E[p(G)] � t�R] +
↵
3

100k2` · logl( `d↵⌧ )

 e
�(t�R)2/l +

↵
3

100k2` · logl( `d↵⌧ )
,

where in the third step, we used the fact that SG is representative (see Definition 8), and in the last
step we applied Lemma 40.

The inequality (B.9) follows since min{|p(SG)� a| , |p(SG)� b|} � t is a subevent of
|p(SG)� b| > t.
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Since T is ↵-good, we know that a 1� ↵
6 �

1
2 fraction of the samples in SG is in SG \T . Therefore,

Pr[min{|p(SG \ T )� a| , |p(SG \ T )� b|} � t]  4e�(t�R)2/l +
↵
3

25k2` · logl( `d↵⌧ )
. (B.10)

Due to the inequality of Step 7 in Algorithm 4, we know that the above probability is at least 8/↵
times larger for the samples in T . Therefore,

|SG \ T
0
|

|T 0|
=

|SG \ T
0
|

|SG \ T |

|SG \ T |

|T |

|T |

|T 0|

�

✓
1�

↵

8
·

✓
1�

|T
0
|

|T |

◆◆
· ↵ ·

|T |

|T 0|

�

✓⇣
1�

↵

8

⌘
·
|T |

|T 0|
+
↵

8

◆
· ↵

= ↵
0
,

meaning that the remaining fraction of good samples in T
0 is at least ↵0.

On the other hand, since |SG \ T |/|SG| � 1� ↵/6 and
⇣
1� ↵

8 ·

⇣
1�

|T
0
|

|T |

⌘⌘
↵ = ↵

0
|T

0
| / |T |, we

have

|SG \ T
0
|

|SG|
=

|SG \ T
0
|

|SG \ T |

|SG \ T |

|SG|

�

✓
1�

↵

8
·

✓
1�

|T
0
|

|T |

◆◆⇣
1�

↵

6

⌘

=

✓
1�

↵

8
·

✓
1�

|T
0
|

|T |

◆◆
�
↵
0
|T

0
|

6 |T |
,

thus,

|SG \ T
0
|

|SG|
�

✓
1�

↵
0

6

◆
� 1�

↵

8

✓
1�

|T
0
|

T

◆
�
↵
0

6

|T
0
|

|T |
�

✓
1�

↵
0

6

◆

=

✓
↵
0

6
�
↵

8

◆✓
1�

|T
0
|

T

◆
> 0

This proves that T 0 is ↵0-good.

We summarize the performance of BASICMF in CASE 2 in the following proposition, which is an
immediate combination of Lemma 26, Lemma 27, and Lemma 28.
Proposition 29. Consider Algorithm 4. If it reaches Step 7, there must exist t > 2R that satisfies
the inequality of this step, and the algorithm will output {(T 0

,↵
0)} with T

0
⇢ T and ↵0

� ↵. If, in
addition, T is ↵-good and Var[p(G)]  1, then T

0 is ↵0-good.

B.2.3 Analysis of CASE 3

Lemma 30 (Lemma 3.12 of [DKS18b]). Consider Algorithm 4. If it reaches Step 12, there must
exist a threshold t that satisfy the conditions thereof.
Lemma 31 (Lemma 3.14 of [DKS18b]). Consider Algorithm 4. If it reaches Step 12, then the output
{(T1,↵1), (T2,↵2)} is such that T1 ⇢ T , T2 ⇢ T , and 1

↵2
1
+ 1

↵2
2


1
↵2 .

Lemma 32. Consider Algorithm 4. If it reaches Step 12, and if T is ↵-good, then the output
{(T1,↵1), (T2,↵2)} is such that Ti is ↵i-good for some i 2 {1, 2}.

Proof. Recall that Claim 24 lower bounds the fraction of the good samples (i.e. x 2 SG \ T ) that
satisfy |p(x)� E[p(G)]| < R. Since T1 and T2 overlap in an interval of length at least 2R, the good
samples must be contained in either one of both two clusters. We will show that the Ti with these
good samples (in interval of length 2R) is ↵i-good.
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Since T is ↵-good, we have |SG \ T | / |T | � ↵ and |SG \ T | / |SG| � (1�↵/6). We want to show
that (i) |SG \ Ti| / |Ti| � ↵i and (ii) |SG \ Ti| / |SG| � (1� ↵i/6).

To show (i), note that |SG \ Ti| �

⇣
↵�

↵3

100

⌘
|T | due to Claim 24. Thus,

|SG \ Ti|

|Ti|
=

|SG \ Ti|

|T |
·
|T |

|Ti|
�

✓
↵�

↵
3

100

◆
·
|T |

|Ti|
= ↵i,

where the last transition is by definition.

To show (ii), we only have to show that ↵i/6 � ↵/6 + ↵
3
/100, i.e. ↵i � ↵ + 3↵3

/50. Note that
|T |� |Ti| �

↵
4 |T | , 8i. Thus, |T | / |Ti| �

1
1�↵/4 and we can show that

↵i � ↵ ·
1� ↵2

/100

1� ↵/4
� ↵ ·

100� ↵

100� 25↵
� ↵

✓
1 +

24↵

100� 25↵

◆
� ↵

✓
1 +

3↵3

50

◆
.

This completes the proof.

Combining Lemma 30, Lemma 31, and Lemma 32, we immediately have the following.
Proposition 33. Consider Algorithm 4. If it reaches Step 12, then there must exist a threshold t that
satisfies the conditions in this step. Moreover, the output {(T1,↵1), (T2,↵2)} is such that T1 ⇢ T ,
T2 ⇢ T , and 1

↵2
1
+ 1

↵2
2


1
↵2 . If, in addition, T is ↵-good, then Ti is ↵i-good for some i 2 {1, 2}.

B.2.4 Proof of Theorem 18

Proof. Observe that now Theorem 18 is an immediate result by combining Proposition 23, Proposi-
tion 29, and Proposition 33.

B.3 Analysis of HARMONICMF

B.3.1 Certifying the varaince of p on G

Proof of Lemma 19. The proof follows directly from Lemma 3.31 of [DKS18b].

B.3.2 Analysis for p1

Proof of Lemma 16. First, if at any subroutine of HARMONICMF, it returns “NO” or a list of pairs
{(Ti,↵i)}, ANS 6= TBD. If that is not the case, it means HARMONICMF reaches Step 6 and
BASICMF returns “TBD”, then we have

Var[p1(T )/�]  C1 ·

⇣
`+ C1 log

1

↵

⌘`
· log2

⇣
2 + log

1

↵

⌘
,

because p1 is of degree `. However, recall that the condition of Step 6 in Algorithm 3 is satisfied, thus

Var[p1(T )] = Var[v⇤ · Pd,`(T � µT )] � �
⇤
� �

⇤
sparse

=
h
C1 ·

⇣
`+ C1 log

1

↵

⌘
· log2

⇣
2 + log

1

↵

⌘i2`

�

⇣
C1 ·

⇣
1 + log

1

↵

⌘
· log2

⇣
2 + log

1

↵

⌘⌘`
· C1 ·

⇣
`+ C1 log

1

↵

⌘`
· log2

⇣
2 + log

1

↵

⌘

= �
2
· C1 ·

⇣
`+ C1 log

1

↵

⌘`
· log2

⇣
2 + log

1

↵

⌘
,

which induces a contradition. We conclude that BASICMF will not return “TBD” at Step 6, which
completes the proof.

B.3.3 Analysis for p2

Proof of Lemma 17. We see that the lemma holds as long as HARMONICMF returns either “NO” or
a list of (Ti,↵i) for p2 correctly. First, we claim that p2(x) is harmonic such that MULTILINEARMF
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multifilters correctly at Step 4. To prove the claim, simply note that p2 is of degree 2` and consists of
a set of k2` Hermite polynomials. In addition, p2(x) only applies on a set of 2`k2` coordinates.

Based on the correctness of MULTILINEARMF, it remains to show that if every subroutine of
HARMONICMF returns “TBD”, then T must not be ↵-good. Consider that Algorithm 5 reaches
Step 6, and BASICMF returns “TBD”. Applying Lemma 19, we know that E[p2(G)2]  �

2 =�
C1 · (1 + log( 1

↵ )) · log
2(2 + log( 1

↵ ))
�2`

. Therefore, Var[ 1� · p2(G)]  1
�2 · E[p2(G)2]  1 and

thus satisfies the preconditions of BASICMF. Then, if BASICMF also returns “TBD”, we can show
that Var[ 1� · p2(T )] = O

�
(`+ log( 1

↵ ))
2`

· log2(2 + log( 1
↵ ))

�
according to Theorem 18. Thus,

Var[p2(T )]  �
2
·O(`+ log(1/↵))2` log2(2 + log(1/↵))

 O((`+ log(1/↵)) log2(2 + log(1/↵)))4`.

We then show by contradiction. Assume the above holds and T is ↵-good. Due to Theorem 18, we
can show that

|E[p2(G)]� E[p2(T )]|  � ·O(`+ log(1/↵))` log(2 + log(1/↵))

 O((`+ log(1/↵)) log2(2 + log(1/↵)))2`.

Additionally, since

|E[p2(G)]| 
q
E[p22(G)]  �2 = O((`+ log(1/↵)) log2(2 + log(1/↵)))2`,

Therefore, by Cauchy-Schwarz inequality, we conclude that |E[p2(T )]|  O((`+ log( 1
↵ )) log

2(2 +
log( 1

↵ )))
2`. However, by construction, we have

|E[p2(T )]| = E

2

4Tr

0

@ (⌃̃)U���(⌃̃)U
���
F

�
Pd,`(T � µT )Pd,`(T � µT )

>�
1

A

3

5

= Tr
⇣
(⌃̃)U ⌃̃

⌘
=

���(⌃̃)U
���
F

⇣4
� �

⇤
sparse

� C1 · ((`+ C1 log(1/↵)) log
2(2 + log(1/↵)))2`,

where ⇣4 is due to the condition in Step 4 of Algorithm 3. This is a contradiction.

Hence, we conclude that T cannot be ↵-good and we remove it from the list. Moreover, if BASICMF
returns NO or a list {(Ti,↵i)}, the guarantees follow from Theorem 18. The proof is complete.

Lemma 34 (Algorithm 5). Consider Algorithm 5 with input polynomial being p1 or p2 in view
of Algorithm 3, and denote by ANS its output. With probability 1 � ⌧ , the following holds. If
ANS = NO, then T is not ↵-good. If ANS = {(Ti,↵i)}mi=1 for some m  2, then Ti ⇢ T for all
i 2 [m] and

Pm
i=1

1
↵2

i


1
↵2 ; if additionally T is ↵-good, then at least one Ti is ↵i-good.

Proof. Inside any subroutine of BASICMF or MULTILINEARMF called by HARMONICMF, if ANS
is assigned “NO” or a list of pairs {(Ti,↵i)}, the guarantees are ensured by Lemma 19, Theorem 18
and Lemma 36. It remains to show the correctness of the algorithm returning “NO” at Step 6 when
BASICMF returns TBD, which is implied by Lemma 17.

B.4 Proof of Theorem 14

Proof. The theorem follows from Lemma 15, Lemma 16, Lemma 17, Theorem 18 and Lemma 34.

C Proof of Theorem 1

Theorem 1 directly follows from the guarantees of our initial clustering step (Lemma 12), the main
subroutine (Theorem 14), and the black-box list reduction algorithm (Proposition 37).
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Proof of Theorem 1. Consider Algorithm 2. By Lemma 12, T will be divided into at most 1
2↵ number

of subsets, at least one of which is ↵
2 -good. Algorithm 2 then maintains a list L of pairs {(Ti,↵i)} on

which Algorithm 3 is called repetitively until the list becomes empty. Theorem 14 implies that when
Algorithm 3 is called on some Ti 2 L which is ↵i-good, if a list of pairs {(Tj ,↵j)} is returned, then
at least one of {Tj} is ↵j-good (↵j > ↵i). This ensures that there always exists an ↵

2 -good subset Ti

in list L, except that a leaf node has been created for this branch and the empirical mean of an ↵
2 -good

data set is returnd. We then argue that Algorithm 2 eventually returns an estimated mean at the
branch that includes only ↵

2 -good subsets. Since the subsets are ↵
2 -good, ANS never equals to NO.

In addition, the branch will not create child nodes forever: note that the true multifiltering step is in
BASICMF, and both Step 8 and 12 reduce the subset size |Ti| by at least 1; since ↵i is non-decreasing,
the algorithm cannot remove only inliers; by Definition 10, |SG \ Ti| � (1� ↵i/6) |SG| �

1
2 |SG|.

Therefore, the algorithm must return an estimated mean when there is no outliers to filter.

We then bound the list size of the returned list of estimated means. Since during the process of
multifiltering,

P
i ↵

�2
i is non-increasing, we have that

P|L|
i=1 ↵

�2
i 

1
2↵ · ↵

�2 at any point of
Algorithm 2. In addition, ↵i  1, 8i, meaning that the list size will never be larger than O(↵�3). So
does the size of M . Then, by applying LISTREDUCTION on M with |M |  O(↵�3), the list size
can be reduced to O(↵�1) in view of Proposition 37.

Finally, note that CLUSTER runs in time O
�
poly(|T | , d)

�
, ATTRIBUTE-EFFICIENT-MULTIFILTER

runs in time O
�
poly(|T | , d`)

�
in view of Theorem 14, and LISTREDUCTION runs in time

O
�
poly(|T | , d)

�
. Moreover, there are at most O(|T |/↵3) number of calls to ATTRIBUTE-EFFICIENT-

MULTIFILTER, and only one call to CLUSTER and one call to LISTREDUCTION, we conclude that
the time complexity of Algorithm 2 is O

�
poly

�
|T | , d

`
,
1
↵

��
.

D Omitted Algorithms

In the following, we present the omitted algorithms. In particular, MULTILINEARMF (Algorithms 6)
is an important component of HARMONICMF, for which we tailor the algorithms in [DKS18b]
to our sparse setting. MULTILINEARMF will further invoke DEGREE2HOMOGENEOUS (Algo-
rithm 7). Algorithm 8, due to [DKS18b], is the black-box list reduction approach that was invoked in
Algorithm 2.

D.1 MULTILINEARMF

We introduce useful facts about multilinear polynomial here. For d, l 2 N, a polynomial
p(x1, . . . , xl) : Rdl

! R, where xi 2 Rd, is called multilinear if it is linear in each of its l ar-
guments, i.e. if holds that p(a · x1 + b · x

0
1, x2, . . . , xl) = a · p(x1, x2, . . . , xl) + b · p(x1, . . . , xl),

for all a, b 2 R and xi, x
0
i 2 Rd, and similarly for all the other arguments. Moreover, a polynomial

p is called symmetric if p(x1, . . . , xl) = p(x⇡(1), . . . , x⇡(l)) for any permutation ⇡ : [l]! [l]. Any
degree-l multilinear polynomial p : Rdl

! R can be expressed as A(x1, . . . , xl) for an order-l tensor
A over Rd. Moreover, A is symmetric if p is symmetric.

Algorithm 6 MULTILINEARMF
Require: A multiset of samples T ⇢ Rd, parameter ↵ 2 (0, 1/2], failure probability ⌧ 2 (0, 1), a

degree-l multilinear polynomial V (x1, . . . , xl) over Rdl with kV k2  1, where V is the outer
product of l number of  -sparse vectors.

1: If l = 1, run BASICMF on V (x� µT ), and return its output.
2: Compute the quadratic polynomial q(x) = kV (x� µT )k

2
2, where x 2 Rd and V x is an order-

(l � 1) tensor with (V x)i2,...,il =
P

i1
xi1Vi1,...,il .

3: Run DEGREE2HOMOGENEOUS on q(x). If it returns NO or a list {Ti,↵i}, then return the
same result.

4: Sample a set � of m = 200 · ↵�1 log(4/⌧) instances uniformly at random from T .
5: 8x 2 �, let Vx = 1p

q(x)
· V (x� µT ). ANS MULTILINEARMF on (T, V x, l� 1,↵, ⌧/2). If

it returns NO or a list {(Ti,↵i)}, then return the same result.
6: Otherwise, return TBD.
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Algorithm 7 DEGREE2HOMOGENEOUS(T,↵, ⌧, A)

Require: A multiset of samples T ⇢ Rd, parameter ↵ 2 (0, 1/2], failure probability ⌧ 2 (0, 1),
homogeneous polynomial x>

Ax, where A is a d⇥ d matrix with kAk⇤  1.
1: Compute the k

2 largest eigenvalues �i and eigenvectors vi of A.
2: for i = 1, . . . , k2 do
3: ANSi  BASICMF(T,↵, ⌧, p) with p(x) = vi · x.
4: if ANSi is a list of {Ti,↵i} or ANS = NO then return ANSi.
5: end for
6: if all ANSi = TBD then return TBD.

The MULTILINEARMF works in the following way: Given degree-l multilinear polynomial V (x1 �

µT , . . . , xl � µT ), where V is an order-l symmetric tensor and xi’s are l number of independent
variables. The goal is to show that the polynomial has small absolute expectation over l number of
i.i.d. draws from G ⇠ N(µ, Id) if the algorithm does not filter any samples and returns “TBD”; and
otherwise, the algorithm multifilters correctly. Since all subroutine of MULTILINEARMF multifilter
the data set by calling BASICMF on linear polynomials, we know that if it returns “NO” or a list
of pairs {(Ti,↵i)}, the correctness is guaranteed by Theorem 18. It remains to bound the expected
value of the multilinear polynomial when all subroutines return “TBD” and T is ↵-good.

The idea is to sub-sample a large enough sample � from T . If T is ↵-good, then with suffi-
ciently high probability, 9x 2 � that is from G. By recursively doing this, with sufficiently high
probability, we construct a multilinear polynomial V (G1 � µT , G2 � µT , . . . , Gl � µT ), the ex-
pectation of which is what we concerned about. The upper bound is then shown by induction.
When the polynomial is linear, |E[Vxl�1(G� µT )]|  O(

p
1 + log(1/↵) · log(2 + log(1/↵)).

Here, we use Vxi to denote taking i times of inner product between tensor V and a vector x.
Note that x can be different in each time of the inner product. Then, without loss of general-
ity, assume that for order-(l � 1) tensor Vx, |E[Vx(G1 � µT , . . . , Gl�1 � µT )]|  f(l � 1,↵),
we can show that |E[V (G1 � µT , . . . , Gl � µT )]|  f(l,↵), provided that SG is sufficiently ep-
resentative with respect to G on any linear polynomial Vxl�1(x � µT ) and any quadratic poly-
nomial q(x) = kVxi(x� µT )k

2
2 , 8i 2 [l]. In this analysis, the only difference between our

setting and that of [DKS18b] is the definition of representative set SG (Definition 8). Fortu-
nately, since all polynomials in our algorithm apply to at most  = 2`k2` coordinates, the
linear polynomials must be in P(Rd

, 1, 2`k2`, 2`k2`), and the quadratic polynomials must be in
P(Rd

, 2, 4`2k4`, 2`k2`). Therefore, our definition of representative set sufficies. The proof follows
the same pipeline as that of Lemma 3.27 in [DKS18b]. As a result, it can be shown that f(l,↵) =
f(l�1,↵)·O(

p
1 + log(1/↵)·log(2+log(1/↵)), which renders |E[V (G1 � µT , . . . , Gl � µT )]| 

O
�
(1 + log(1/↵))l/2 · logl(2 + log(1/↵)

�
.

Definition 35 (Multifilter condition). We say that a list of pairs {(Ti,↵i)}, where Ti ⇢ T and
↵i 2 (0, 1), satisfies the multifilter condition for (T,↵) if the following hold:

1.
P

i
1
↵2

i


1
↵2 , and

2. If T is ↵-good, then at least one Ti is ↵i-good.

Lemma 36 (MULTILINEARMF, Lemma 3.27 of [DKS18b]). Given ↵ 2 (0, 1
2 ] and ⌧ 2 (0, 1), let T

be the input sample set, and a degree-l multilinear polynomial V (x1, . . . , xl) over Rdl with kV k2 = 1.
Algorithm 6 returns one of the following with guarantees: (1) TBD, and we have that, if T is ↵-good,
then with probability 1�⌧ , |E[V (G1 � µT , . . . , Gl � µT )]| = O

�
(1+log( 1

↵ ) log
2(2+log( 1

↵ )))
�l/2,

where Gi are independent copies of G. (2) NO, then T is not ↵-good. (3) A list of pairs {(Ti,↵i)},
Ti ⇢ T , satisfying the multifilter condition for (T,↵).

D.2 LISTREDUCTION

Proposition 37 (LISTREDUCTION, Proposition B.1 of [DKS18b]). Fix ↵,�, �, t > 0 and let µ⇤
2 Rd

be finite, and let S ✓ T be so that (i) |S| / |T | � ↵, and (ii) for all unit vectors v 2 Rd, we have
Pr[v · (S � µ

⇤) > t] < �. Then, given M = {µ1, . . . , µn} ⇢ Rd so that �n = o(1) and there
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Algorithm 8 LISTREDUCTION(T,↵, `,M)

Require: A multiset of samples T ⇢ Rd, parameter ↵ 2 (0, 1/2], degree ` � 1, a list M ⇢ Rd.

1: �  C4 · ↵
� 1

2`

p
`(`+ log 1

↵ ), �  
1

C5 log 1
↵

, t 
q
log(C5 log

1
↵ ), n |M |.

2: For all µi, µj 2M , let vij denote the unit vector in the µi � µj direction.
3: Let Ti = \j 6=i{x 2 T : |vij · (x� µi)| < � + t}.
4: M

0
 ;.

5: 8i 2 [n], if |Ti| � ↵(1 � �n) |T |, and @µj 2 M
0 such that kµi � µjk2 < 2(� + t), then

M
0
 M

0
[ µi.

6: return M
0.

is some i so that kµi � µ
⇤
k2  � for some µi 2 M , Algorithm 8 outputs M

0
✓ M so that

|M
0
| 

1
↵ (1 +O(�n)) and kµ0

� µ
⇤
k2  3(� + t) for some µ

0
2M

0.

Remark 38. Under the setting of Algorithm 8, we have that n = O(↵�3). This combined with the
parameter settings in LISTREDUCTION shows that the size of M 0 is O(1/↵) and there is at least one
µi 2M

0 that has comparable error guarantee to those in M .

E Useful Lemmas

Lemma 39 (Lemma 3.2 of [CDK+21]). Fix two vectors x, y with kxk0  k and ktrimk(x� y)k2 
�. We have that kx� trimk(y)k2 

p
5�.

Lemma 40 (degree-l Chernoff bound, Fact 2.8 of [DKS18b]). Let G ⇠ N(µ, Id), µ 2 Rd. Let
p : Rd

! R be a degree-l polynomial. For any t > 0, we have that Pr
⇥
|p(G)� E[p(G)]| �

t ·
p
Var[p(G)]

⇤
 exp

�
� ⌦(t2/l)

�
.

Lemma 41 (Harmonic and multilinear polynomials, Lemma 3.24 of [DKS18b]). Let
X,X(1), . . . , X(`) be i.i.d random variables distributed as N(µ, I) for some µ 2 Rd. Then, for
any symmetric matrix A, we have

p

`! · E[hA(X)] = HomA(µ) = E[A(X(1), . . . , X(`))],

and

E[hA(X)2] =
X̀

`0=0

✓✓
`

`� `0

◆
/`

0!

◆
·HomB(`0)(µ)

where B
(`0) is the order-2`0 tensor with

B
(`0)
i1,...,i`0 ,j1,...,j`0

=
X

k`0+1,...,k`

Ai1...,i`0 ,k`0+1,...,k`Aj1...,j`0 ,k`0+1,...,k` .
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