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Abstract

In today’s data-rich environment, context-based dynamic pricing has gained much
attention. To model the demand as a function of price and context, the existing
literature either adopts a parametric model or a non-parametric model. The for-
mer is easier to implement but may suffer from model mis-specification, whereas
the latter is more robust but does not leverage many structural properties of the
underlying problem. This paper combines these two approaches by studying the
context-based dynamic pricing with online learning, where the unknown expected
demand admits a semi-parametric partially linear structure. Specifically, we con-
sider two demand models, whose expected demand at price p∈R+ and context
x ∈ Rd is given by bp + g(x) and f(p) + a⊤x respectively. We assume that
g(x) is β-Hölder continuous in the first model, and f(p) is kth-order smooth with
an additional parameter δ in the second model. For both models, we design an
efficient online learning algorithm with provable regret upper bounds, and establish
matching lower bounds. This enables us to characterize the statistical complexity
for the two learning models, whose optimal regret rates are Θ̃(

√
T ∨ T

d
d+2β ) and

Θ̃(
√
T ∨ (δT k+1)

1
2k+1 ) respectively. The numerical results demonstrate that our

learning algorithms are more effective than benchmark algorithms, and also reveal
the effects of parameters d, β and δ on the algorithm’s empirical regret, which are
consistent with our theoretical findings.

1 Introduction

The recent success of online retailing has provided a data-rich environment for sellers to take better
advantage of contextual information to dynamically improve their pricing strategies. Examples
of such contextual information include products’ characteristics, seasonality, festival information,
economic indicators, etc. A fundamental question stemming from the presence of contexts is how to
select a predictive model to capture the relationship among demand, price, and context.

In the current literature, there are two modeling approaches. The first approach is to adopt a parametric
model, among which the linear model, i.e., demand = b × price + ⟨a, context⟩, is arguably the most
fundamental one. The parametric assumption brings great convenience to practical implementation,
and inspires many efficient learning algorithms. However, it may also lead to a serious issue of model
mis-specification, as discussed in [25]. The second approach is to employ a fully non-parametric
model, i.e., demand = µ(price, context) for some unknown function µ(·) without any parametric
assumption. The non-parametric model can be quite robust to different application contexts. However,
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it does not leverage many structural properties of the underlying problem that may have been detected
from huge amounts of historical data, resulting in much complexity for learning the function µ(·).
Motivated by the idea of combining these two approaches, in this paper, we study context-based
dynamic pricing with online learning where the unknown expected demand admits a semi-parametric
partially linear structure. Such a structure preserves the advantages of simple interpretability from
linear models and great flexibility from non-parametric models. Thus, it has also attracted significant
attention in many other fields, especially when there exist high-dimensional contexts, such as statistics
([13]), econometrics ([36]), and biomedicines ([37]).

Formally, consider a seller selling products over a finite selling horizon of T periods. At the beginning
of each period t, the seller observes an independently and identically distributed (i.i.d.) context vector
xt ∈ [0, 1]d ∈ Rd encoding the product’s characteristics and other exogenous information in period t.
The seller then chooses a price pt from the feasible price range [p, p] ⊂ (0,∞) and customers observe
the posted price pt. The random demand Dt is then generated according to the following function:
Dt(pt) = µ(pt, xt) + εt, where µ(pt, xt) is an unknown function and {εt}t≥1 is a sequence of i.i.d.

sub-Gaussian random variables (r.v.’s) with zero mean and variance proxy σ2, i.e., E[eλεt ] ≤ e
λ2σ2

2

for any λ ∈ R. We consider two models for µ(pt, xt):

Dynamic Pricing with Linear Pricing Effect (DPLPE): µ(pt, xt) = bpt + g(xt) for unknown
price elasticity b < 0 and β-Hölder continuous function g : [0, 1]d → R with smoothness parameter
0 < β ≤ 1 (see Assumption 1);

Dynamic Pricing with Linear Contextual Effect (DPLCE): µ(pt, xt) = f(pt)+a⊤xt for unknown
parameter a ∈ Rd and kth-order smooth function f : [p, p]→ R with degree k ≥ 1 and parameter
δ > 0 that capture how tightly f can be approximated by a polynomial function (see Assumption 2).

The seller observes demand Dt and collects revenue ptDt. The expected revenue at price p and
context xt is denoted by r(p, xt) = pµ(p, xt) for any p ∈ [p, p]. An admissible pricing policy π
is defined as a sequence of functions {πt(·) : t ≥ 1}, where each πt(·) maps the historical infor-
mation (x1, p1, D1, . . . , xt−1, pt−1, Dt−1, xt) observed up to period t and possibly some external
randomness to a feasible price in [p, p]. A clairvoyant optimal policy is assumed to know function
d(·) and therefore always chooses the optimal price p∗t := argmaxp∈[p,p] r(p, xt) in each period
t. The performance of a pricing policy π is measured by regret Rπ(T ), defined as the difference
between the T -period expected revenues generated by the clairvoyant optimal policy and by the
pricing policy π. That is, Rπ(T ) =

∑T
t=1 E[r(p∗t , xt) − r(pt, xt)], where the expectation is taken

over all the randomness associated with the environment and the algorithm.

1.1 Main results

Our main contributions lie in systematically characterizing the statistical complexity of the context-
based dynamic pricing with partially linear demand models DPLPE and DPLCE. Throughout the
paper, we use notations O(·), Ω(·) and Θ(·) to hide constant factors, and use Õ(·), Ω̃(·) and Θ̃(·) to
hide both constant and logarithmic factors.

Statistical complexity for DPLPE. For the first model DPLPE, we design an online learning
algorithm that integrates the ideas of random shock pricing in [25] and contextual space binning and
approximation. We prove that our algorithm achieves the theoretical regret upper bound Õ(

√
T ∨

T
d

d+2β ). We also establish the information-theoretic lower bound Ω(
√
T ∨T

d
d+2β ) for any admissible

policy, which matches the regret upper bound up to logarithmic factors. The key novelty in our
lower bound analysis is the construction of a family of high-dimensional β-Hölder continuous
functions. To the best of our knowledge, this is also the first model that generalizes the commonly
used Lipschitz continuous assumption to Hölder continuity in context-based dynamic pricing, with
tight characterizations on the regret upper and lower bounds.

Statistical complexity for DPLCE. For the second model DPLCE, we devise a different learning
algorithm based on the biased linear contextual bandit borrowed from [32] and our new idea of
being more optimistic to chase the context-dependent optimal price. We prove that our algorithm
achieves the regret upper bound Õ(

√
T ∨ (δT k+1)

1
2k+1 ), and also establish a matching lower bound

Ω(
√
T ∨ (δT k+1)

1
2k+1 ). Since δ is a parameter that depends on the specific problem instance f(·),
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we refer to the regret bounds we derive as the instance-dependent bounds. To our knowledge, this is
the first tight instance-dependent regret bound in context-based dynamic pricing with online learning.
To achieve this, in the regret lower bound analysis, we need to construct a family of kth-order smooth
functions that are adapted to parameters k and δ, which is also new to dynamic pricing literature.

1.2 Related work

Non-contextual dynamic pricing. There is a vast literature on dynamic pricing with online demand
learning without context. These works can be classified into two categories: parametric models (see,
e.g., [7], [18], [38]) and non-parametric models (see, e.g., [4], [5], [33],[32], [23]). We refer the
reader to [12] for a comprehensive review on this stream of literature. Among these studies, [32] is
the most relevant to our paper. [32] study dynamic pricing without context, and assume the expected
demand is kth-order smooth in price for some integer k. They design a learning algorithm by applying
the Optimism-in-the-Face-of-Uncertainty (OFU) principle borrowed from bandits, and prove the
optimal regret is Θ̃(T

k+1
2k+1 ). The idea of algorithmic design in our DPLCE model is inspired by [32]

but there are two major differences. First, the optimal price is stationary in [32], but can change over
time in our setting. Therefore, the idea of multi-armed bandit protocol proposed in their paper for
learning the stationary optimal price does not work. To overcome this difficulty, we propose a novel
idea of being more optimistic over OFU in price selection to chase the context-dependent optimal
price. Second, our notion of kth-order smoothness is more general than theirs by allowing k not
necessarily to be an integer and δ not necessarily to be a constant independent of T . The general
values of k and δ require a more careful selection of the parameters used by the algorithm, and a
more sophisticated construction for the hard instances in the lower bound analysis.

Context-based dynamic pricing. There is a growing body of literature on context-based dynamic
pricing (e.g., [27], [16], [22], [3], [24]). We refer to [3] for a recent review and briefly discuss the
works related to this paper. [27] consider the demand model a⊤x+ bp in an incumbent-price setting,
i.e., the expected demand for some given price is exactly known, and show that the greedy algorithm
achieves the regret O(log T ). [25] study the same demand model as our DPLPE, and prove that
the regret of a random price shock (RPS) algorithm compared with the clairvoyant who knows the
best linear approximation to g(x) is O(

√
T ). We borrow their RPS idea to design the learning

algorithm for our DPLPE model, but analyze the regret of our algorithm relative to the optimal policy
that knows the true demand model. [8] consider a non-parametric demand model in context-based
dynamic pricing. For the Lipschitz continuous and locally concave revenue function, they prove that
the optimal regret is Θ̃(T

d+2
d+4 ). This regret rate is strictly higher than Θ̃(

√
T ∨ T

d
d+2 ) in our DPLPE

model with β = 1 due to the separated effects of the price and context on demand we assume.

There is also a stream of works formulating demand using a binary choice model (see, e.g., [16],
[21], [10], [30], [34], [14], [35], [20]). Every customer buys the product with probability 1 −
F
(
pt − θ⊤xt

)
, where F (·) is the CDF of random noise. [14], [35] and [20] are the closest to our

work. They also consider a semi-parametric form where F (·) is unknown non-parametric and θ is
unknown parametric. Conceptually, one can transform our demand model into the one where each
customer buys the product with probability bpt + g (xt) (for DPLPE) or f (pt) + a⊤xt (for DPLCE),
assuming bpt + g (xt) and f (pt) + a⊤xt fall in [0, 1]. Since the modelling approaches are different,
we are also facing different challenges. Different from the binary model, we need to estimate b and
the non-parametric function g (·) at the same time for DPLPE (or a and the non-parametric function
f (·) for DPLCE). Despite that we have an additive structure, it is still challenging to decouple bpt
and g (xt) for DPLPE (or f(pt) and a⊤xt for DPLCE) with only a buying/not-buying feedback. In
our model, the distribution of random shock makes no difference to the optimal pricing strategy.
Thus, whether the distribution is parametric/known or not is not important in our formulation.

Bandits with contextual information. The most studied model in contextual bandit is the linear
model (see, e.g., [2], [11], [29], [9], [1]), where the expected reward is a linear combination of
contexts. The algorithms developed in these works are mostly built upon the celebrated idea of
the OFU principle. In our DPLCE model, we borrow the OFU idea to design a learning algorithm.
There are also a substantial amount of literature considering non-parametric reward feedback under
Hölder continuous assumption (see, e.g., [28], [31], [26], [15]). Among these studies, [31] assuming
a continuous action space is the most relevant to this work. For the general Lipschitz reward function,

[31] proves that the optimal regret is Θ̃(T
d+dp+1

d+dp+2 ), where d and dp are the dimensions for the context
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space and action space respectively. Letting dp = 1 leads to the optimal regret rate Θ̃(T
d+2
d+3 ) for a

dynamic pricing problem. This rate is strictly higher than the optimal regret Θ̃(
√
T ∨ T

d
d+2 ) in our

DPLPE model with β = 1, and higher than Θ̃(T
2
3 ) in our DPLCE with k = 1 and δ = Θ(1).

Table 1 provides a summary for the main results of this work and the mostly related literature.

Table 1: Summary of the main results in this work and existing results in literature

Paper Demand model Regret upper bound Regret lower bound Key assumption
Dynamic pricing without context

[18] a+ bp Õ(
√
T ) Ω(

√
T ) Linear demand model

[32] f(p) Õ(T
k+1
2k+1 ) Ω(T

k+1
2k+1 ) f : kth-order smooth

Dynamic pricing with context
[27] a⊤x+ bp O(log T ) Ω(log T ) Known incumbent price
[25] bp+ g(x) O(

√
T ) Ω(

√
T ) Benchmark: the best linear model

[31] d(p, x) O(T
d+2
d+3 ) Ω(T

d+2
d+3 ) d: Lipschitz continuous

[8] d(p, x) O((log T )2T
d+2
d+4 ) Ω(T

d+2
d+4 )

d: Lipschitz continuous,
smooth and locally concave revenue

[14] I{θ⊤x+ϵ≥p} Õ(T
2k+1
4k−1 ) N.A. ϵ’s CDF: kth-order smooth (k ≥ 2)

[35] I{θ⊤x+ϵ≥p} Õ(T 3
4 ) Ω(T

2
3 ) No distributional assumptions

This work bp+ g(x) Õ(
√
T ∨ T

d
d+2β ) Ω(

√
T ∨ T

d
d+2β ) g: β-Hölder continuous in [0, 1]d,

(Sec. 2 and Sec. 3) f(p) + a⊤x Õ(
√
T ∨ (δT k+1)

1
2k+1 ) Ω(

√
T ∨ (δT k+1)

1
2k+1 ) f : kth-order smooth with parameter δ

2 Dynamic Pricing with Linear Pricing Effect (DPLPE)

In this section, we study the semi-parametric demand model with linear pricing effect, i.e., µ(pt, xt) =
bpt + g(xt). We assume that the unknown price elasticity b belongs to some known interval
[b, b] ⊆ (−∞, 0), and the optimal price p∗t = − g(xt)

2b ∈ [p, p] for any b ∈ [b, b] and xt ∈ [0, 1]d. We
now formally introduce our assumption on function g(·).

Assumption 1 The function g : Rd → R is β-Hölder continuous for some parameter 0 < β ≤ 1,
denoted by g ∈ G(β, d), meaning that there exists a constant L > 0, such that for any x1, x2 ∈ [0, 1]d,
|g(x1)− g(x2)| ≤ L ∥x1 − x2∥β .

When β = 1, G(β, d) is the class of Lipschitz continuous functions, which is usually assumed in
dynamic pricing literature (see, e.g., [8]). We consider a more general class of Hölder continuous
functions with arbitrary 0 < β ≤ 1.

We first propose Algorithm 1 for our DPLPE model. Our algorithm combines two main ideas: (i)
context space binning and approximation; and (ii) pricing with random shock.

Context space binning and approximation. To learn function g(·), the β-Hölder continuous
assumption guarantees that it cannot change dramatically in a local area. This inspires a natural idea
of dividing the context space [0, 1]d into different small bins and using a constant to approximate g(·)
in each bin. Specifically, we divide each coordinate of [0, 1]d into M equally sized segments and get
Md small bins. We then estimate E[g(x)|x ∈Mj ] (and g(xt) for any xt ∈Mj) using the sample
average approximation (SAA) from the residuals {ds − psb̂t : 1 ≤ s ≤ t− 1, xs ∈Mj}, where b̂t is
an estimate for b to be discussed in the next paragraph. It’s worth noting that there exists an important
trade-off for the choice of M . If M is large, the amount of data collected for each bin will be limited,
discouraging the success of learning g(·). If M is small, we may incur a larger approximation error of
g(·) by using a constant conditional expectation in each bin, leading to a suboptimal pricing strategy
and a greater revenue loss. The specific choice of M is given in Theorem 1.

Pricing with random shock. The idea of pricing with random shock is adopted from [25]. In
each period t, the algorithm first computes a greedy price pgt by plugging in the estimates for
g(xt) and b, and then charges a price pt by adding a random shock ∆t, which takes the value of
δt or −δt with equal probability, to the greedy price pgt . Following [25], instead of regressing dt
against the true price pt, we estimate b by regressing dt against the price shock ∆t. Noting that∑t

s=1 ∆sds∑t
s=1 ∆2

s
=

∑t
s=1 ∆s(bps+g(xs)+εs)∑t

s=1 δ2s
= b +

∑t
s=1 ∆s(bp

g
s+g(xs)+εs)∑t

s=1 δ2s
. Since ∆s is independent of

4



bpgs + g(xs) + εs for each 1 ≤ s ≤ t and has zero mean,
∑t

s=1 ∆sds∑t
s=1 ∆2

s
is an unbiased estimate for b.

This also explains the necessity of regressing dt against the random shock ∆t.

Algorithm 1: Algorithm for Dynamic Pricing with Linear Price (ADPLP)

1 Input: price range [p, p], bounds on the price coefficient b and b, number of bins M
2 Initialization:
3 Partition each coordinate of [0, 1]d into M segments of equal length, denoted as Mj for

j = 1, 2, · · · ,Md;
4 Initialize D1,j = ∅ for each j ∈ [Md] and b̂1 = b+b

2 ;
5 Main Steps:
6 for t = 1, 2, · · · , T do
7 Set δt ← t−

1
4 ;

8 Observe xt and find j ∈ [Md] such that xt ∈Mj ;

9 If Dt,j = ∅, set ât,j = −b̂t(p+ p); otherwise, set ât,j ←
∑

(xk,pk,dk)∈Dt,j
(dk−pk b̂t)

|Dt,j | ;

10 Set unconstrained greedy price: put ← −
ât,j

2b̂t
;

11 Project greedy price: pgt ← Proj(put , [p+ δt, p− δt]);
12 Generate an independent random variable ∆t ← δt w.p. 1

2 and ∆t ← −δt;
13 Set price pt ← pgt +∆t;
14 Observe realized demand dt;
15 Update Dt+1,j ← Dt,j ∪ {(xt, pt, dt)} and Dt+1,i ← Dt,i for i ̸= j;

16 Update b̂t+1 ← Proj(
∑t

s=1 ∆sds∑t
s=1(∆s)2

, [b, b]);
17 end for

The following theorem shows the regret upper bound of Algorithm 1, whose proof is in Appendix A.

Theorem 1 Let Algorithm 1 run with M = ⌈T
1

d+2β ⌉. Under Assumption 1 and the known bound
[b, b] of the unknown b, the regret of Algorithm 1 is

Õ
(√

T ∨ T
d

d+2β

)
.

The bound in Theorem 1 consists of two terms Õ(
√
T ) and Õ(T

d
d+2β ). The first term Õ(

√
T ) arises

from our introduction of random shocks reflecting the complexity of learning b. For the simplest
linear demand model without context, the squared estimation error of b incurred by an asymptotically
optimal policy is in the order of t−1/2 (see [18]). Therefore, a cumulative regret O(

√
T ) is in general

unavoidable. The second term Õ(T
d

d+2β ) is incurred by the inaccuracy of approximating the non-
parametric function g (·) with a constant in each small bin. It captures the complexity for learning the
non-parametric function g(·). This bound is monotonically increasing in dimension d, which agrees
with the intuition that a higher dimension of the context space leads to a more challenging task of
learning the function g(·). In addition, this bound decreases in β. This is consistent with the fact that
if g(·) is smoother (i.e., β is larger), it can be more accurately approximated by a constant in local
bins. We also note that only when d = 1 and β > 1

2 is Õ(
√
T ) larger than Õ(T

d
d+2β ). Otherwise,

the regret upper bound is always Õ(T
d

d+2β ).

We then establish the regret lower bound. We denote the regret of policy π as Rπ
g,b,P,D(T ) when the

demand function is bp+ g(x) + ε, and the distributions of x and ε are P and D respectively. We use
E(σ) to denote the class of sub-Gaussian distributions with variance proxy σ2.

Theorem 2 For any G(β, d), 0 < b ≤ b and σ ≥ 0, there exists a constant K1 > 0 independent of
T , such that for any admissible policy π,

sup
g∈G(β,d),

b∈[b,b],P,D∈E(σ)

Rπ
g,b,P,D(T ) ≥ K1 ·

(√
T ∨ T

d
d+2β

)
.
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Theorem 2 shows that the regret upper bound achieved by Algorithm 1 in Theorem 1 is unimprovable
in terms of the dependency on the learning horizon T . The first lower bound Ω(

√
T ) can be directly

obtained from the existing literature, e.g., [17]. To prove the second lower bound Ω(T
d

d+2β ), we
construct a series of Hölder continuous functions in [0, 1]d that are difficult to distinguish from each
other. We then apply the Bretagnolle–Huber inequality (see [6]) and KL divergence arguments to
bound the regret of any algorithm from below. See our construction and detailed proof in Appendix B.

We next compare our result with two relevant papers [25] and [8]. In [25], the same demand model
bp+ g(x) is considered, but the performance of their learning algorithm is benchmarked with the
optimal policy for the “best” linear demand function. In this case, they show that the optimal regret
is Θ(

√
T ). By contrast, our regret notion is defined against the optimal policy for the true demand

function, and thus, our optimal regret has an extra term Θ̃(T
d

d+2β ) capturing the complexity of
learning the function g(·). In [8], the authors prove the optimal regret Θ̃(T

d+2
d+4 ) for general Lipschitz

continuous demand functions (in both context and price) assuming local concavity of the revenue
function. When β = 1, the demand function we consider here is a special case of theirs. For this case,
our optimal regret becomes Θ̃(

√
T ∨ T

d
d+2 ), which is strictly lower than theirs. This reduction of the

optimal regret benefits from the separated effects of the price and context assumed in our model. In
terms of the algorithmic design, the algorithm in [8] divides both the price space and context space
into bins, and treats the learning problem in each small bin as independent ones. In our setting, we
leverage all the historical data to estimate the price sensitivity and achieve information sharing among
different bins in the context space.

3 Dynamic Pricing with Linear Contextual Effect (DPLCE)

In this section, we study the semi-parametric demand model with linear contextual effect, i.e.,
µ(pt, xt) = f(pt) + a⊤xt. We assume ||a|| ≤ a for some constant a > 0. We now introduce our
assumption on function f(·).

Assumption 2 The function f : [p, p]→ R is kth-order smooth with degree k ≥ 1 and parameter δ,
denoted by f ∈ Fk([p, p]; δ), meaning that f is b(k)-times differentiable on [p, p] and∣∣∣f (b(k))(p)− f (b(k))(p′)

∣∣∣ ≤ δ |p− p′|k−b(k)
, ∀p, p′ ∈ [p, p], (1)

where b(k) := sup{i ∈ N : i < k} is the maximal integer that is strictly less than k.

Eq. (1) requires that the b(k)th-order derivative of f(·) is (k − b(k))-Hölder continuous. This
assumption also implies that all the ith-order derivatives are bounded for i ≤ b(k) (i.e., C0 :=
sup0≤i≤b(k) supp∈[p,p] |f (i)(p)| <∞). When k is integer, i.e., b(k) = k − 1, Eq. (1) becomes the
Lipschitz-continuous condition and Assumption 2 reduces to Assumption 1 in [32]. Different from
[32] that sees δ as a constant, we allow the order of δ to depend on T , e.g., δ = O(T−λ) for some
λ ≥ 0. As will be seen later, δ shows how tightly f(p) can be approximated by a polynomial function,
and will have impacts on both the regret upper bound and lower bound.

We propose Algorithm 2 for DPLCE. The key ideas are three-fold: (i) local polynomial approximation;
(ii) biased linear contextual bandit and OFU; and (iii) optimism over OFU for price selection.

Local polynomial approximation. The idea of local approximation for smooth non-parametric
functions through polynomial functions is borrowed from [32]. Specifically, we partition the price
interval [p, p] into N segments of equal size, denoted as I1, · · · , IN . For each price segment Ij :=

[aj , bj), we use a polynomial function of degree b(k): PIj (p) :=
∑b(k)

i=0
f(i)(aj)

i! (p− aj)
i, to locally

approximate the true function f(p). To learn the the coefficients of PIj (p), we apply the ridge
regression method. By our assumption that f (b(k))(p) is (k − b(k))-Hölder continuous, it can be

verified from Taylor expansion that |f(p) − PIj (p)| ≤ |
(p−aj)

b(k)

b(k)! | · |f (b(k))(a′j) − f (b(k))(aj)| ≤

δ · (p−p)k

b(k)!·Nk = O( δ
Nk ), where a′j ∈ [aj , p]. Therefore, δ reflects how tightly f can be approximated

by a local polynomial function of degree b(k). Moreover, the number of price segments N needs
to be carefully selected to balance the accuracy of local polynomial approximation and the learning
efficiency for each price segment. The specific choice of N is given in Theorem 3.
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Algorithm 2: Algorithm for Dynamic Pricing with Linear Context (ADPLC)
1 Input: time horizon T , price range [p, p], degree k, parameter C0, context dimension d, upper

bound ā, number of price segments N , error control terms ∆, noise variance proxy σ
2 Initialization:
3 Partition [p, p] into N segments of equal length, denoted as Ii for i = 1, 2, · · · , N ;
4 Initialize for all i ∈ [N ]: Di = ∅.
5 Main Steps:
6 for t = 1, 2, · · · , T do
7 Observe xt;
8 for i = 1, 2, · · · , N do
9 (θ̂t,i,ât,i,γt,i,Vt,i) = RLC(b(k), d, Ii,Di,∆, 1/T 2, C0, σ, ā);

10 r̂t,i = maxp∈Ii p×
(
⟨θ̂t,i, φ(p)⟩+ ⟨ât,i, xt⟩+ γt,i

√
ϕ(p, xt)⊤V

−1
t,i ϕ(p, xt) + ∆

)
;

11 p̂t,i = argmaxp∈Ii p×
(
⟨θ̂t,i, φ(p)⟩+ ⟨ât,i, xt⟩+ γt,i

√
ϕ(p, xt)⊤V

−1
t,i ϕ(p, xt) + ∆

)
;

12 end for
13 Select it = argmaxi≤N−1 r̂t,i and charge pt = p̂t,it ;
14 Observe realized demand dt;
15 Update Dit ← Dit ∪ {(xt, pt, dt)};
16 end for

Algorithm 3: Regression with Linear Context (RLC)
1 Input: polynomial degree k, context dimension d, domain I = [l, u], history D, bias ∆,

probability ϵ, smoothness parameter C, noise variance proxy σ, upper bound ā

2 Compute λ = (u−l)2k−1
(u−l)2−1 + d;

3 Compute γ = σ

√
(d+ k) ln

(
d+k+|D|

d+k

)
− 2 ln ϵ+ λ

1
2 (C2k + a2)

1
2 +∆

√
|D|;

4 Compute V = λI(k+d)×(k+d) +
∑

(x,p,d)∈D ϕ(p, x)ϕ(p, x)⊤, where ϕ(p, x) = (φ(p)⊤, x⊤)⊤

and φ(p) = (1, (p− l), · · · , (p− l)k−1)⊤;
5 Compute Ridge estimate

(θ̂, â) = argmin
∑

(x,p,d)∈D (d− ⟨θ, φ(p)⟩ − ⟨a, x⟩)2 + λ(∥θ∥22 + ∥a∥
2
2);

6 Output: θ̂, â, γ, V

Biased linear contextual bandit and OFU. To suggest a good price for each segment, we borrow
the biased linear contextual bandit from [32]. Specifically, for each t ≥ 1 and pt ∈ Ij , we can
rewrite Dt(pt) as follows: Dt(pt) = PIj (pt) + a⊤xt + βt = θ⊤j φ(pt) + a⊤xt + βt, where
βt := f(pt) − PIj (pt) + εt, φ(pt) := (1, (pt − aj), · · · , (pt − aj)

b(k)) and θj ∈ Rb(k)+1 whose

ith element is f(i−1)(aj)
(i−1)! for 1 ≤ i ≤ b(k) + 1. This model is similar to the linear contextual bandit

in the literature (see, e.g., [1], [9]), where the OFU idea that selects actions in an optimistic way
is commonly adopted. The key difference is that βt contains a biased term that is not mean-zero
and depends on the pricing decision. We adapt the idea of adding an additional term ∆ when
implementing the OFU principle to compute an optimistic price and optimistic revenue from [32].

Optimism over OFU for price selection. In the absence of context, the optimal price in [32] is fixed.
To learn this fixed optimal price, [32] propose the idea of embedding the biased linear contextual
bandit into a multi-armed bandit protocol that treats each price segment as an arm. The segment to
which the fixed optimal price belongs is regarded as the “best” arm. By contrast, in our context-based
setting, the optimal price depends on the random context revealed in each period and changes over
time. Thus, our “best” arm in each period also changes, and the idea of multi-armed bandit protocol
in [32] does not work. To overcome this challenge, we propose a new idea of optimism over OFU,
which proceeds as follows. We first implement the OFU principle to each price segment Ii and
compute an optimistic price p̂t,i and optimistic revenue r̂t,i. Then we choose the most optimistic
price from the N candidate prices p̂t,1, . . . , p̂t,N that achieves the highest optimistic revenue.
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The following theorem presents the regret upper bound for Algorithm 2, whose proof is in Appendix C.

Theorem 3 Let Algorithm 2 run with N = ⌈δ
2

2k+1T
1

2k+1 ⌉ + 1 and ∆ = δ(p − p)k/Nk. Under
Assumption 2 and ||a|| ≤ a, the regret of Algorithm 2 is

Õ
(
d
(√

T ∨ (δT k+1)
1

2k+1
))

.

First, when δ is a constant and k is an integer, the regret upper bound becomes Õ(dT
k+1
2k+1 ), recovering

Theorem 1 in [32] for the setting without contexts (i.e., d = 1 and x is a constant). As k becomes
larger while keeping δ a constant, the upper bound decreases according to Õ(dT

k+1
2k+1 ). In the extreme

case of k =∞, the upper bound becomes Õ(d
√
T ), which coincides with the optimal regret rate for

the linear model d(p, x) = bp+ a⊤x (see, e.g., [3])1. Second, when δ is not a constant whose order
can shrink as T increases, Theorem 3 shows an instance-dependent bound which further differentiates
our result from that in [32]. We can see that when δ = Ω(T− 1

2 ), the regret bound is Õ(δ
1

2k+1T
k+1
2k+1 ),

and when δ decreases toO(T− 1
2 ), the regret bound is always Õ(

√
T ). This shows that the magnitude

of δ greatly affects the regret upper bound, and the smaller δ is, the lower the regret bound will be.
This is because when δ becomes smaller, the approximation error using a local polynomial function
O( δ

Nk ) becomes smaller, leading to more accurate estimates for f(·). Since the polynomial function
is differentiable infinitely many times, its regret is Õ(

√
T ) from Section 3.4.1 in [32]. Therefore, as δ

decreases, the regret upper bound decays to Õ(
√
T ), which is attained when δ = O(T− 1

2 ). To prove
Theorem 3, by the idea of optimism over OFU, we can upper bound the regret by the length of the
confidence interval which can be controlled by the well-known concentration inequality in [1].

We then establish the regret lower bound. Similar to Theorem 1, we denote the regret of policy π by
Rπ

f,a,P,D(T, k, δ) when the demand function is f(p) + a⊤x + ε, where f ∈ Fk([p, p; δ]), and the
distributions of x and ε are P and D respectively.

Theorem 4 For any Fk([p, p; δ), ā ≥ 0, and σ ≥ 0, there exists a constant K2 > 0 independent of
T and δ, such that for any admissible policy π,

sup
f∈Fk([p,p];δ),

∥a∥≤ā,P,D∈E(σ)

Rπ
f,a,P,D(T, k, δ) ≥ K2 ·

(√
T ∨

(
δT k+1

) 1
2k+1

)
. (2)

Theorem 4 shows that the regret upper bound achieved by Algorithm 2 in Theorem 3 is unimprovable
in terms of its dependency on the learning horizon T and parameter δ. Note that the upper bound in
Theorem 3 grows linearly in d, but the lower bound in Theorem 4 is independent of d. This is because
in the lower bound analysis, we simply consider a = 0. We leave the problem of analyzing the more
complicated dimension-dependent lower bound as future research. The first lower bound Ω(

√
T ) in

Eq. (2) directly follows from the existing literature (e.g., [17]). The proof of the second lower bound
Ω((δT k+1)

1
2k+1 ) relies on constructing a series of kth-order smooth functions with parameter δ and

applying Pinsker’s inequality to bound the total variation of two probability measures through their
KL divergence. See our construction and detailed proof in Appendix D.

4 Numerical Study

In this section, we conduct a numerical study to test the empirical performances of our algorithms.
We measure the performance of a learning algorithm π by the relative regret defined as follows:∑T

t=1 E[p∗
t d(p

∗
t ,xt)−ptd(pt,xt)]∑T

t=1 E[p∗
t d(p

∗
t ,xt)]

× 100%. For both models, we compare our algorithms with the linear
greedy algorithm that estimates the demand function by a linear function and myopically selects the
optimal price that maximizes the proxy revenue in each period t. For our DPLPE model, we also
compare our algorithm with the random price shock (RPS) algorithm proposed by [25]. For each
instance, we repeat our experiments for 50 independent runs, and approximate the relative regret by
the empirical relative regret averaged over 50 runs.

1Note that the linear model is a special case of DPLCE by letting k = ∞.
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Numerical results for DPLPE model. For our DPLPE model with demand function d(p, xt) =
bp+ g(xt), we set b = −5, ε ∼ N (0, 5), [b, b] = [−8,−3], [p, p] = [1, 19], xt ∼ Uniform([0, 1]d),
and consider the following form of function g(x):

g(x) :=

{
100× (D(x, ∂[0, 1]d))β + 100 if D(x, ∂[0, 1]d) ≤ 1

4 ,

100× ( 14 )
β − 300× (D(x, ∂[0, 1]d)− 1

4 )
β + 100 otherwise,

where D(x, ∂[0, 1]d) denotes the Euclidean distance between x and the boundary of [0, 1]d. In
Figure 1(a), we compare the empirical relative regret of our ADPLP with those of RPS algorithm and
the linear greedy algorithm. The figure shows that our algorithm performs much better than both
algorithms. In Figure 1(b), we investigate the effect of d on the empirical relative regret of ADPLP by
varying d in the set {1, 3, 10} while keeping β = 1. As shown in the figure, as d decreases, the regret
decreases, which is consistent with our theoretical results. In Figure 1(c), we test the effect of β on
the empirical relative regret of ADPLP by varying β in the set {0.2, 0.4, 0.6, 1} while keeping d = 1.
When β is relatively small, a slight increment of β, e.g., β = 0.2 to β = 0.4, will lead to significant
speed-up of the convergence. The results of β = 0.6 and β = 1 are very close, which indicates that
when β is relatively large, increasing β may only bring limited improvement.
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Figure 1: Empirical relative regret for DPLPE model

Numerical results for DPLCE model. For our DPLCE model, we consider the following demand:
Dt(pt) = − 4

15δp
2.5
t + 30 + 1

d1d · xt + εt, where 1d denotes (1, 1, · · · , 1) ∈ Rd, xt is uniformly
distributed on [0, 1]d independently and εt ∼ N (0, 0.12). It can be verified that k = 2.5 in this
case.In Figure 2(a), we fix d = 2, δ = 3.75 and [p, p] = [2.6, 3.8], and compare the empirical relative
regret of our ADPLC with that of the linear greedy algorithm. The linear greedy algorithm has almost
a constant empirical relative regret, showing that it fails to identify the optimal solution. By contrast,
the empirical relative regret of ADPLC decreases as t increases. We also test the effect of δ on the
empirical relative regret of ADPLC by varying β ∈ {3.75, 2.5, 1}. As shown in Figure 2(b), as δ
becomes smaller, the empirical relative regret decreases, which is consistent with our theoretic results.
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Figure 2: Empirical relative regret for DPLCE model

5 Conclusion

In this paper, we study the context-based dynamic pricing with online learning, where the unknown
expected demand admits a partially linear semi-parametric structure. For both models DPLPE
and DPLCE, we develop an efficient learning algorithm and characterize the optimal regret by
proving matching upper and lower bounds. We note that our algorithms need to have the preliminary
knowledge about the smoothness parameters β in DPLPE model and k and δ in DPLCE model.
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One important direction for future research is to explore whether parameter-free algorithms can be
developed and still achieve the optimal regret rate for both models.
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