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Abstract

Learning from non-stationary data streams, also called Task-Free Continual Learn-
ing (TFCL) remains challenging due to the absence of explicit task information in
most applications. Even though recently some algorithms have been proposed for
TFCL, these methods lack theoretical guarantees. Moreover, there are no theoreti-
cal studies about forgetting during TFCL. This paper develops a new theoretical
analysis framework that derives generalization bounds based on the discrepancy
distance between the visited samples and the entire information made available
for training the model. This analysis provides new insights into the forgetting
behaviour in classification tasks. Inspired by this theoretical model, we propose a
new approach enabled with the dynamic component expansion mechanism for a
mixture model, namely Online Discrepancy Distance Learning (ODDL). ODDL
estimates the discrepancy between the current memory and the already accumulated
knowledge as an expansion signal aiming to ensure a compact network architecture
with optimal performance. We then propose a new sample selection approach that
selectively stores the samples into the memory buffer through the discrepancy-
based measure, further improving the performance. We perform several TFCL
experiments with the proposed methodology, which demonstrate that the proposed
approach achieves the state of the art performance.

1 Introduction

Continual learning (CL) and its extension to lifelong learning, represents one of the most desired
functions in an artificial intelligence system, representing the capability of learning new concepts
while maintaining the knowledge of past experiences [32]. Such an ability can be used in many
real-time applications such as robotics, health investigative systems, autonomous vehicles [20] or
for agents exploring artificial (meta) universes. Such applications require to continuously adapt to a
changing environment. Modern deep learning models suffer from degenerated performances on past
data after learning novel knowledge, a phenomenon called catastrophic forgetting [13].

A popular attempt to relieve forgetting in CL is by employing a small memory buffer to preserve
a few past samples and replay them when training on a new task [3, 6]. However, when there
are restrictions on the available memory capacity, memory-based approaches would suffer from
degenerated performance on past tasks, especially when aiming to learn an infinite number of tasks.
Recently, the Dynamic Expansion Model (DEM) [51] has shown promising results in CL, aiming to
guarantee optimal performance by preserving the previously learnt knowledge through the parameters
of frozen components trained on past data, while adding a new component when learning a novel
task. However, such approaches require knowing where and when the knowledge associated with a
given task is changed, which is not always applicable in a real environment.
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In this paper, we address a more realistic scenario, called Task-Free Continual Learning (TFCL) [2],
where task identities are not available while the model can only access a small batch of samples at a
given time. Most existing CL methods may be adapted to TFCL by removing the task information
dependency. For instance, memory-based approaches can store a few past samples from the data
stream at each training time and replay them later during the training [8, 12]. However, such an
approach requires to carefully design the sample selection criterion to avoid memory overload. The
key challenge for the memory-based approaches is the negative backward transfer caused by the
stored samples which interferes with the process of model’s updating with incoming samples [6].
This issue can be relieved by employing a DEM in which previously learnt samples are preserved into
frozen components and would not interfere with the learning of new probabilistic data representations
[24, 38]. However, these approaches do not provide any theoretical guarantees and there are no
studies analysing the trade-off between the model’s generalization and its complexity under TFCL.

There are some recent CL theoretical analysis studies from different perspectives including for the
risk bounds [46, 51], NP-hard problems [17], Teacher-Student frameworks [23, 57] or for the game
theory [37] applications. However all these approaches require strong assumptions, such as defining
task identities, which are not available under the TFCL. This inspires us to bridge the gaps between
the underlying theory and the algorithmic implementation for TFCL. In this study we propose a
theoretical classification framework, which provides new insights in the forgetting behaviour analysis
and guidance for algorithm design addressing catastrophic forgetting. The primary motivation behind
the proposed theoretical framework is that we can formulate forgetting as a generalization error in the
domain adaptation theory. Based on this analysis we extend the domain adaptation theory [29] to
derive time-dependent generalization risk bounds, explicitly explaining the forgetting process at each
training step. Inspired by the theory, we devise the Online Discrepancy Distance Learning (ODDL)
method which introduces a new expansion mechanism based on the discrepancy distance estimation
for implementing TFCL. The proposed expansion mechanism detects the data distribution shift by
evaluating the variance of the discrepancy distance during the training. This model enables a trade-off
mechanism between the model’s generalization and complexity. We also propose a new sample
selection approach based on the discrepancy-based criterion, which guides storing diverse samples
with respect to the already learnt knowledge, further improving performance. Our contributions are :

• This paper is the first research study to propose a new theoretical framework for TFCL, which
provides new insights into the forgetting behaviour of the model in classification tasks.

• Inspired by the theoretical analysis, we develop a novel dynamic expansion approach, which
ensures a compact model architecture enabled by optimal performance.

• We propose a new sample selection approach that selects diverse data samples, with respect to the
existing knowledge of the model, for the memory buffer, further improving performance.

• The proposed method achieves state of the art results on TFCL benchmarks,

2 Related works

Continual learning defines a learning paradigm which aims to learn a sequence of tasks without
forgetting. Catastrophic forgetting is a major challenge in continual learning. One of the most popular
approaches to relieve forgetting is by imposing a regularization loss within the optimization procedure
[7, 11, 13, 16, 19, 25, 26, 31, 34, 35, 40, 41, 56], where the network’s parameters deemed important
to the past tasks are penalized when updating. Another kind of approaches for continual learning
focuses on the memory system, which usually employs a small memory buffer [3, 5, 6, 28, 36, 44, 59]
for storing some past data or trains a generator to provide the replay samples when learning new tasks
[38, 43, 46, 47, 58, 57, 52]. However, these approaches usually rely on knowing the task information,
which does not correspond to the context from the TFCL.

Task-free continual learning is a special scenario in CL where a model can only see one or very
few samples in each training step/time without having any task labels. Using a small memory
buffer to store past samples has shown benefits for TFCL and was firstly investigated in [2, 53, 55].
These memory replay approaches were then extended by employing Generative Replay Mechanisms
(GRMs) for training both a Variational Autoencoder (VAEs) [15] and a classifier, where a new
retrieving mechanism called the Maximal Interfered Retrieval (MIR) [1], is used to select specific
data samples. The Gradient Sample Selection (GSS) [3] is another sample selection approach that
treats sample selection as a constrained optimization reduction. More recently, a Learner-Evaluator
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framework proposed for TFCL, called the Continual Prototype Evolution (CoPE) [8], stores the same
number of samples for each class in the memory in order to ensure the balance replay. Another
direction for the memory-based approaches, called the Gradient based Memory EDiting (GMED)
[12], consists in editing the stored samples aiming to increase the loss in the upcoming model updates.
This approach can be employed in existing CL models to further enhance their performance.

Dynamic expansion models aim to automatically increase the model’s capacity to adapt to new tasks
by adding new hidden layers and units. The Continual Unsupervised Representation Learning (CURL)
[38], dynamically builds new inference models whenever meeting the expansion criterion. However,
since CURL still requires a GRM to relieve forgetting, it would lead to a negative knowledge transfer
when updating the network’s parameters to adapt to a new task. This issue can be addressed by using
Dirichlet processes by adding new components while freezing all previously learnt units, in a model
called the Continual Neural Dirichlet Process Mixture (CN-DPM), [24]. However, the expansion
criterion used by these approaches relies on changing the loss when training each time, which does
not have any theoretical guarantees.

3 Theoretical analysis of TFCL

In this section, we firstly introduce the framework of learning settings and notations, and we analyze
the forgetting behaviour for a single model, and then extend this for a dynamic expansion model by
deriving their Generalization Bounds (GBs).

3.1 Preliminaries

Let X be the input space and Y represent the output space which is {−1, 1} for binary classi-
fication and {1, 2, . . . , n′}, n′ > 2 for multi-class classification. Let DT

i = {xT
j , y

T
j }

NT
i

j=1 and
DS

i = {xS
j , y

S
j }

NS
i

j=1 represent the training and testing sets for the i-th dataset where xT
j ∈ X and

yTj ∈ Y are the image and the associated ground truth label. NT
i and NS

i represent the number of sam-
ples for DT

i and DS
i , respectively. In this paper, we mainly focus on the task-free class-incremental

learning, as described in the following.

Definition 1. (Data stream.) For a given t-th training dataset DS
t with CS

t data categories, let us

consider a data stream S consisting of samples DS
t,j from each category, expressed as S =

⋃CS
t

j=1 DS
t,j .

Let DT
t,j represent the set of samples drawn from the j-th category of DT

t . Let PT
t,j and PS

t,j represent
the distributions for DT

t,j and DS
t,j , respectively. Let PT,X

t,j represent the marginal distribution over X .

Definition 2. (Learning setting.) Let Ti represent the i-th training step. We assume that there are a
total of n training steps for learning S, where during each training step Ti is learnt a small batch of
paired samples {Xb

i ,Y
b
i}, drawn from S . We have S =

⋃n
i=1{Xb

i ,Y
b
i}, {Xb

i ,Y
b
i} ∩ {Xb

j ,Y
b
j} =

∅, where i ̸= j, and a model (classifier) can only access {Xb
i ,Y

b
i} at Ti, while all previous batches

are not available. After finishing all training steps, we evaluate the classification accuracy of the
model on the testing set DT

t .

Definition 3. (Model and memory.) Let us consider a model h implemented by a classifier, and
H = {h |h : X → Y} the space of classifiers. Let us consider a memory buffer Mi, defined at
Ti, which continually adds new data to its memory at each training step and PMi

the probabilistic
representation of Mi. We also randomly remove samples from the memory buffer Mi, in order to
keep fixed its cardinality (number of samples), |Mi|.

3.2 Measuring the distribution shift

In TFCL, the probabilistic distance between the target domain (testing set) and the source domain
(memory buffer) would be dynamically changed during each training step. We can use the discrepancy
distance [29] to measure this gap through analyzing the model’s risk.

Definition 4. (The risk.) For a given distribution PS
t,j , the risk of a model h is defined as R

(
h,PS

t,j

) ∆
=

E{x,y}∼PS
t,j

[
L
(
y, h(x)

)]
, where L : Y × Y → [0, 1] is the loss function.
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Definition 5. (Discrepancy distance.) For two given distributions PT
t,j and PS

t,j , the discrepancy dis-
tance Ld is defined on two marginals as :

Ld

(
PT,X
t,j ,PS,X

t,j

) ∆
= sup

(h,h′)∈H2

∣∣∣Ex∼PT,X
t,j

[
L
(
h(x), h′(x)

)]
− Ex∼PS,X

t,j

[
L
(
h(x), h′(x)

)]∣∣∣ , (1)

where {h, h′} ∈ H. In practice, the discrepancy distance Ld(·, ·) can be estimated as the upper bound
considering the Rademacher complexity which is used in the domain adaptation theory as a measure
of richness for a particular hypothesis space [30, 60].

Corollary 1. For two given domains PT,X
t,j and PS,X

t,j , let UP and UP represent sample sets of sizes
mP and mP, drawn independently from PT,X

t,j and PS,X
t,j . Let P̂T,X

t,j and P̂S,X
t,j represent the empirical

distributions for UP and UP. Let L(x′,x) = |x′ − x|1 be a loss function (L1-Norm), satisfying
∀(x,x′) ∈ X ,L(x,x′) > M , where M > 0. Then, with the probability 1− δ, we have, [29] :

Ld(PT,X
t,j ,PS,X

t,j ) ≤ Ld(P̂T,X
t,j , P̂S,X

t,j ) + C⋆ + 3M

√
log

(
4
δ

)
2mP

+

√
log

(
4
δ

)
2mP

 , (2)

where C⋆ = 4q (ReUP (H) + ReUP (H)) and ReUP (H) is the Rademacher complexity (Appendix-
B from Supplemental Material (SM)). Let Ld̂(P

T,X
t,j ,PS,X

t,j ) represent the Right-Hand Side (RHS)
of Eq. (2). We also assume that L : Y × Y → [0, 1] is a symmetric and bounded loss function
∀(y, y′) ∈ Y2,L(y, y′) ≤ U ′, and L(·, ·) obeys the triangle inequality, where U ′ is a positive number.

3.3 GB for a single model

Based on the definitions from Section 3.2, we firstly derive the GB for the learning process of a single
model under TFCL.

Theorem 1. Let Pi represent the distribution of all visited training samples (including all previous
batches) drawn from S , at Ti. Let hPi = argminh∈H R(h,Pi) and hMi = argminh∈H R(h,PMi)
represent the ideal classifiers for Pi and PMi , respectively. We derive the GB between Pi and PMi ,
based on the results from Corollary 1 :

R
(
h,Pi

)
≤ R

(
h, hMi ,PMi

)
+ Ld̂

(
PX
i ,PX

Mi

)
+ η

(
Pi,PMi

)
, (3)

where η
(
Pi,PMi

)
is the optimal combined error R(hPi

, hMi
,Pi) + R(hPi

, h⋆
Pi
,Pi) where

R(hPi
, hMi

,PMi
) is the risk, expressed by Ex∼PMi

[L(hPi
(x), hMi

(x))] and h⋆
Pi

is the true label-
ing function for Pi.

The proof is provided in Appendix-A from the SM. Compared to the GB used in the domain
adaptation [29], Theorem 1 provides an explicit way to measure the gap between the model’s
predictions and the true labels in each training step (Ti). During the initial training stages (i is very
small), the memory Mi can store all previous samples and GB is tight. However, as the number of
training steps increases, the discrepancy distance Ld̂

(
PX
i ,PX

Mi

)
would increase because Mi loses

the knowledge corresponding to previously learnt data. This can lead to a degenerated performance on
Pi, corresponding to the forgetting process. Next we extend Theorem 1 to analyze the generalization
performance on testing sets.

Theorem 2. For a given target domain PT
t,j , we derive the GB for a model at the training step Ti :

R
(
h,PT

t,j

)
≤ R

(
h, hMi ,PMi

)
+ Ld̂

(
PT,X
t,j ,PX

Mi

)
+ η

(
PT
t,j ,PMi

)
, (4)

The proof is similar to that for Theorem 1. We can observe that the generalization performance on a
target domain PT

t,j , by a model h is relying mainly on the discrepancy distance between PT,X
t,j and

PMi . In practice, we usually measure the generalization performance of h on several data categories
where each category is represented by a different underlying distribution. In the following, we extend
Theorem 2 for multiple target distributions.

Lemma 1. For a given data stream S =
⋃CS

t
j=1 DS

t,j consisting of samples from DS
t , let DT

t be the
corresponding testing set and PT

t,j represent the distribution of samples for the j-th category from
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DT
t , we derive the GB for multiple target domains as:∑CT

t

j=1

{
R
(
h,PT

t,j

)}
≤

∑CT
t

j=1

{
R
(
h, hMi ,PMi

)
+ Ld̂

(
PT,X
t,j ,PX

Mi

)
+ η

(
PT
t,j ,PMi

)}
, (5)

where CT
t represents the number of testing data streams.

Remarks. Observations for Lemma 1 : 1) The optimal performance of the model h on the testing set
can be achieved by minimizing the discrepancy distance between each target domain PT,X

t,j and the
distribution PMi at the training step Ti. 2) The study from [17] employs the set theory to theoretically
demonstrate that a perfect memory is crucial for CL. In contrast, we evaluate the memory quality
using the discrepancy distance in Eq. (5), which provides a practical way to investigate the relationship
between the memory and forgetting behaviour of existing approaches [6, 8] at each training step
without requiring any task information (see the Appendix-D from SM). 3) The study from [51]
introduces a similar risk bound for forgetting analysis which requires the task information. In contrast,
the proposed GB can be used in a more realistic CL scenario and we also provide the theoretical
analysis for component diversity (Appendix-C from SM), which is missing in [51].

3.4 GB for the dynamic expansion mechanism

As discussed in Lemma 1, a memory of fixed capacity would lead to degenerated performance on all
target domains. The other problem for a single memory system is the negative backward transfer
[27] in which the performance of the model is decreased due to samples being drawn from entirely
different distributions [14]. A Dynamic Expansion Model (DEM) can address these limitations from
two aspects :1) DEM relieves the negative transfer by preserving the previously learnt knowledge into
frozen components which are make up a mixture system; 2) DEM can achieve a better generalization
performance under TFCL by allowing each component to model one or only a few similar underlying
data distributions. We derive GB for DEM and show the advantages of a DEM for TFCL.

Definition 7. (Dynamic expansion mechanism.) Let G represent a dynamic expansion model, with
Gj the j-th component in G, implemented by a single classifier. During the initial training phase, G
starts with training its first component, and then adds new components during the following training
steps. In order to overcome forgetting, only the newly created component is updated each time, while
all previously trained components have their parameters frozen.

Theorem 3. For a given data stream S = {Xb
1, · · · ,Xb

n}, let P(i,j) represent the distribution of the
j-th training batch Xb

j drawn from S (visited), at Ti. We assume that G = {G1, · · · , Gc} trained c
components at Ti. Let T = {Tk1 , · · · , Tkc} be a set of training steps, where Gv was frozen at Tkv .
We derive the GB for G at Ti as:

1

i

∑i

j=1

{
R
(
h,P(i,j)

)}
≤ 1

i

∑i

j=1

{
FS

(
P(i,j),G

)}
, (6)

where FS(·, ·) is the selection function, defined as :

FS

(
P(i,j),G

) ∆
= min

v=1,··· ,c

{
R
(
h, hMkv

,PMkv

)
+ Ld̂

(
PX
(i,j),P

X
Mkv

)
+ η

(
P(i,j),PMkv

)}
, (7)

where PMkv
represents the memory distribution at Tkv

. The proof is provided in Appendix-B from
SM. Notice that FS(·, ·) can be used for arbitrary distributions. We assume an ideal model selection in
Eq. (7), where always the component with the minimal risk is chosen. DEM can achieve the minimal
upper bound to the risk (Left Hand Side (LHS) of Eq. (6)) when comparing with a single model
(Theorem 3). Then, in the following we derive the GB for analyzing the generalization performance
of G on multiple target distributions.

Lemma 2. For a given data stream S =
⋃CS

t
j DS

t,j consisting of samples from DS
t , we have a set

of target sets {DT
t,1, · · · ,DT

t,CT
t
}, where each DT

t,j contains Cb
t,j batches of samples. Let PT

t,j(d)

represent the distribution of the d-th batch of samples in DT
t,j . We assume that G consists of c

components trained on samples from S at Ti. We derive the GB for multiple target domains as :∑CT
t

j=1

{∑Cb
t,j

d=1
R
(
h,PT

t,j(d)
)}

≤
∑CT

t

j=1

{∑Cb
t,j

d=1

{
FS

(
PT
t,j(d),G

)}}
. (8)

Remark. We have several observations from Lemma 2 : 1) The generalization performance of G is
relying on the discrepancy distance between each target distribution PT

t,j and the memory distribution
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PMki
of the selected component (more details in Appendix-C from SM). 2) Eq. (8) provides the

analysis of the trade-off between the model’s complexity and generalization for DEM [24, 38]. By
adding new components, G would capture additional information of each target distribution and thus
improve its performance. On the other hand, the selection process ensures a probabilistic diversity for
the stored information, aiming to capture more knowledge with a minimal number of components.

In practice, we usually perform the model selection for G by using a certain criterion that only
accesses the testing samples without task labels. Therefore, we introduce a selection criterion F̂(·, ·),
implemented by comparing the sample log-likelihood :

F̂
(
PT
t,j(d),G

) ∆
= argmax

v=1,··· ,c

{
Ex∼PT

t,j(d)
[f̂(x, Gkv

)]
}
, (9)

where f̂(·, ·) is a pre-defined sample-log likelihood function. Then Eq. (9) is used for model selection:

F̂S

(
PT
t,j(d),G

)
=

{
R
(
h, hMs

,PMs

)
+ Ld̂

(
PT,X
t,j (d),PX

Ms

)
+ η

(
PT
t,j(d),PMs

)
|

s = F̂
(
PT
t,j(d),G

)}
. (10)

We rewrite Eq. (8) by using Eq. (10), resulting in :∑CT
t

j=1

{∑Cb
t,j

d=1
R
(
h,PT

t,j(d)
)}

≤
∑CT

t

j=1

{∑Cb
t,j

d=1

{
F̂S

(
PT
t,j(d),G

)}}
. (11)

Eq. (11), when compared with an ideal solution (Eq. (8)), would involve the extra error terms due to

the selection process (Eq. (10)), expressed as
∑CT

t
j=1

{∑Cb
t,j

d=1

{
F̂S

(
PT
t,j(d),G

)
− FS

(
PT
t,j(d),G

)}}
.

In Section 4, we introduce a new CL framework according to the theoretical analysis.

3.5 Parallels with other studies defining lifelong learning bounds

In this section, we discuss the differences between the results in this paper and those from other
studies proposing lifelong learning bounds. The bound from Theorem 1 in [30] assumes that the
model is trained on all previous samples, which is not practical under a TFCL setting. In contrast, in
Theorem 1 from this paper, the model is trained on a memory buffer, which can be used in the context
of TFCL. In addition, the bounds from Theorem 1 [30] mainly provide the theoretical guarantees
for the performance when learning a new data distribution, which does not represent an analysis of
the model’s forgetting. In contrast, this paper studies the forgetting analysis of our model and its
theoretical developments can be easily extended for analyzing the forgetting behaviour of different
continual learning methods, while this cannot be said about the study from [30] (See Appendix-D
from supplemental material).

When comparing with [33], our theoretical analysis does not rely on explicit task boundaries, which
is a more realistic assumption for TFCL. In addition, [33] employs the KL divergence to measure the
distance between two distributions, which would require knowing the explicit distribution form and
is thus hard to evaluate in practice during the learning. However, our theory employs the discrepancy
distance, which can be reliably estimated. Moreover, the study from [33] does not develop a practical
algorithm to be used according to the theoretical analysis. In contrast, our theory provides guidelines
for the algorithm design under the TFCL assumption. Finally, inspired by the proposed theoretical
analysis, this paper develops a successful continual learning approach for TFCL.

Theorem 1 in [4], similarly to the study from [30], assumes that the model is trained on uncertain
data sets over time, which would not be suitable for TFCL since the model can not access previously
learnt samples under TFCL. In contrast, Theorem 1 in our theory represents a realistic TFCL scenario
in which the model is trained on a fixed-length memory buffer and is evaluated on all previously seen
samples. Therefore, our analysis for the forgetting behaviour of the model under TFCL relies on
Theorem 1 and its consequences. In addition, the study from [4], similarly to [30, 33], only provides
a theoretical guarantee for a single model. In contrast, we extend our theoretical analysis to the
dynamic expansion model, which motivates us to develop a novel continual learning approach for
TFCL. Moreover, this paper is the first work to provide the theoretical analysis for the diversity of
knowledge recorded by different components (See Appendix-C from supplemental material). This
analysis indicates that by maintaining the knowledge diversity among different components we ensure
a good trade-off between the model’s complexity and the generalization performance, thus providing
invaluable insights into algorithm design for TFCL.
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4 Methodology

4.1 Network architecture

Each component Gj ∈ G consists of a classifier hj implemented by a neural network fςj (x) with
trainable parameters ςj , and a variational autoencoder (VAE) model implemented by an encoding
network encωj

as well as the corresponding decoding network decθj , with trainable parameters
{ωj , θj}. Due to its robust generation and inference mechanisms, VAEs have been widely used in
many applications [48, 49, 50, 51, 54, 61]. This paper employs a VAE for discrepancy estimation
and component selection. The loss function for the j-th component at Ti is defined as :

Lclass(Gj ,Mi)
∆
=

1

|Mi|
∑|Mi|

t=1

{
Lce

(
hj(xt), yt

)}
, (12)

LV AE(Gj ,Mi)
∆
= − Eqωj

(z |x)
[
log pθj (xt | z)

]
+DKL

[
qωj (z |xt) || p(z)

]
, (13)

where {xt, yt} ∼ Mi, where |Mi| is the memory buffer size, and Lce(·) is the cross-entropy
loss. LV AE(·, ·) is the VAE loss [15], pθj (xt | z) and qωj

(z |xt) are the encoding and decoding
distributions, implemented by encωj

and decθj , respectively. We also implement f̂(·, ·) in Eq. (9)
by −LV AE(·, ·) for the component selection at the testing phase. The training algorithm for the
proposed ODDL consists of three stages (See more information in Appendix-E from SM). In the
initial training stage, we aim to learn the initial knowledge of the data stream and preserve it into a
component G1 with frozen parameters, which can provide information for the dynamic expansion
and can be sampled for the selection evaluation in the subsequent learning. During the evaluator
training stage we train the current component as the evaluator that estimates the discrepancy distance
between each previously learnt component and the memory buffer, deciding the model expansion. In
the sample selection stage, we train the current component with new data, while we aim to promote
knowledge diversity among mixture’s components.

In the following, we firstly propose a new dynamic expansion mechanism based on the discrepancy
criterion. Then we introduce a new sample selection approach for the memory buffer further
improving the performance of the model. Finally, we provide the detailed algorithm implementation.

4.2 Discrepancy based mixture model expansion

From Lemma 2, we observe that the probabilistic diversity of the trained components in G can ensure
a compact network architecture while maintaining a good generalization performance (See Theorem
4 in Appendix-C from SM). In order to achieve this, we maximize the discrepancy between the
current memory buffer and the probabilistic representation of each trained component of G, during
the training, by using the discrepancy distance (notations are defined in Theorem 3), expressed as :

M⋆ = argmax
Mi

∑c

j

{
Ld̂(P

X
Mkj

,PX
Mi

)
}
, (14)

where i = kc + 1, · · · , n represents the index of the training steps and kc is the c-th component
trained at Tkc

. M⋆ is the closest learnt distribution of one of the components to that of the memory
buffer. Eq. (14) can be seen as a recursive optimization problem when G dynamically adds new
components (c is increased) during the training. We derive an expansion criterion, based on the
discrepancy distance from Eq. (14), while balancing the model’s complexity and performance, :

c
min
j=1

{
Ld̂

(
PX
Mkj

,PX
Mi

)}
≥ λ , (15)

where λ ∈ [0, 4] is an architecture expansion threshold chosen empirically. If the current memory
distribution PMi

is sufficiently different from each component (satisfies Eq. (15)), G will add a
new component to preserve the knowledge of the current memory Mi, while also encouraging the
probabilistic diversity among the trained components.

In the following, we describe the implementation. We start by training the first component G1 which
consists of a classifier h1 and a VAE model v1, which is used for model selection at the testing phase.
We also train an additional component called the evaluator Ge = {he, ve}, at the initial training stage,
which aims to capture the future information about the data stream. Once the memory Mj reaches
its maximum size at Tj , we freeze the weights of the first component to preserve the previously learnt
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knowledge while continually training the evaluator during the following training steps. Since the
evaluator continually captures the knowledge from the current memory Mi, we check the model
expansion using Eq. (15) at Ti :

L⋆
d

(
PX
Mk1

,PX
Mi

)
≥ λ . (16)

Notice that we can not access the previously learnt memory distributions PX
Mk1

and we approximate
them by using the auxiliary distributions PX

vj
1

formed by samples vj1 drawn from Gj
1, where the

superscript j represents the first component finishing the training at Tj . L⋆
d(·, ·) is the estimator of

the discrepancy distance, achieved by hi
e and hj

1 :

L⋆
d

(
PX
vj
1

,PMi

) ∆
=

∣∣∣Ex∼PX
v
j
1

[
L
(
hj
1(x), h

i
e(x)

)]
− Ex∼PMi

[
L
(
hj
1(x), h

i
e(x)

)]∣∣∣. (17)

If Eq. (16) is fulfilled, then we add Gi
e into the model G, while building a new evaluator (Gi+1

e =
Gi+1

3 ) at Ti+1; otherwise, we train Gi
e → Gi+1

e at the next training step, Ti+1. Furthermore, for
satisfying the diversity of knowledge in the components from the mixture model (See Lemma 2),
we clear the memory Mi when performing the expansion in order to ensure that we would learn
non-overlapping distributions during the following training steps. As illustrated in Fig. 1 we can
also extend Eq. (16) to the expansion criterion for G = {G1, · · · , Gs−1} after creating and freezing
(s− 1) components :

s−1
min
j=1

{
L⋆
d

(
PX
v
kj
j

,PX
Mi

)}
≥ λ , (18)

where PX
v
kj
j

is the distribution of the generated samples by G
kj

j and we denote Sj = L⋆
d

(
PX
v
kj
j

,PMi

)
.

4.3 Sample selection

�1

��−1

Expand the network 
Architecture

Perform the sample 
selection

Discrepancy �1

���{�1, . . , ��−1} ≥ �ℎ�

Discrepancy ��−1

ℎ1

ℎ�−1

Figure 1: We generate the known information by
using the VAE (Vj) of each previous component
Gj , j = 1, · · · , s− 1, used to evaluate the discrep-
ancy distance Sj = L⋆

d

(
PX
vj ,PMi

)
at Ti (Eq. (17)),

between Gj and the memory buffer. Then we use
these discrepancy scores {S1, · · · , Ss−1} to check
the model expansion (Eq. (18))

According to Lemma 2, the probabilistic diver-
sity of the knowledge accumulated in the com-
ponents is crucial for the performance. In the
following, we also introduce a novel sample
selection approach for the memory buffer that
further encourages the diversity of the learnt
information. The primary motivation behind
the proposed sample selection approach is that
we desire to store in the memory buffer those
samples that are completely different from the
data used for training existing components. This
mechanism enables the newly created compo-
nent to capture a different underlying data distri-
bution. To implement this goal, we estimate the
discrepancy distance on a pair of samples as :

Ls
d(G,xc)

∆
=

1

s

∑s

t=1

∣∣L(hkt
t (xc), h

i
e(xc))− L(hkt

t (xkt
t ), hi

e(x
kt
t ))

∣∣ , (19)

where xc is the c-th sample from Mi while xkt
t is drawn from Gkt

t . hkt
t (·) is the classifier of Gkt

t
from G. Eq. (19) evaluates the average discrepancy distance between the knowledge generated by
each trained component and the stored samples, guiding the sample selection at the training step (Ti) :

Mi =
⋃|M′

i|−b

j=1
M′

i[j] , (20)

where M′
i is the sorted memory that satisfies the condition Ls

d(G,M′
i[a]) > Ls

d(G,M′
i[q]) for a < q.

M′
i[j] represents the j-th stored sample and d = 10 is the batch size used in the experiments. We

name the Online Discrepancy Distance Learning with sample Selection as ODDL-S.
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(a) Risk on the training set. (b) Risk on all target sets. (c) Results on Split MNIST.

Figure 2: The forgetting analysis of a single model and DEM in (a) and (b) where the batch size is
64 in the data stream. Data distribution shift and increasing the number of components in ODDL-S
during the training in (c).

4.4 Algorithm implementation

The algorithm has three main stages (pseudocode is provided in Algorithm 1, Appendix-E from SM) :
• (Initial training). We start by building two components {G1, G2} where we only add G1 in G and

consider Ge = G2 as the Evaluator. G1 and G2 are trained jointly using Eq. (13) and Eq. (12)
during the initial training stage until the memory Mj reaches its maximum size |M|max at a
certain training step Tj . Then we freeze the first component G1.

• (Evaluator training). In this stage, we only update the Evaluator using Eq. (13) and Eq. (12) on
Mj+1 at Tj+1. If |Mj+1| ≥ |M|max, then we evaluate the discrepancy distance using Eq. (17)
to check the expansion (Eq. (18)). If the expansion criterion is satisfied we add Ge to G and build a
new Evaluator while clearing up the memory Mj+1, otherwise, we perform the sample selection.

• (Sample selection). We evaluate the diversity score for each stored sample in Mj+1 using Eq. (19)
and perform the sample selection for Mj+1 using Eq. (20). Then we return to the second stage.

5 Experiments
We perform the experiments to address the following research questions: 1) What factors would
cause the model’s forgetting, and how to explain such behaviour? 2) How efficient is the proposed
ODDL-S under TFCL benchmarks? 3) How important is each module in OODL-S?
In this experiment, we adapt the TFCL setting from [8] which employs several datasets including
Split MNIST [22, 53], Split CIFAR10 [18, 53] and Split CIFAR100 [18]. The detailed informa-
tion for datasets, hyperparameters and network architectures is provided in Appendix-F from the
supplementary material. The code is available at https://dtuzi123.github.io/ODDL/.

5.1 Empirical results for the forgetting analysis

Table 1: The accuracy of various continual learn-
ing models for five independent runs.

Methods Split MNIST Split CIFAR10 Split CIFAR100

finetune* 19.75 ± 0.05 18.55 ± 0.34 3.53 ± 0.04
GEM* 93.25 ± 0.36 24.13 ± 2.46 11.12 ± 2.48
iCARL* 83.95 ± 0.21 37.32 ± 2.66 10.80 ± 0.37
reservoir* 92.16 ± 0.75 42.48 ± 3.04 19.57 ± 1.79
MIR* 93.20 ± 0.36 42.80 ± 2.22 20.00 ± 0.57
GSS* 92.47 ± 0.92 38.45 ± 1.41 13.10 ± 0.94
CoPE-CE* 91.77 ± 0.87 39.73 ± 2.26 18.33 ± 1.52
CoPE* 93.94 ± 0.20 48.92 ± 1.32 21.62 ± 0.69
ER + GMED† 82.67 ± 1.90 34.84 ± 2.20 20.93 ± 1.60
ERa + GMED† 82.21 ± 2.90 47.47 ± 3.20 19.60 ± 1.50
CURL* 92.59 ± 0.66 - -
CNDPM* 93.23 ± 0.09 45.21 ± 0.18 20.10 ± 0.12
Dynamic-OCM 94.02 ± 0.23 49.16 ± 1.52 21.79 ± 0.68

ODDL 94.85 ± 0.02 51.48 ± 0.12 26.20 ± 0.72
ODDL-S 95.75 ± 0.05 52.69 ± 0.11 27.21 ± 0.87

In this section, we investigate the forgetting be-
haviour of the proposed model according to the
theoretical framework. Firstly, we train a single
classifier h on the Split MNIST database, as a
baseline. We consider a memory buffer of max-
imum size of 2000, with the batch size of 10;
the extra stored samples are randomly removed
when the memory is full. We evaluate the source
and target risks for the proposed ODDL under
Split MNIST and plot the results in Fig. 2. We
estimate the target risk on all visited training sam-
ples R(h,Pi) and the source risk on the memory
R(h, hMi

,PMi
). We plot the results in Fig. 2-

a, where “Random (Source risk)” represents the
source risk of a single classifier, considered as
a baseline. At the same time, the baseline tends
to increase the target risk on Pi with the training
steps, as shown in Fig. 2-a. This happens because
the memory loses the samples associated with the previous tasks, theoretically explained by Theorem
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1. We also evaluate the risk of the baseline on all testing sets (target risk) and plot the results in
Fig. 2-b, where we can observe that the baseline invariably leads to a large target risks even when
the number of training steps increases. Meanwhile, the performance of ODDL on the distribution
Pi (target risk) does not degenerate during the whole training phase. These results show that ODDL
can relieve forgetting and achieve better generalization than the baseline on all target sets, while
expanding its architecture to learn novel knowledge.

5.2 Results on TFCL benchmark

We provide the results in Tab. 1 where * and † denote the results cited from [8] and [12], respectively.
We compare with several baselines including: finetune that directly trains a classifier on the data
stream, GSS [3], Dynamic-OCM [53], MIR [1], Gradient Episodic Memory (GEM) [27], Incremental
Classifier and Representation Learning (iCARL) [39], Reservoir [45], CURL, CNDPM, CoPE, ER +
GMED and ERa + GMED [12] where ER is the Experience Replay [42] and ERa is ER with data
augmentation. The number of components in ODDL-S and ODDL for Split MNIST, Split CIFAR10
and Split CIFAR100 is 7, 9, 7, respectively. From Tab. 1 the proposed ODDL-S outperforms CNDPM,
which uses more parameters, on all datasets and achieves state-of-the-art performance.

Table 2: Classification accuracy for
20 runs when testing various mod-
els on Split MImageNet and Permuted
MNIST.

Methods Split MImageNet Permuted MNIST

ERa 25.92 ± 1.2 78.11 ± 0.7
ER + GMED 27.27 ± 1.8 78.86 ± 0.7
MIR+GMED 26.50 ± 1.3 79.25 ± 0.8
MIR 25.21 ± 2.2 79.13 ± 0.7
CNDPM 27.12 ±1.5 80.68 ± 0.7

ODDL 27.45 ± 0.9 82.33 ± 0.6
ODDL-S 28.68 ± 1.5 83.56 ± 0.5

In the following, we also evaluate the performance of
the proposed approach on the large-scale dataset (MINI-
ImageNet [21]), and Permuted MNIST [9]. We split MINI-
ImageNet into 20 tasks (See details in Appendix-F1 from
SM), namely Split MImageNet. We follow the setting
from [1] where the maximum memory size is 10K, and
a smaller version of ResNet-18 [10] is used as the classi-
fier. The hyperparameter λ used in Eq. (15) for expanding
ODDL when learning Split MINI-ImageNet and Permuted
MNIST (where pixels are randomly premuted in images)
is equal to 1.2 and 1.5, respectively. In Tab. 2 we compare
with several state-of-the-art methods under Split MIma-
geNet, where the results of other baselines are from [12].
From these results, ODDL-S outperforms different base-
lines under the challenging dataset.

5.3 Ablation study

We investigate the expansion of the ODDL-S according to the proposed discrepancy-based criterion.
In Fig. 2-c we show the number of components in each training step for ODDL-S, when training on
Split MNIST, where the original MNIST database is learnt segment by segment. In Fig. 2-c “Task”
represents the number of tasks in each training step. We observe that the proposed discrepancy-based
criterion can detect the data distribution shift accurately, allowing ODDL-S to expand the network
architecture each time when detecting the data distribution shift. This also encourages the proposed
ODDL-S to use a minimal number of components while achieving optimal performance, as discussed
in Lemma 2. We also provide the analysis of how to maximize the memory bound in Appendix-F2.2,
while more ablation study results are provided in Appendix-F.2 from supplementary material.

6 Conclusion

In this paper, we develop a novel theoretical framework for Task-Free Continual Learning (TFCL),
by defining a statistical discrepancy distance between given data distributions and those learnt by
the lifelong learning model. Inspired by the theoretical analysis, we propose the Online Discrepancy
Distance Learning enabled by a selective memory buffer sampling approach (ODDL-S) model, which
trades off between the model’s complexity and performance. The memory buffer sampling mechanism
ensures the information diversity learning. The proposed theoretical analysis provides new insights
into the model’s forgetting behaviour during each training step of TFCL. Experimental results on
several TFCL benchmarks show that the proposed ODDL-S achieves state-of-the-art performance.
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