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1 Main and Supplemental Results

1.1 Probabilistic Bounds for General Function Classes

In this section, we develop probabilistic bounds for general function classes in terms of Gaussian
and Rademacher complexities. First, we prove the following key lemma, which is an extension of
the symmetrization inequality for i.i.d. sequences (for example, [1]) to a new version for Markov
sequences {Xn}∞n=1 with the stationary distribution π and the initial distribution ν ∈M2:

Lemma 1. Let F be a class of functions which are uniformly bounded by M . For all n ∈ Z+, define

An :=

√
2M

n(1− λ)
+

64M2

n2(1− λ)2

∥∥∥∥ dvdπ − 1

∥∥∥∥
2

, (1)

Ãn :=
M

2n

[√
2τminn log n+

√
n+ 4

]
. (2)

Then, the following holds:

1

2
E
[
‖P 0

n‖F
]
− Ãn ≤ E

[∥∥Pn − P∥∥F] ≤ 2E
[
‖P 0

n‖F
]

+An, (3)

where

‖P 0
n‖F := sup

f∈F

∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣. (4)

Proof. See Appendix A.

Next, we prove the following theorem.

Theorem 2. Consider a countable family of Lipschitz function Φ = {ϕk : k ≥ 1}, where ϕk : R→
R satisfies 1(−∞,0](x) ≤ ϕk(x) for all k. For each ϕ ∈ Φ, denote by L(ϕ) its Lipschitz constant.
Define

Bn :=

√
2

n(1− λ)
+

64

n2(1− λ)2

∥∥∥∥ dvdπ − 1

∥∥∥∥
2

. (5)

∗Use footnote for providing further information about author (webpage, alternative address)—not for
acknowledging funding agencies.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Then, for any t > 0,

P
(
∃f ∈ F : P{f ≤ 0} > inf

k>0

[
Pnϕk(f) + 4L(ϕk)Rn(F) +

(
t+
√

log k
)√τmin

n
+Bn

])
≤ π2

3
exp(−2t2) (6)

and

P
(
∃f ∈ F : P{f ≤ 0} > inf

k>0

[
Pnϕk(f) +

√
2πL(ϕk)Gn(F)

+
2√
n

+
(
t+
√

log k
)√τmin

n

])
≤ π2

3
exp(−2t2). (7)

Proof. See Appendix B.

Theorem 3. Let ϕ is a non-increasing function such that ϕ(x) ≥ 1(−∞,0](x) for all x ∈ R. For any
t > 0,

P
(
∃f ∈ F : P{f ≤ 0} > inf

δ∈(0,1]

[
Pnϕ

(
f

δ

)
+

8L(ϕ)

δ
Rn(F) +

(
t+
√

log log2 2δ−1
)√τmin

n
+Bn

])
≤ π2

3
exp(−2t2) (8)

and

P
(
∃f ∈ F : P{f ≤ 0} > inf

δ∈(0,1]

[
Pnϕ

(
f

δ

)
+

2L(ϕ)
√

2π

δ
Gn(F)

+
2√
n

+
(
t+
√

log log2 2δ−1
)√τmin

n
+Bn

])
≤ π2

3
exp(−2t2), (9)

where Bn is defined in (5).

Proof. See Appendix C.

In the next statements, we use Rademacher complexities, but Gaussian complexities can be used
similarly. Now, assume that ϕ is a function from R to R such that ϕ(x) ≤ I(−∞,0](x) for all x ∈ R
and ϕ satisfies the Lipschitz with constant L(ϕ). Then, the following theorems can be proved by
using similar arguments as the proof of Theorem 3.

Theorem 4. Let ϕ is a nonincreasing function such that ϕ(x) ≤ 1(−∞,0](x) for all x ∈ R. For any
t > 0,

P
(
∃f ∈ F : P{f ≤ 0} < sup

δ∈(0,1]

[
Pnϕ

(
f

δ

)
+

8L(ϕ)

δ
Rn(F)

+
(
t+
√

log log2 2δ−1
)√τmin

n
+Bn

])
≤ π2

3
exp(−2t2) (10)

and

P
(
∃f ∈ F : P{f ≤ 0} < sup

δ∈(0,1]

[
Pnϕ

(
f

δ

)
+

2
√

2πL(ϕ)

δ
Gn(F) +

2√
n

])
+
(
t+
√

log log2 2δ−1
)√τmin

n
+Bn

])
≤ π2

3
exp(−2t2), (11)

where Bn is defined in (5).

By combining Theorem 3 and Theorem 4, we obtain the following result.
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Theorem 5. Let

∆n(F ; δ) :=
8

δ
Rn(F) +

√
τmin log log2 2δ−1

n
+Bn. (12)

Then, for all t > 0,

P
(
∃f ∈ F :

∣∣Pn{f ≤ 0} − P{f ≤ 0}
∣∣ > inf

δ∈(0,1]

(
Pn{|f | ≤ δ}+ ∆n(F ; δ) + t

√
τmin

n

))
≤ 2π2

3
exp(−2t2) (13)

and

P
(
∃f ∈ F :

∣∣Pn{f ≤ 0} − P{f ≤ 0}
∣∣ > inf

δ∈(0,1]

(
P{|f | ≤ δ}+ ∆n(F ; δ) + t

√
τmin

n

)
≤ 2π2

3
exp(−2t2). (14)

Proof. Equation (13) is drawn by setting ϕ(x) = 1{x ≤ 0}+ (1− x)1{0 ≤ x ≤ 1} in Theorem 3
and Theorem 4. Equation (14) is drawn by setting ϕ(x) = 1{x ≤ −1} − x1{−1 ≤ x ≤ 0} in these
theorems.

1.2 Conditions on Random Entropies and γ-Margins

As [2], given a metric space (T, d), we denote by Hd(T ; ε) the ε-entropy of T with respect to d, that
is

Hd(T ; ε) := logNd(T ; ε), (15)

where Nd(T ; ε) is the minimal number of balls of radius ε covering T . Let dPn,2 denote the metric
of the space L2(S; dPn):

dPn,2(f, g) :=
(
Pn|f − g|2

)1/2
. (16)

For each γ ∈ (0, 1], define

δn(γ; f) := sup

{
δ ∈ (0, 1) : δ

γ
2 P (f ≤ δ) ≤ n− 1

2 + γ
4

}
(17)

and

δ̂n(γ; f) := sup

{
δ ∈ (0, 1) : δ

γ
2 Pn(f ≤ δ) ≤ n− 1

2 + γ
4

}
. (18)

We call δn(γ; f) and δ̂n(γ; f), respectively, the γ-margin and empirical γ-margin of f .

Theorem 6. Suppose that for some α ∈ (0, 2) and some constant D > 0,

HdPn ,2
(F ;u) ≤ Du−α, u > 0 a.s., (19)

Then, for any γ ≥ 2α
2+α , there exists some constants ζ, υ > 0 such that when n is large enough,

P
[
∀f ∈ F : ζ−1δ̂n(γ; f) ≤ δn(γ; f) ≤ ζδ̂n(γ; f)

]
≥ 1− 2υ

(
log2 log2 n

)
exp

{
− n

γ
2 /2
}
. (20)

Proof. See Appendix D for a detailed proof.
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1.3 Convergence rates of empirical margin distributions

First, we prove the following lemmas.

Lemma 7. For any class F of bounded measurable functions from S → R, with probability at least
1− 2 exp

(
− 2t2

)
, the following holds:

sup
f∈F

sup
y∈R

∣∣Pn(f ≤ y)− P (f ≤ y)
∣∣ ≤√Bn + t

√
τmin

n
, (21)

where Bn is defined in (5).

Remark 8. By setting t =
√

2 log n, (21) shows that supf∈F supy∈R
∣∣Pn(f ≤ y)−P (f ≤ y)

∣∣→ 0
as n→∞.

Proof. See Appendix E.

Now, for each f ∈ F , define

Ff (y) := P{f ≤ y}, Fn,f := Pn{f ≤ y}, y ∈ R. (22)

Let L denote the Lévy distance between the distributions in R:

L(F,G) := inf{δ > 0 : F (t) ≤ G(t+ δ) + δ, G(t) ≤ F (t+ δ) + δ, ∀t ∈ R}. (23)

Lemma 9. Let M > 0 and F be a class of measurable functions from S into [−M,M ]. Let ϕ be
equal to 1 for x ≤ 0, 0 for x ≥ 1 and linear between them. Define

G̃ϕ :=

{
ϕ ◦

(
f − y
δ

)
− 1 : f ∈ F , y ∈ [−M,M ]

}
(24)

for some δ > 0. Recall the definition of Bn in (5). Then, for all t > 0 and δ > 0, the following holds:

P
{

sup
f∈F

L(Ff , Ff,n) ≥ δ + E
[
‖P 0

n‖G̃ϕ
]

+Bn + t

√
τmin

n

}
≤ 2 exp(−2t2). (25)

Especially, for all t > 0, we have

P
{

sup
f∈F

L(Ff , Ff,n) ≥ 4

√
E[‖P 0

n‖F ] +M/
√
n+Bn + t

√
τmin

n

}
≤ 2 exp(−2t2). (26)

Proof. See Appendix F.

In what follows, for a function f from S into R and M > 0, we denote by fM the function that is
equal to f if |f | ≤M , is equal to M if f > M and is equal to −M if f < −M . We set

FM :=
{
fM : f ∈ F}. (27)

As always, a function F from S into [0,∞) is called an envelope of F iff |f(x)| ≤ F (x) for all
f ∈ F and all x ∈ S.

We write F ∈ GC(P) iff F is a Glivenko-Cantelli class with respect to P (i.e., ‖Pn − P‖F → 0 as
n→∞ a.s.). We write F ∈ BCLT(P) and say that F satisfies the Bounded Central Limit Theorem
for P iff

E
[∥∥Pn − P∥∥F] = O(n−1/2). (28)

Based on Lemma and Lemma 9, we prove the following theorems.

Theorem 10. Suppose that

sup
f∈F

P{|f | ≥M} → 0 as M →∞. (29)

Then, the following two statements are equivalent:

4



• (i) FM ∈ GC(P) for all M > 0
and

• (ii) supf∈F L(Fn,f , Ff )→ 0 a.s. n→∞.

Proof. See Appendix G.

Next, the following theorems hold.
Theorem 11. [2, Theorem 7] The following two statements are equivalent:

• (i) F ∈ GC(P) for all M > 0
and

• (ii) there exists a P -integrable envelope for the class F (c) = {f − Pf : f ∈ F} and
supf∈F L(Fn,f , Ff )→ 0 n→∞ and

sup
f∈F

L(Fn,f , Ff )→ 0 a.s. n→∞. (30)

Now, we prove the following theorem.
Theorem 12. Suppose that the class F is uniformly bounded. If F ∈ BCLT(P), then

sup
f∈F

L(Fn,f , Ff ) = OP

((
log n

n

)1/4)
n→∞. (31)

Moreover, for some α ∈ (0, 2) and for some D > 0

HdPn,2
(F ;u) ≤ Du−α log n, u > 0, a.s., (32)

then

sup
f∈F

L(Fn,f , Ff ) = O
(
n−

1
2+α log n

)
n→∞, a.s., (33)

Proof. Appendix H.

1.4 Bounding the generalization error of convex combinations of classifiers

We start with an application of the inequalities in Subsection 1.1 to bounding the generalization error
in general classification problems. Assume that the labels take values in a finite set Y with |Y| = K.
Consider a class F̃ of functions from S × Y into R. A function f ∈ F̃ predicts a label y ∈ Y for an
example x ∈ S iff

f(x, y) > max
y′ 6=y

f(x, y′). (34)

In practice, f(x, y) can be set equal to P (y|x), so F can be assumed to be uniformly bounded. The
margin of a labelled example (x, y) is defined as

mf,y(x) := f(x, y)−max
y′ 6=y

f(x, y′), (35)

so f mis-classifies the label example (x, y) if and only if mf,y ≤ 0. Let

F :=
{
f(·, y) : y ∈ Y, f ∈ F̃

}
. (36)

Then, we can show the following theorem.
Theorem 13. For all t > 0, it holds that

P
(
∃f ∈ F : P{mf,y ≤ 0} > inf

δ∈(0,1]

[
Pn{mf,y ≤ δ}+

8

δ
(2K − 1)Rn(F)

+
(
t+
√

log log2 2δ−1
)√τmin

n
+Bn

])
≤ π2

3
exp(−2t2), (37)
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where Bn is defined in (5). Here,

P{mf,y ≤ 0} :=
∑
x∈S

π(x)1{mf,y(x) ≤ 0}, (38)

and

Pn{mf,y ≤ δ} =
1

n

n∑
k=1

1{mf,y(Xk) ≤ δ} (39)

is the empirical distribution of the Markov process {mf,y(Xn)}∞n=1 given f .

Proof. First, we need to bound the Rademacher’s complexity for the class of functions
{
mf,y : f ∈

F̃
}

. Observe that

E
[

sup
f∈F̃

∣∣∣∣n−1
n∑
j=1

εjmf,y(Xj)

∣∣∣∣]. (40)

By [2, Proof of Theorem 11], we have

E
[

sup
f∈F̃

∣∣∣∣n−1
n∑
j=1

εjmf,y(Xj)

∣∣∣∣] ≤ (2K − 1)Rn(F), (41)

where Rn(F) is the Rademacher complexity function of the class F . Now, assume that this class
of function is uniformly bounded as in practice. Hence, by Theorem 3 for ϕ that is equal to 1 on
(−∞, 0], is equal to 0 on [1,+∞) and is linear in between, we obtain (37).

In addition, by using the fact that (X1, Y1)− (X2, Y2) · · · − (Xn, Yn) forms a Markov chain with
stationary distribution π̃ (see the discussion on Section 2.2 in the main document), by applying
Theorem 3, we obtain the following result:

Theorem 14. Let ϕ is a nonincreasing function such that ϕ(x) ≥ 1(−∞,0](x) for all x ∈ R. For any
t > 0,

P
(
∃f ∈ F̃ : P{f̃ ≤ 0} > inf

δ∈(0,1]

[
Pnϕ

(
f̃

δ

)
+

8L(ϕ)

δ
Rn(H)

+
(
t+
√

log log2 2δ−1
)√τmin

n
+Bn

])
≤ π2

3
exp(−2t2), (42)

where Bn is defined in (5).

As in [2], in the voting methods of combining classifiers, a classifier produced at each iteration is
a convex combination f̃ of simple base classifiers from the class H. In addition, the Rademacher
complexity can be bounded above by

Rn(H) ≤ C
√
V (H)

n
(43)

for some constant C > 0, where V (H) is the VC-dimesion ofH. Let ϕ be equal to 1 on (−∞, 0], is

equal to 0 on [1,+∞) and is linear in between. By setting tα =
√

1
2 log π2

3α , from Theorem 14, with
probability at least 1− α, it holds that

P{f̃ ≤ 0} ≤ inf
δ∈(0,1]

[
Pn{f̃ ≤ δ}+

8C

δ

√
V (H)

n
+
(
tα +

√
log log2 2δ−1

)√τmin

n
+Bn

]
, (44)

which extends the result of Bartlett et al. [4] to Markov dataset (PAC-bound).
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1.5 Bounding the generalization error in neural network learning

In this section, we consider the same example as [2, Section 6]. However, we assume that feature
vectors in this dataset is generated by a Markov chain instead of an i.i.d. process. LetH be a class of
measurable functions from S → R (base functions). Let H̃ be the set of function f̃ : S × Y → R.
The introduction of H̃ is to deal with the new Markov chain {(Xn, Yn)}∞n=1 which is generated by
both feature vectors and their labels instead of the feature-based Markov chain {Xn}∞n=1.

Consider a feed-forward neural network where the set V of all the neurons is divided into layers

V = {vi} ∪
l⋃

j=0

Vj (45)

where Vl = {vo}. The neurons vi and vo are called the input and the output neurons, respectively. To
define the network, we will assign the labels to the neurons in the following way. Each of the base
neurons is labelled by a function from the base class H. Each neuron of the j-th layer Vj , where
j ≥ 1, is labelled by a vector w := (w1, w2, · · · , wm) ∈ Rm, where m is the number of inputs of
the neuron, i.e. m = |H|+ 1. Here, w will be called the vector of weights of the neuron.

Given a Borel function σ from R into [−1, 1] (for example, sigmoid function) and a vector w :=
(w1, w2, · · · , wm) ∈ Rm, let

Nσ,w : Rm → R, Nσ,w(u1, u2, · · · , um) := σ

( m∑
j=1

wjuj

)
. (46)

For w ∈ Rm,

‖w‖1 :=

m∑
i=1

|wi|. (47)

Let σj : j ≥ 1 be functions from R into [−1, 1], satisfying the Lipschitz conditions∣∣σj(u)− σj(v)
∣∣ ≤ Lj |u− v|, u, v ∈ R. (48)

The network works the following way. The input neuron inputs an instance x ∈ S. A base neuron
computes the value of the base function on this instance and outputs the value through its output
edges. A neuron in the j-th layer (j ≥ 1) computes and outputs through its output edges the value
Nσj ,w(u1, u2, · · · , um) (where u1, u2, · · · , um are the values of the inputs of the neuron). The
network outputs the value f(x) (of a function f it computes) through the output edge.

We denote byNl the set of such networks. We callNl the class of feed-forward neural networks with
baseH and l layers of neurons (and with sigmoid σj). Let N∞ :=

⋃∞
j=1Nj . DefineH0 := H, and

then recursively

Hj :=

{
Nσj ,w(h1, h2, · · · , hm) : m ≥ 0, hi ∈ Hj−1, w ∈ Rm

}
∪Hj−1. (49)

DenoteH∞ :=
⋃∞
j=1Hj . Clearly,H∞ includes all the functions computable by feed-forward neural

networks with baseH.

Let {bj} be a sequence of positive numbers. We also define recursively classes of functions com-
putable by feed-forward neural networks with restrictions on the weights of neurons:

Hj(b1, b2, · · · , bj) (50)

:=

{
Nσj ,w(h1, h2, · · · , hm) : n ≥ 0, hi ∈ Hj−1(b1, b2, · · · , bj−1), w ∈ Rm, ‖w‖1 ≤ bj

}
⋃
Hj−1(b1, b2, · · · , bj−1). (51)

Clearly,

H∞ =
⋃{

Hj(b1, b2, · · · , bj) : b1, b2, · · · , bj < +∞
}
. (52)

As in the previous section, let ϕ be a function such that ϕ(x) ≥ I(−∞,0] for all x ∈ R and ϕ satisfies
the Lipschitz condition with constant L(ϕ). Then, the following is a direct application of Theorem 3.

7



Theorem 15. For any t ≥ 0 and for all l ≥ 1,

P
(
∃f ∈ H(b1, b2, · · · , bl) : P{f̃ ≤ 0}

> inf
δ∈(0,1]

[
Pnϕ

(
f̃

δ

)
+

2
√

2πL(ϕ)

δ

l∏
j=1

(2Ljbj + 1)Gn(H)

+
2√
n

+
(
t+
√

log log2 2δ−1
)√τmin

n
+Bn

])
≤ π2

3
exp

(
− 2t2

)
, (53)

where Bn is defined in (5).

Proof. Let

H′l := H(b1, b2, · · · , bl). (54)

As the proof of [2, Theorem 13], it holds that

Gn(H′l) := E
∥∥∥∥n−1

n∑
i=1

giδXi

∥∥∥∥
H′l

≤
l∏

j=1

(2Ljbj + 1)Gn(H). (55)

Hence, (53) is a direct application of Theorem 3 and (55).

Now, given a neural network f ∈ N∞, let

l(f) := min{j ≥ 1 : f ∈ Nj}. (56)

For a number k, 1 ≤ k ≤ l(f), let Vk(f) denote the set of all neurons of layer k in the graph
representing f . Denote

Wk(f) := max
u∈Vk(f)

‖w(u)‖1 ∨ bk, k = 1, 2, · · · , l(f) (57)

where w(u) is the coefficient vector associated with the neuron u of the layer k, and let

Λ(f) :=

l(f)∏
k=1

(4LkWk(f) + 1), (58)

Γα(f) :=

l(f)∑
k=1

√
α

2
log(2 + log2Wk(f)), (59)

where α > 0 is the number such that ζ(α) < 3/2, ζ being the Riemann zeta-function:

ζ(α) :=

∞∑
k=1

k−α. (60)

Then, by using the same arguments as [2, Proof of Theorem 14], we obtain the following result.

Theorem 16. For any t ≥ 0 and for all l ≥ 1,

P
(
∃f ∈ H∞ : P{f̃ ≤ 0} > inf

δ∈(0,1]

[
Pnϕ

(
f̃

δ

)
+

2
√

2πL(ϕ)

δ
Λ(f)Gn(H)

+
2√
n

+
(
t+ Γα(f) +

√
log log2 2δ−1

)√τmin

n
+Bn

])
≤ π2

3

(
3− 2ζ(α)

)−1
exp

(
− 2t2

)
, (61)

where Bn is defined in (5).
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Proof. Let

∆k :=

{
[2k−1, 2k) for k ∈ Z, k 6= 0, 1

[1/2, 2) fork = 1.
(62)

Then, using the following partition:

{f ∈ H∞} =

∞⋃
l=0

⋃
k1∈Z\{0}

⋃
k2∈Z\{0}

· · ·
⋃

kl∈Z\{0}

{
f ∈ H∞ : l(f) = l,Wj(f) ∈ ∆kj , ∀j ∈ [l]

}
.

(63)

On each subset
{
f ∈ H∞ : l(f) = l,Wj(f) ∈ ∆kj , ∀j ∈ [l]

}
, we can lower bound Λ(f) and

Γα(f) by

Λ(f) ≥
l∏

j=1

(2Lj2
kj + 1), (64)

Γα(f) ≥
l∑

j=1

√
α

2
log(|kj |+ 1). (65)

By replacing t by t+
∑l
j=1

√
α
2 log(kj + 1) and using Theorem 3 to bound the probability of each

event and then using the union bound, we can show that

P
(
∃f ∈ H∞ : P{f̃ ≤ 0} > inf

δ∈(0,1]

[
Pnϕ

(
f̃

δ

)
+

2
√

2πL(ϕ)

δ
Λ(f)Gn(H)

+
2√
n

+
(
t+ Γα(f) +

√
log log2 2δ−1

)√τmin

n
+Bn

])
(66)

≤ P
(
∃f ∈ H∞ : P{f̃ ≤ 0}

> inf
δ∈(0,1]

[
Pnϕ

(
f̃

δ

)
+

2
√

2πL(ϕ)

δ
Λ(f)Gn(H)

+

(
t+

l∑
j=1

√
α

2
log(kj + 1) +

√
log log2 2δ−1

)√
τmin

n
+

2√
n

+Bn

])
(67)

≤
∞∑
l=0

∑
k1∈Z\{0}

· · ·
∑

kl∈Z\{0}

2 exp

(
− 2

(
t+

l∑
j=1

√
α

2
log(kj + 1)

)2)
(68)

≤ π2

3

(
3− 2ζ(α)

)−1
exp

(
− 2t2

)
, (69)

where the last equation is followed by using some algebraic manipulations.

2 Extension to High-Order Markov Chains

In this section, we extend our results in previous sections to m-order Markov chains and a mixture of
m independent Markov services.

2.1 Extend to m-order Markov chain

In this subsection, we extend our results in previous sections to m-order homogeneous Markov chain.
The main idea is to convert m-order homogeneous Markov chains to 1-order homogeneous Markov
chain and use our results in previous sections to bound the generalization error.

We start with the following simple example.
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Example 17. [m-order moving average process without noise] Consider the following m-order
Markov chain

Xk =

m∑
i=1

aiXk−i, k ∈ Z+. (70)

Let Yk := [Xk+m−1, Xk+m−2, · · · , Xk]T . Then, from (70), we obtain

Yk+1 = GYk, ∀k ∈ Z+ (71)

where

G :=


a1 a2 · · · am−1 am
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 . (72)

It is clear that {Yn}∞n=1 is an order-1 Markov chain. Hence, instead of directly working with the
m-order Markov chain {Xn}∞n=1, we can find an upper bound for the Markov chain {Yn}∞n=1.

To derive generalization error bounds for the Markov chain {Yn}∞n=1, we can use the following argu-
ments. For all f ∈ F and (xk, xk+1, · · · , xk+m−1) ∈ Sm, by setting f̃(xk, xk+1, · · · , xk+m−1) =

f(xk) where f̃ : Sm → R, we obtain

1

n

n∑
i=1

1{f(Xi) ≤ 0} =
1

n

n∑
i=1

1{f̃(Yi) ≤ 0}. (73)

Hence, by applying all the results for 1-order Markov chain {Yn}∞n=1, we obtain corresponding
upper bounds for the sequence of m-order Markov chain {Xn}∞n=1.

This approach can be extended to more general m-order Markov chain Xk =
g(Xk−1, Xk−2 · · · , Xk−m) where g : Sm → R. More specifically, for any tuple
(x1, x2, · · · , xm) ∈ Sm, observe that

dg =
∂g

∂x1
dx1 +

∂g

∂x2
dx2 + · · ·+ ∂g

∂xm
dxm. (74)

Hence, if ∂g
∂xi

= αi for some constant αi and for each i ∈ [m], from (74), we have

g(x1, x2, · · · , xm) = g(c1, c2, · · · , cm) +
m∑
i=1

aixi +
m∑
i=1

aiνi, (75)

where νi’s are constants. One specific example where the function g : Sm → R satisfies this property
is g(x1, x2, · · · , xm) = a1x1 +a2x2 + · · · amxm, where a1, a2, · · · , am are constants as in Example
17.

Now, by choosing u = (g(c1, c2, · · · , cm) +
∑m
i=1 αiνi

)
/(1−

∑m
i=1 aiνi), from (75), we have

g(x1, x2, · · · , xm) + u =

m∑
i=1

ai
(
xi + u

)
. (76)

By setting Yk = [Xk+m−1 + u Xk+m−2 + u · · · Xk + u]
T , from (76), we have:

Yk+1 =


a1 a2 · · · am−1 am
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 []Yk. (77)
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In a more general setting, if Xk = g(Xk−1, · · · , Xk−m, Vk) for some random variable Vk which is
independent of {Xk−i}mi=1 such as the Autoregressive model (AR), where

Xk = c+

m∑
i=1

aiXt−i + Vk, (78)

we can use the following conversion procedure. First, by using Taylor’s approximation (to the
first-order), we obtain

g(x1, x2, · · · , xm, ξ) ≈ g(c1, c2, · · · , cm, ξ0) +

m∑
i=1

∂g

∂xi

∣∣∣∣
(c1,c2,··· ,cm,ζ0)

(xi − ci)

+
∂g

∂v

∣∣∣∣
(c1,c2,··· ,cm,ξ0)

(ξ − ξ0) (79)

for some good choice of (c1, c2, · · · , cm, ξ0) ∈ Sm × V , where V is the alphabet of Vk. Using the
above trick with Yk = [Xk+m−1 + u Xk+m−2 + u · · · Xk + u]

T , ai = ∂g
∂xi

∣∣
(c1,c2,··· ,cm,ξ0)

,
we can replace the recursion Xk = g(Xk−1, · · · , Xk−m, Vk) by the following equivalent recursion:

Yk+1 =


a1 a2 · · · am−1 am
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

Yk +


∂g
∂v

∣∣
(c1,c2,··· ,cm,ξ0)

Vk
0
0
...
0

 . (80)

Since Vk is independent of {Xk+m−i}m+1
i=2 or Yk, (80) models a new 1-order Markov chain {Yk}∞k=1.

Then, by using the the same arguments to obtain (73), we can derive bounds on generalization error
for this model.

For a general m-order homogeneous Markov chain, it holds that

PXk|Xk−1=x1,Xk−2=x2,··· ,Xk−m=xm ∼ T(x1,x2,··· ,xm) (81)

for all (x1, x2, · · · , xm) ∈ Sm, where T(x1,x2,··· ,xm) is a random variable which depends only on
x1, x2, · · · , xm and does not depend on k. Hence, we can represent the

Xk = g̃(Xk−1, Xk−2, · · · , Xk−m, T(Xk−1,Xk−2,··· ,Xk−m)), (82)

where T(Xk−1,Xk−2,··· ,Xk−m) = f(εk, Vk, Vk−1, · · · , Vk−q, Xk−1, Xk−2, · · · , Xk−m). Here, εk
represents new noise at time k which is independent of the past. Hence, in a general m-order
homogeneous Markov chain, we can represent the m-order homogeneous Markov chain by the
following recursion:

Xk = g(Xk−1, Xk−2, · · · , Xk−m, εk, Vk, Vk−1, · · · , Vk−q
)
, (83)

where εk represents new noise at time k and q ∈ Z+. By using Taylor expansion to the first
order, we can approximate the Markov chain in (83) by an Autoregressive Moving-Average Model
(ARMA(m, q)) model as following:

Xk = c+ εk +

m∑
i=1

aiXk−i +

q∑
i=1

θiεk−i, (84)

where c and ai’s are constants, and {εk}∞k=1 are i. i. d. Gaussian random variablesN (0, σ2). For this
model, let

Vk :=

k∑
i=1

εi (85)
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and

Yk :=



Xk+m−1 + u
Xk+m−2 + u

...
Xk + u
Vk+m−1

Vk+m−2

...
Vk+m−q
Vk+m−q−1


, (86)

where

u :=
c

1−
∑m
i=1 ai

. (87)

Let Vk :=
∑k
i=1 εi for all k ≥ 1. Observe that

Vk+m = εk+m + Vk+m−1. (88)

On the other hand, we have

Xk+m = c+ εk+m +

m∑
i=1

aiXk+m−i +

q∑
i=1

θiεk+m−i (89)

= c+ εk+m +

m∑
i=1

aiXk+m−i +

q∑
i=1

θi
(
Vk+m−i − Vk+m−1−i

)
(90)

= c+ εk+m +

m∑
i=1

aiXk+m−i + θ1Vk+m−1 +

q−1∑
i=1

(
θi+1 − θi

)
Vk+m−1−i − θqVk+m−q−1.

(91)

Then, we have

Yk+1 = GYk +



εk+m

0
...
0

εk+m

0
...
0


, (92)

where

G :=

(
G11 G12

G21 G22

)
. (93)

Here,

G11 :=


a1 a2 · · · am−1 am
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


m×q+1

, (94)

G12 :=


θ1 θ2 − θ1 · · · θq − θq−1 −θq
0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


m×q+1

, (95)
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G21 :=


0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


q+1×m

, (96)

and

G22 :=


1 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


q+1×q+1

. (97)

Since εk+m is independent of Yk, (92) models a 1-order Markov chain. Hence, we can use the above
arguments to derive new generalization error bounds for the m-order homogeneous Markov chain
where ARMA model is a special case.

2.2 Mixture of m Services

In this section, we consider the case that Yk =
∑m
l=1 αlX

(l)
k for all k = 1, 2, · · · , where {X(l)

k }∞k=1
are independent Markov chains on S with stationary distribution for all l ∈ [m]. This setting usually
happens in practice, for example, video is a mixture of voice, image, and text, where each service can
be modelled as a high-order Markov chain and the order of the Markov chain depends on the type of
service.

Let

Zk :=


α1X

(1)
k + α2X

(2)
k + · · ·αmX(m)

k

α2X
(2)
k + · · ·αmX(m)

k
...

αmX
(m)
k

 =


Yk

α2X
(2)
k + · · ·αmX(m)

k
...

αmX
(m)
k

 . (98)

Then, it holds that

Zk = GXk (99)

where

G :=


α1 α2 · · · αm−1 αm
0 α2 · · · αm−1 αm
...

...
...

...
...

0 0 · · · 0 αm

 , (100)

and

Xk :=


X

(1)
k

X
(2)
k
...

X
(m)
k

 . (101)

It is obvious that G is non-singular since det(G) =
∏m
l=1 αl 6= 0. Therefore, for fixed pair

(x, y) ∈ Sm × Sm, we have

P
(
Zk+1 = y

∣∣Zk = x
)

= P(Xk+1 = G−1y
∣∣Xk = G−1x). (102)
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Now, assume that G−1x =
(
β

(1)
x , β

(2)
x , · · ·β(m)

x )
)

and G−1y =
(
β

(1)
y , β

(2)
y , · · ·β(m)

y )
)

. Then,
from (101) and (102), we have

P
(
Zk+1 = y

∣∣Zk = x
)

= P
( m⋂
l=1

{
X

(l)
k+1 = β(l)

y

}∣∣∣∣ m⋂
l=1

{
X

(l)
k = β(l)

x

})
(103)

=

m∏
l=1

P
(
X

(l)
k+1 = β(l)

y

∣∣X(l)
k = β(l)

x

)
(104)

=

m∏
l=1

Ql(β
(l)
x , β(l)

y ), (105)

where Ql is the transition probability of the Markov chain l. It follows that {Zk}∞k=1 is a 1-order
Markov chain. It is easy to see that {Zk}∞k=1 has stationary distribution if all the Markov chains
{X(l)

k }ml=1 have stationary distributions.

Now, as Subsection 2.1, to derive generalization error bounds for the Markov chain {Xn}∞n=1, we
can use the following arguments. For all f ∈ F and by setting f̃(z1, z2, · · · , zm) := f(z1) where
f̃ : Sm → R, we obtain f̃(GXk) = f(Yk) and

1

n

n∑
i=1

1{f(Yi) ≤ 0} =
1

n

n∑
i=1

1{f̃(GXi) ≤ 0}. (106)

Hence, by applying all the results for 1-order Markov chain {Zn}∞n=1 where Zn = GXn, we obtain
corresponding upper bounds for the sequence of m-order Markov chain {Xn}∞n=1.

A Proof of Lemma 1

Before going to prove Lemma 1, we observe the following interesting fact.

Lemma 18. Let {Xn}∞n=1 be an arbitrary process on a Polish space S, and let {Yn}∞n=1 be a
independent copy (replica) of {Xn}∞n=1. Denote by X = (X1, X2, · · · , Xn),Y = (Y1, Y2, · · · , Yn),
and F a class of uniformly bounded functions from S → R. Let ε := (ε1, ε2, · · · , εn) be a vector of
i.i.d. Rademacher’s random variables. Then, the following holds:

Eε
[
EX,Y

[
sup
f∈F

∣∣∣∣ n∑
i=1

εi(f(Xi)− f(Yi))

∣∣∣∣]] = EX,Y

[
sup
f∈F

∣∣∣∣ n∑
i=1

(f(Xi)− f(Yi))

∣∣∣∣]. (107)

Remark 19. Our lemma generalizes a similar fact for i.i.d. processes. In the case that {Xn}∞n=1
is an i.i.d. random process, (107) holds with equality since PXn,Y n(x1, x2, · · · , xn, y1, y2, · · · , yn)
is invariant under permutation. However, for the Markov case, this fact does not hold in general.
Hence, in the following, we provide a new proof for (107), which works for any process {Xn}∞n=1 by
making use of the properties of Rademacher’s process.

Proof. Let g(x, y) := f(x) − f(y) and G := {g : S × S → R : g(x, y) := f(x) −
f(y) for some f ∈ F}. Then, it holds that

Eε
[
EX,Y

[
sup
f∈F

∣∣∣∣ n∑
i=1

εi(f(Xi)− f(Yi))

∣∣∣∣]] = Eε
[
EX,Y

[
sup
g∈G

∣∣∣∣ n∑
i=1

εig(Xi, Yi)

∣∣∣∣]]. (108)

Observe that g(Xi, Yi) = −g(Yi, Xi) for all i ∈ [n].

For all j ∈ [n], denote by

Nj := [n] \ {j}, (109)

and

εNj := {εi : i ∈ Nj}. (110)
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Now, for each j ∈ [n], observe that εj is independent of Xn
1 , Y

n
1 , εNj . Hence, we have

Eεn1 ,Xn1 ,Y n1

[
sup
g∈G

∣∣∣∣ n∑
i=1

εig(Xi, Yi)

∣∣∣∣]
=

1

2
EεNj ,Xn1 ,Y n1

[
sup
g∈G

∣∣∣∣ ∑
i∈Nj

εig(Xi, Yi) + g(Xj , Yj)

∣∣∣∣]

+
1

2
EεNj ,Xn1 ,Y n1

[
sup
g∈G

∣∣∣∣ ∑
i∈Nj

εig(Xi, Yi)− g(Xj , Yj)

∣∣∣∣] (111)

=
1

2
EεNj ,Xn1 ,Y n1

[
sup
g∈G

∣∣∣∣ ∑
i∈Nj

εig(Xi, Yi) + g(Xj , Yj)

∣∣∣∣]

+
1

2
EεNj ,Xn1 ,Y n1

[
sup
g∈G

∣∣∣∣ ∑
i∈Nj

εig(Xi, Yi) + g(Yj , Xj)

∣∣∣∣] (112)

where (112) follows from g(Xj , Yj) = −g(Yj , Xj).

Now, by setting ε̃i := −εi for all i ∈ n. Then, we obtain

EεNj ,Xn1 ,Y n1

[
sup
g∈G

∣∣∣∣ ∑
i∈Nj

εig(Xi, Yi) + g(Yj , Xj)

∣∣∣∣]

= Eε̃Nj ,Xn1 ,Y n1

[
sup
g∈G

∣∣∣∣ ∑
i∈Nj

ε̃ig(Xi, Yi) + g(Yj , Xj)

∣∣∣∣] (113)

= EεNj ,Xn1 ,Y n1

[
sup
g∈G

∣∣∣∣ ∑
i∈Nj

εig(Yi, Xi) + g(Yj , Xj)

∣∣∣∣] (114)

= EεNj ,Xn1 ,Y n1

[
sup
g∈G

∣∣∣∣ ∑
i∈Nj

εig(Xi, Yi) + g(Xj , Yj)

∣∣∣∣], (115)

where (113) follows from (ε̃i : i ∈ Nj) has the same distribution as (εi : i ∈ Nj), (114) follows
from g(Xi, Yi) = −g(Yi, Xi) and ε̃i = −εi, and (115) follows from g(Xi, Yi) = −g(Yi, Xi) for all
i ∈ [n].

From (112) and (115), we have

Eεn1 ,Xn1 ,Y n1

[
sup
g∈G

∣∣∣∣ n∑
i=1

εig(Xi, Yi)

∣∣∣∣] = EεNj ,Xn1 ,Y n1

[
sup
g∈G

∣∣∣∣ ∑
i∈Nj

εig(Xi, Yi) + g(Xj , Yj)

∣∣∣∣] ∀j ∈ [n].

(116)

It follows that

Eεn1 ,Xn1 ,Y n1

[
sup
g∈G

∣∣∣∣ n∑
i=1

εig(Xi, Yi)

∣∣∣∣]

= Eεn−1
1 ,Xn1 ,Y

n
1

[
sup
g∈G

∣∣∣∣ n−1∑
i=1

εig(Xi, Yi) + g(Xn, Yn)

∣∣∣∣] (117)

=
1

2
Eεn−2

1 ,Xn1 ,Y
n
1

[
sup
g∈G

∣∣∣∣ n−2∑
i=1

εig(Xi, Yi) + g(Xn−1, Yn−1) + g(Xn, Yn)

∣∣∣∣]

+
1

2
Eεn−2

1 ,Xn1 ,Y
n
1

[
sup
g∈G

∣∣∣∣ n−2∑
i=1

εig(Xi, Yi)− g(Xn−1, Yn−1) + g(Xn, Yn)

∣∣∣∣] (118)

=
1

2
Eεn−2

1 ,Xn1 ,Y
n
1

[
sup
g∈G

∣∣∣∣ n−2∑
i=1

εig(Xi, Yi) + g(Xn−1, Yn−1) + g(Xn, Yn)

∣∣∣∣]
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+
1

2
Eεn−2

1 ,Xn1 ,Y
n
1

[
sup
g∈G

∣∣∣∣ n−2∑
i=1

εig(Xi, Yi) + g(Yn−1, Xn−1) + g(Xn, Yn)

∣∣∣∣], (119)

where (117) follows from setting j = n in (116), and (119) follows from g(Yn−1, Xn−1) =
−g(Xn−1, Yn−1).

Now, for any fixed tuple (xn−1
1 , yn−1

1 , εn−1
1 ) ∈ Sn−1 × Sn−1 × {−1, 1}n−1, observe that

PXn,Yn|Xn−1
1 ,Y n−1

1 ,εn−2
1

(xn, yn|xn−1
1 , yn−1

1 , εn−2
1 )

= PXn|Xn−1
1

(xn|xn−1
1 )PYn|Y n−1

1
(yn|yn−1

1 ) (120)

= PYn|Y n−1
1

(xn|xn−1
1 )PXn|Xn−1

1
(yn|yn−1

1 ) (121)

= PYn,Xn|Y n−1
1 ,Xn−1

1 ,εn−2
1

(xn, yn|xn−1
1 , yn−1

1 , εn−2
1 ). (122)

On the other hand, we also have

PXn−1
1 ,Y n−1

1 ,εn−2
1

(xn−1
1 , yn−1

1 , εn−2
1 )

= Pεn−2
1

(εn−2
1 )PXn−1

1
(xn−1

1 )PY n−1
1

(yn−1
1 ) (123)

= Pεn−2
1

(εn−2
1 )PY n−1

1
(xn−1

1 )PXn−1
1

(yn−1
1 ) (124)

= PY n−1
1 ,Xn−1

1 ,εn−2
1

(xn−1
1 , yn−1

1 , εn−2
1 ). (125)

Hence, from (122) and (125), we obtain

PXn1 ,Y n1 ,ε
n−2
1

(
xn1 , y

n
1 , ε

n−2
1

)
= PXn−1

1 Y n−1
1 εn−2

1
(xn−1

1 , yn−1
1 , εn−2

1 )PXnYn|Xn−1
1 Y n−1

1 εn−2
1

(
xn, yn|xn−1

1 , yn−1
1 , εn−2

1

)
(126)

= PY n−1
1 ,Xn−1

1 ,εn−2
1

(xn−1
1 , yn−1

1 , εn−2
1 )PYn,Xn|Y n−1

1 ,Xn−1
1 ,εn−2

1

(
xn, yn|xn−1

1 , yn−1
1 , εn−2

1

)
(127)

= PY n1 ,Xn1 ,ε
n−2
1

(
xn1 , y

n
1 , ε

n−2
1

)
. (128)

Now, from (128), we also have

PXn1 ,Y n1 (xn1 , y
n
1 ) = PY n1 Xn1 (xn1 , y

n
1 ). (129)

It follows from (129) that

PXn−1,Yn−1
(xn−1, yn−1) =

∑
xn−2
1 ,yn−2

1 ,xn,yn

PXn1 ,Y n1 (xn1 , y
n
1 ) (130)

=
∑

xn−2
1 ,yn−2

1 ,xn,yn

PY n1 Xn1 (xn1 , y
n
1 ) (131)

= PYn−1Xn−1
(xn−1, yn−1). (132)

Hence, from (128) and (132), we have

PXn,Yn,Xn−2
1 ,Y n−2

1 ,εn−2
1 |Xn−1,Yn−1

(
xn, yn, x

n−2
1 , yn−2

1 , εn−2
1 |xn−1, yn−1

)
(133)

=
PXn1 ,Y n1 ,ε

n−2
1

(xn1 , y
n
1 , ε

n−2
1 )

PXn−1Yn−1(xn−1, yn−1)
(134)

=
PY n1 ,Xn1 ,ε

n−2
1

(
xn1 , y

n
1 , ε

n−2
1

)
PYn−1Xn−1

(xn−1, yn−1)
(135)

= PXn,Yn,Xn−2
1 ,Y n−2

1 ,εn−2
1 |Xn−1,Yn−1

(
yn, xn, y

n−2
1 , xn−2

1 , εn−2
1 |yn−1, xn−1

)
. (136)
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From (136), for each fixed (xn−1, yn−1) ∈ S × S , we have

Eεn−2
1 ,Xn−2

1 ,Y n−2
1 ,Xn,Yn

[
sup
g∈G

∣∣∣∣ n−2∑
i=1

εig(Xi, Yi) + g(Yn−1, Xn−1)

+ g(Xn, Yn)

∣∣∣∣∣∣∣∣Xn−1 = xn−1, Yn−1 = yn−1

]
= Eεn−2

1 ,Xn−2
1 ,Y n−2

1 ,Xn,Yn

[
sup
g∈G

∣∣∣∣ n−2∑
i=1

εig(Xi, Yi) + g(yn−1, xn−1)

+ g(Xn, Yn)

∣∣∣∣∣∣∣∣Xn−1 = xn−1, Yn−1 = yn−1

]
= Eεn−2

1 ,Xn−2
1 ,Y n−2

1 ,Xn,Yn

[
sup
g∈G

∣∣∣∣ n−2∑
i=1

εig(Yi, Xi) + g(yn−1, xn−1)

+ g(Yn, Xn)

∣∣∣∣∣∣∣∣Yn−1 = xn−1, Xn−1 = yn−1

]
(137)

= Eεn−2
1 ,Xn−2

1 ,Y n−2
1 ,Xn,Yn

[
sup
g∈G

∣∣∣∣ n−2∑
i=1

εig(Xi, Yi) + g(xn−1, yn−1)

+ g(Xn, Yn)

∣∣∣∣∣∣∣∣Yn−1 = xn−1, Xn−1 = yn−1

]
(138)

where (137) follows from (136), and (138) follows from the fact that g(x, y) = −g(y, x) for all
x, y ∈ S × S .

From (138) and (132), we obtain

Eεn−2
1 ,Xn1 ,Y

n
1

[
sup
g∈G

∣∣∣∣ n−2∑
i=1

εig(Xi, Yi) + g(Yn−1, Xn−1) + g(Xn, Yn)

∣∣∣∣]

= Eεn−2
1 ,Xn1 ,Y

n
1

[
sup
g∈G

∣∣∣∣ n−2∑
i=1

εig(Xi, Yi) + g(Xn−1, Yn−1) + g(Xn, Yn)

∣∣∣∣]. (139)

From (119) and (139), we obtain

Eεn1 ,Xn1 ,Y n1

[
sup
g∈G

∣∣∣∣ n∑
i=1

εig(Xi, Yi)

∣∣∣∣]

= Eεn−2
1 ,Xn1 ,Y

n
1

[
sup
g∈G

∣∣∣∣ n−2∑
i=1

εig(Xi, Yi) + g(Xn−1, Yn−1) + g(Xn, Yn)

∣∣∣∣]. (140)

By using induction, we finally obtain

Eεn1 ,Xn1 ,Y n1

[
sup
g∈G

∣∣∣∣ n∑
i=1

εig(Xi, Yi)

∣∣∣∣] = EXn1 ,Y n1

[
sup
g∈G

∣∣∣∣ n∑
i=1

g(Xi, Yi)

∣∣∣∣], (141)

or equation (107) holds.

Next, recall the following result which was developed base on the spectral method [6]:
Lemma 20. [7, Theorems 3.41] Let X1, X2, · · · , Xn be a stationary Markov chain on some Polish
space with L2 spectral gap λ defined in Section 2.1 in the main document and the initial distribution
ν ∈M2. Let f ∈ F and define

Sn,n0(f) =
1

n

n∑
j=1

f(Xj+n0) (142)

for all n0 ≥ 0. Then, it holds that

E
[∣∣∣∣Sn,n0(f)− Eπ[f(X)]

∣∣∣∣2] ≤ 2M

n(1− λ)
+

64M2

n2(1− λ)2
λn0

∥∥∥∥ dvdπ − 1

∥∥∥∥
2

. (143)
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In addition, we recall the following McDiarmid’s inequality for Markov chain:
Lemma 21. [10, Cor. 2.10] Let X := (X1, X2, · · · , Xn) be a homogeneous Markov chain, taking
values in a Polish state space Λ = S × S × · · · × S︸ ︷︷ ︸

n times

, with mixing time tmix(ε) (for 0 ≤ ε ≤ 1).

Recall the definition of τmin in Eq. (3) in the main document. Suppose that f : Λ→ R satisfies

f(x)− f(y) ≤
n∑
i=1

ci1{xi 6= yi} (144)

for every x,y ∈ Λ, for some c ∈ Rn+. Then, for any t ≥ 0,

PX

[∣∣f(X)− E[f(X)]
∣∣ ≥ t] ≤ 2 exp

(
− 2t2

‖c‖22τmin

)
. (145)

Now, we return to the proof of Lemma 1.

Proof of Lemma 1. For each f ∈ F , observe that

1

n

n∑
i=1

f(Xi)−
∫
S
π(x)f(x)dx

=
1

n

n∑
i=1

f(Xi)− E[f(Xi)] +
1

n

n∑
i=1

E[f(Xi)]−
∫
S
π(x)f(x)dx. (146)

On the other hand, we have∣∣∣∣ 1n
n∑
i=1

E[f(Xi)]−
∫
S
π(x)f(x)dx

∣∣∣∣
= E

[∣∣∣∣Sn,0(f)− Eπ[f(X)]

∣∣∣∣] (147)

≤

√
E
[∣∣∣∣Sn,0(f)− Eπ[f(X)]

∣∣∣∣2] (148)

≤

√
2M

n(1− λ)
+

64M2

n2(1− λ)2

∥∥∥∥ dvdπ − 1

∥∥∥∥
2

(149)

= An, (150)

where (150) follows from Lemma 20 with n0 = 0.

By using |a+ b| ≤ |a|+ |b, from (146) and (150), we obtain

E
[∥∥Pn − P∥∥F]
≤ E

[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(Xi)]

∣∣∣∣]+An. (151)

On the other hand, let Y1, Y2, · · · , Yn is a replica of X1, X2, · · · , Xn. It holds that

E
[

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(Xi)]

∣∣∣∣]

= EX

[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f(Yi)]

∣∣∣∣] (152)

= EX

[
sup
f∈F

∣∣∣∣EY

[
1

n

n∑
i=1

f(Xi)− f(Yi)

]∣∣∣∣] (153)

≤ EX

[
EY

[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Xi)− f(Yi)

∣∣∣∣]]. (154)
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Now, by Lemma 18 and the triangle inequality for infinity norm, we have

E
[

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Xi)− f(Yi)

∣∣∣∣] = EεEX,Y

[∥∥∥∥ 1

n

n∑
i=1

εi
(
f(Xi)− f(Yi)

)∥∥∥∥
F

]
(155)

≤ EεEX

[∥∥∥∥ 1

n

n∑
i=1

εi
(
f(Xi)

)∥∥∥∥
F

]
+ EεEY

[∥∥∥∥ 1

n

n∑
i=1

εi
(
f(Yi)

)∥∥∥∥
F

]
(156)

= 2E
[
‖P 0

n‖F
]
, (157)

where (157) follows from the fact that Y is a replica of X.

From (151) and (157), we finally obtain

E
[∥∥Pn − P∥∥F] ≤ 2E

[
‖P 0

n‖F
]

+An. (158)

Now, by using the triangle inequality, we have

E[‖P 0
n‖F ] = EX,ε

[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣] (159)

≤ E
[

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εi
(
f(Xi)− EY

[
f(Yi)

])∣∣∣∣+ E
[

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εiEY[f(Yi)]

∣∣∣∣] (160)

= EX,ε

[
sup
f∈F

∣∣∣∣EY

[
1

n

n∑
i=1

εi
(
f(Xi)− f(Yi)

)]∣∣∣∣]+ E
[

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εiEY[f(Yi)]

∣∣∣∣]
(161)

≤ EX,Y,ε

[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εi
(
f(Xi)− f(Yi)

)∣∣∣∣]+ E
[

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εiEY[f(Yi)]

∣∣∣∣] (162)

= EX,Y

[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

(
f(Xi)− f(Yi)

)∣∣∣∣]+ E
[

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εiEY[f(Yi)]

∣∣∣∣], (163)

where (163) follows from Lemma 18.

Now, we have

EX,Y

[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

(
f(Xi)− f(Yi)

)∣∣∣∣]

= EX,Y

[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

(
f(Xi)− Pf

)
−
(
f(Yi)− Pf

))∣∣∣∣] (164)

≤ EX,ε

[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Xi)− Pf
∣∣∣∣]+ EY,ε

[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Yi)− Pf
∣∣∣∣] (165)

= 2EX,ε

[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Xi)− Pf
∣∣∣∣] (166)

= 2E
[
‖Pn − P‖F

]
. (167)

On the other hand, by using the triangle inequality, we also have

E
[

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εiEY[f(Yi)]

∣∣∣∣]

≤ E
[

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εi
(
EY[f(Yi)]− Eπ[f(Y )]

)∣∣∣∣]+ E
[

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εiEπ[f(Y )]

∣∣∣∣]. (168)
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Now, observe that

E
[

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εiEπ[f(Y )]

∣∣∣∣] ≤ ( sup
f∈F

∣∣Eπ[f(Y )]
∣∣)Eε[ n∑

i=1

1

n

n∑
i=1

εi

]
(169)

≤MEε
[ n∑
i=1

1

n

n∑
i=1

εi

]
(170)

≤M

√√√√Eε
[(

1

n

n∑
i=1

εi

)2]
(171)

=
M√
n
. (172)

In addition, for each fixed (ε1, ε2, · · · , εn) ∈ {−1,+1}n and f ∈ F , we have∣∣∣∣ 1n
n∑
i=1

εi
(
EY[f(Yi)]− Eπ[f(Y )]

)∣∣∣∣
≤ 1

n
EY

∣∣∣∣ n∑
i=1

εi
(
f(Yi)− Eπ[f(Y )]

)∣∣∣∣ (173)

=
1

n
EY

[∣∣gε(Y)
∣∣], (174)

where

gε(y) :=

n∑
i=1

εi
(
f(yi)− Eπ[f(Y )]

)
, ∀y ∈ Rn. (175)

Now, for all x,y ∈ bn, we have

gε(x)− gε(y) =

n∑
i=1

εi
(
f(xi)− f(yi)

)
(176)

≤
n∑
i=1

|f(xi)− f(yi)| (177)

≤
n∑
i=1

2M1{xi 6= yi}. (178)

Hence, by Lemma 21, we have

PY

[∣∣gε(Y)
∣∣ ≥M√2τminn log n

]
≤ 2

n
. (179)

It follows that

EY

[∣∣gε(Y)
∣∣] ≤ EY

[∣∣gε(Y)
∣∣∣∣∣∣gε(Y)

∣∣ < M
√

2τminn log n
]

+ 2nMPY

[∣∣gε(Y)
∣∣ ≥M√2τminn log n

]
(180)

≤M
√

2τminn log n+ 2nM

(
2

n

)
(181)

= M
√

2τminn log n+ 4M, (182)

where (180) follows from the total law of expectation and |gε(y)| ≤
∑n
i=1

∣∣f(yi)− Eπ[f(Y )]
∣∣ ≤

2nM for all y ∈ Rn.

From (174) and (182), we have∣∣∣∣ 1n
n∑
i=1

εi
(
EY[f(Yi)]− Eπ[f(Y )]

)∣∣∣∣ ≤ 1

n

(
M
√

2τminn log n+ 4M

)
(183)
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for all f ∈ F , (ε1, ε2, · · · , εn) ∈ {−1,+1}n.

From (183), we obtain

Eε
[

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εi
(
EY[f(Yi)]− Eπ[f(Y )]

)∣∣∣∣] ≤ 1

n

(
M
√

2τminn log n+ 4M

)
. (184)

From (168), (172), and (184), we have

E
[

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εiEY[f(Yi)]

∣∣∣∣]
≤ 1

n

(
M
√

2τminn log n+ 4M

)
+
M√
n
. (185)

From (163), (167), and (185), we obtain

E[‖P 0
n‖F ] ≤ 2E

[
‖Pn − P‖F

]
+

1

n

(
M
√

2τminn log n+ 4M

)
+
M√
n
, (186)

and we finally have

E
[
‖Pn − P‖F

]
≥ 1

2
E[‖P 0

n‖F ]− Ãn. (187)

B Proof of Theorem 2

The proof of Theorem 2 is based on [2]. First, we prove (6). Without loss of generality, we can
assume that each ϕ ∈ Φ takes its values in [0, 1] (otherwise, it can be redefined as ϕ ∧ 1). Then, it is
clear that ϕ(x) = 1 for x ≤ 0. Hence, for each fixed ϕ ∈ Φ and f ∈ F , we obtain

P{f ≤ 0} ≤ Pϕ(f) (188)
≤ Pnϕ(f) + ‖Pn − P‖Gϕ , (189)

where

Gϕ :=
{
ϕ · f : f ∈ F

}
. (190)

Now, let g(x) = supf∈Gϕ
∣∣ 1
n

∑n
i=1 f(xi)− Pf

∣∣. Then, for all x 6= y, we have

∣∣g(x)− g(y)
∣∣ =

∣∣∣∣ sup
f∈Gϕ

∣∣∣∣ 1n
n∑
i=1

f(xi)− Pf
∣∣∣∣− sup

f∈Gϕ

∣∣∣∣ 1n
n∑
i=1

f(yi)− Pf
∣∣∣∣∣∣∣∣ (191)

≤ sup
f∈Gϕ

∣∣∣∣∣∣∣∣ 1n
n∑
i=1

f(xi)− Pf
∣∣∣∣− ∣∣∣∣ 1n

n∑
i=1

f(yi)− Pf
∣∣∣∣∣∣∣∣ (192)

≤ sup
f∈Gϕ

∣∣∣∣( 1

n

n∑
i=1

f(xi)− Pf
)
−
(

1

n

n∑
i=1

f(yi)− Pf
)∣∣∣∣ (193)

≤ sup
f∈Gϕ

∣∣∣∣ 1n
n∑
i=1

f(xi)− f(yi)

∣∣∣∣ (194)

≤ sup
f∈Gϕ

1

n

n∑
i=1

∣∣f(xi)− f(yi)
∣∣ (195)

≤ 1

n

n∑
i=1

1{xi 6= yi}. (196)

Hence, for t > 0, by Lemma 21 with we have

P
{
‖Pn − P‖Gϕ ≥ E

[
‖Pn − P‖Gϕ

]
+ t

√
τmin

n

}
≤ 2 exp

(
− 2t2

)
. (197)
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Hence, with probability at least 1− 2 exp
(
− 2t2

)
for all f ∈ F

P{f ≤ 0} ≤ Pnϕ(f) + E[‖Pn − P‖Gϕ ] + t

√
τmin

n
. (198)

Now, by Lemma 1 with M = 1 (since supf∈Gϕ ‖f‖∞ = 1), it holds that

E
[∥∥Pn − P∥∥Gϕ

]
≤ 2E

[
‖P 0

n

∥∥
Gϕ

]
+An

∣∣
M=1

(199)

= 2E
[∥∥∥∥n−1

n∑
i=1

εiδXi

∥∥∥∥
Gϕ

]
+Bn. (200)

Since (ϕ−1)/L(ϕ) is contractive and ϕ(0)−1 = 0, by using Talagrand’s contraction lemma [3, 11],
we obtain

Eε
∥∥∥∥n−1

n∑
i=1

εiδXi

∥∥∥∥
Gϕ
≤ 2L(ϕ)Eε

∥∥∥∥n−1
n∑
i=1

εiδXi

∥∥∥∥
F

(201)

= 2L(ϕ)Rn(F). (202)

From (197), (198), (200), and (202), with probability 1− 2 exp
(
− 2t2

)
, we have for all f ∈ F ,

P{f ≤ 0} ≤ Pnϕ(f) + 4L(ϕ)Rn(F) + t

√
τmin

n
+Bn. (203)

Now, we use (203) with ϕ = ϕk and t is replaced by t+
√

log k to obtain

P
(
∃f ∈ F : P{f ≤ 0} > inf

k>0

[
Pnϕk(f) + 4L(ϕk)Rn(F) +

(
t+
√

log k
)√τmin

n
+Bn

])
≤ 2

∞∑
k=1

exp
(
− 2
(
t+
√

log k
)2)

(204)

≤ 2

∞∑
k=1

k−2 exp
(
− 2t2

)
(205)

=
π2

3
exp

(
− 2t2

)
, (206)

where (206) follows from

π2

6
=

∞∑
k=1

k−2. (207)

Next, we prove (7). By the equivalence of Rademacher and Gaussian complexity [12], we have

E
∥∥∥∥n−1

n∑
i=1

εiδXi

∥∥∥∥
Gϕ
≤
√
π

2
E
∥∥∥∥n−1

n∑
i=1

giδXi

∥∥∥∥
Gϕ
. (208)

Hence, from (200) and (208), we obtain

E
[∥∥Pn − P∥∥Gϕ

]
≤
√

2πE
∥∥∥∥n−1

n∑
i=1

giδXi

∥∥∥∥
Gϕ

+Bn. (209)

Now, define Gaussian processes

Z1(f, σ) := σn−1/2
n∑
i=1

gi(ϕ ◦ f)(Xi), (210)

and

Z2(f, σ) := L(ϕ)n−1/2
n∑
i=1

gif(Xi) + σg, (211)
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where σ = ±1 and g is standard normal independent of the sequence {gi}. Let Eg be the expectation
on the probability space (Ωg,Σg,Pg) on which the sequence {gi} and g are defined, then by [2, 11],
we have

Eg
[

sup{Z1(f, σ) : f ∈ F , σ = ±1}
]
≤ Eg

[
sup{Z2(f, σ) : f ∈ F , σ = ±1}

]
. (212)

On the other hand, it holds that

Eg
∥∥∥∥n−1/2

n∑
i=1

giδXi

∥∥∥∥
Gϕ

= Eg
[
n−1/2 sup

h∈Ḡϕ

n∑
i=1

gih(Xi)

]
(213)

= Eg
[

sup{Z1(f, σ) : f ∈ F , σ = ±1}
]
, (214)

where Ḡϕ := {ϕ(f),−ϕ(f) : f ∈ F}, and similarly

L(ϕ)Eg
∥∥∥∥n−1/2

n∑
i=1

giδXi

∥∥∥∥
F

+ E|g| ≥ Eg
[

sup{Z2(f, σ) : f ∈ F , σ = ±1}
]
. (215)

From (212), (214), and (215), we have

Eg
∥∥∥∥n−1

n∑
i=1

giδXi

∥∥∥∥
Gϕ
≤ L(ϕ)Eg

∥∥∥∥n−1
n∑
i=1

giδXi

∥∥∥∥
F

+ n−1/2E|g|. (216)

By combining (209) and (216), we obtain

E
[∥∥Pn − P∥∥Gϕ] ≤

√
2π

(
L(ϕ)E

[∥∥∥∥n−1
n∑
i=1

giδXi

∥∥∥∥
F

]
+ n−1/2E|g|

)
+Bn. (217)

Hence, from (198), (209), and (217), we finally obtain (7).

C Proof of Theorem 3

We can assume, without loss of generality, that the range of ϕ is [0, 1] (otherwise, we can replace ϕ
by ϕ ∧ 1). Let δk = 2−k for all k ≥ 0. In addition, set Φ = {ϕk : k ≥ 1}, where

ϕk(x) :=

{
ϕ(x/δk), x ≥ 0,

ϕ(x/δk−1), x < 0
. (218)

Now, for any δ ∈ (0, 1], there exists k such that δ ∈ (δk, δk−1]. Hence, if f(Xi) ≥ 0, it holds that
f(Xi)/δk ≥ f(Xi)/δ, so we have

ϕk(f(Xi)) = ϕ

(
f(Xi)

δk

)
(219)

≤ ϕ
(
f(Xi)

δ

)
, (220)

where (220) follows from the fact that ϕ(·) is non-increasing.

On the other hand, if f(Xi) < 0, then f(Xi)/δk−1 ≥ f(Xi)/δ. Hence, we have

ϕk(f(Xi)) = ϕ

(
f(Xi)

δk−1

)
(221)

≤ ϕ
(
f(Xi)

δ

)
, (222)

where (220) follows from the fact that ϕ(·) is non-increasing.
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From (220) and (222), we have

Pnϕk
(
f
)

=
1

n

n∑
i=1

ϕk(f(Xi)) (223)

≤ 1

n

n∑
i=1

ϕ

(
f(Xi)

δ

)
(224)

= Pnϕ

(
f

δ

)
. (225)

Moreover, we also have

1

δk
≤ 2

δ
, (226)

and

log k = log log2

1

δk
≤ log log2 2δ−1. (227)

Furthermore, observe that

L(ϕk) = sup
x∈R

∣∣∣∣dϕk(x)

dx

∣∣∣∣ (228)

= sup
x∈R

∣∣∣∣dϕ(x/δk)

dx

∣∣∣∣1{x ≥ 0}+

∣∣∣∣dϕ(x/δk−1)

dx

∣∣∣∣1{x < 0} (229)

≤ L(ϕ)

min{δk, δk−1}
(230)

=
L(ϕ)

δk
(231)

≤ 2

δ
L(ϕ). (232)

By combining the above facts and using Theorem 2, we obtain (8) and (9).

D Proof of Theorem 6

Let ε > 0 and δ > 0. Define recursively

r0 := 1, rk+1 = C
√
rkε ∧ 1, γk :=

√
ε

rk
(233)

some sufficiently large constant C > 1 (to be determined later) such that ε < C−4. Denote by

δ0 := δ, (234)
δk := δ(1− γ0 − · · · − γk−1), (235)

δk, 12 :=
1

2

(
δk + δk+1

)
, k ≥ 1. (236)

For k ≥ 0, let ϕk be a continuous function from R into [0, 1] such that ϕk(u) = 1 for u ≤
δk, 12 , ϕk(u) = 0 for u ≥ δk, and linear δk, 12 ≤ u ≤ δk. For k ≥ 1 let ϕ′k be a continuous function
from R into [0, 1] such that ϕ′k(u) = 1 for u ≤ δk, ϕ′k(u) = 0 for u ≥ δk−1, 12

, and linear for
δk ≤ u ≤ δk−1, 12

.

To begin with, we prove the following lemma.
Lemma 22. Define F0 := F , and further recursively

Fk+1 :=

{
f ∈ Fk : P{f ≤ δk, 12 } ≤

rk+1

2

}
. (237)
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For all k ≥ 1, define

Gk :=
{
ϕk ◦ f : f ∈ Fk

}
, k ≥ 0 (238)

and

G′k :=
{
ϕ′k ◦ f : f ∈ Fk

}
, k ≥ 1. (239)

Assume that

E(k) :=

{
‖Pn − P‖Gk−1

≤ E‖Pn − P‖Gk−1
+
(
K2
√
rk−1ε+K3ε

)√
τmin

}
∩
{
‖Pn − P‖G′k ≤ E‖Pn − P‖G′k +

(
K2
√
rkε+K3ε

)√
τmin

}
, k ≥ 1, (240)

and

EN :=

N⋂
k=1

E(k), N ≥ 1. (241)

Then, it holds that

P
[
EcN
]
≤ 4N exp

(
− nε2

2

)
. (242)

Proof. The proof is based on [2, Proof of Theorem 5].

For the case C
√
ε ≥ 1, by a simple induction argument, we have rk = 1. Now, without loss of

generality, we assume that C
√
ε < 1. For this case, we have

rk = C1+2−1+···+2−(k−1)

ε2−1+···+2−(k−1)

(243)

= C2(1−2−k)ε1−2−k (244)

= (C
√
ε)2(1−2−k). (245)

From (245), it is easy to see that rk+1 < rk for any k ≥ 0.

Now, observe that
k∑
i=0

γi = C−1

[
C
√
ε+ (C

√
ε)2−1

+ · · ·+ (C
√
ε)2−k

]
(246)

= C−1

[
(C
√
ε)2−k + ((C

√
ε)2−k)2 + ((C

√
ε)2−k)22

· · ·+ ((C
√
ε)2−k)2k

]
(247)

≤ C−1

[
(C
√
ε)2−k + ((C

√
ε)2−k)2 + ((C

√
ε)2−k)3 · · ·+ ((C

√
ε)2−k)k

]
(248)

≤ C−1
∞∑
i=1

(
(C
√
ε)2−k

)i
(249)

≤ C−1(C
√
ε)2−k

(
1− (C

√
ε)2−k

)−1 ≤ 1

2
, (250)

for ε ≤ C−4, C > 2(2
1
4 − 1)−1 and k ≤ log2 log2 ε

−1, where (248) follows from i+ 1 ≤ 2i for all
i ≥ 1 and C

√
ε < 1. Hence, for small enough ε (note that our choice of ε ≤ C−4 implies C

√
ε < 1),

we have

γ0 + γ1 + · · ·+ γk ≤
1

2
, k ≥ 1. (251)

Therefore, for all k ≥ 1, we get δk ∈ (δ/2, δ). Note also that below our choice of k will be such that
the restriction k ≤ log2 log2 ε

−1 for any fixed ε > 0 will always be fulfilled.

From the definitions of (238) and (239), for k ≥ 1, we have

sup
g∈Gk

Pg2 ≤ sup
f∈Fk

P{f ≤ δk} ≤ sup
f∈Fk

P{f ≤ δk−1, 12
} ≤ rk

2
≤ rk, (252)
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and

sup
g∈G′k

Pg2 ≤ sup
f∈Fk

P{f ≤ δk−1, 12
} ≤ rk

2
≤ rk. (253)

Since r0 = 1, it is easy to see that (252) and (253) trivially holds at k = 0.

Now, by the union bound, from (240), we have

P
[(
E(k)

)c] ≤ P
[
‖Pn − P‖Gk−1

> E‖Pn − P‖Gk−1
+K2

√
rk−1ε+K3ε

]
+ P

[
‖Pn − P‖G′k−1

> E‖Pn − P‖G′k−1
+K2

√
rk−1ε+K3ε

]
. (254)

In addition, by similar arguments which leads to (197), we have

P
{
‖Pn − P‖Gk−1

≥ E
[
‖Pn − P‖Gk−1

]
+ u

√
τmin

n

}
≤ 2 exp

(
− 2u2

)
. (255)

and

P
{
‖Pn − P‖G′k−1

≥ E
[
‖Pn − P‖G′k−1

]
+ u

√
τmin

n

}
≤ 2 exp

(
− 2u2

)
. (256)

By replacing u =
(
K2
√
rk−1ε+K3ε

)√
n to (255) and (256) for K2 > 0 and K3 > 0, we obtain

P
{
‖Pn − P‖Gk−1

≥ E
[
‖Pn − P‖Gk−1

]
+
(
K2
√
rk−1ε+K3ε

)√
τmin

}
≤ 2 exp

(
− 2n(K2

√
rk−1ε+K3)2

)
(257)

and

P
{
‖Pn − P‖Gk−1

≥ E
[
‖Pn − P‖G′k−1

]
+
(
K2
√
rk−1ε+K3ε

)√
τmin

}
≤ 2 exp

(
− 2n(K2

√
rk−1ε+K3ε)

2

)
. (258)

Now, since 0 < C
√
ε ≤ 1, by (245), we have

rk−1 = (C
√
ε)2(1−2−(k−1)) ≥ C2ε. (259)

Hence, from (254), (257), (258), and (259), that

P
[(
E(k)

)c] ≤ 4 exp

(
− 2n(K2

√
rk−1ε+K3ε)

2

)
(260)

≤ 4 exp

(
− 2n(K2C +K3)2ε2

)
(261)

≤ 4 exp

(
− nε2

2

)
, ∀k ≥ 1 (262)

if we choose K2 and K3 such that

K2C +K3 ≥
1

2
. (263)

Then, by the union bound and (262), we have

P
[
EcN
]
≤ 4N exp

(
− nε2

2

)
. (264)
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Lemma 23. Let ε > 0 and 0 < α < 2 such that

ε ≥
(

1

nδα

) 2
2+α

∨
√

2 log n

n
∨Bn (265)

for all large enough n, where Bn is defined in (5). Denote by L :=
{
f ∈ F : Pn{f ≤ δ} ≤ ε}.

Then, on the event EN ∩ L, we have:

• (i) supf∈Fk Pn{f ≤ δk} ≤ rk, 0 ≤ k ≤ N

and

• (ii) ∀f ∈ L Pn{f ≤ δ} ≤ ε ⇒ f ∈ FN

for all positive integer N satisfying

N ≤ 1

η
log2 log2 ε

−1 and rN ≥ ε, (266)

and η is some implicit positive constant.

Proof. We will use induction with respect to N . For N = 0, the statement is obvious. Suppose it
holds for some N ≥ 0, such that N + 1 still satisfies condition (266) of the lemma. Then, on the
event EN ∩ L we have

(i) sup
f∈Fk

Pn{f ≤ δk} ≤ rk, 0 ≤ k ≤ N (267)

and

(ii) ∀f ∈ F Pn{f ≤ δ} ≤ ε ⇒ f ∈ FN . (268)

Suppose now that f ∈ F is such that Pn{f ≤ δ} ≤ ε. By the induction assumptions, on the event
EN defined in (241), we have f ∈ FN . Because of this, we obtain on the event EN+1

P{f ≤ δN, 12 } = Pn{f ≤ δN, 12 }+ (P − Pn){f ≤ δN, 12 } (269)

≤ Pn{f ≤ δN}+ (P − Pn){f ≤ δN, 12 } (270)

≤ Pn{f ≤ δN}+ (P − Pn)(ϕN (f)) (271)
≤ Pn{f ≤ δN}+ ‖P − Pn‖GN (272)

≤ ε+ E‖Pn − P‖GN +
(
K2
√
rNε+K3ε

)√
τmin. (273)

For the class GN , define

R̂n(GN ) :=

∥∥∥∥n−1
n∑
i=1

εiδXi

∥∥∥∥
GN
, (274)

where εi is a sequence of i.i.d. Rademacher random variables. By Lemma 1, it holds that

E
[∥∥Pn − P∥∥GN ] ≤ 2E

[
‖P 0

n‖GN
]

+Bn (275)

= 2E
[
R̂n(GN )

]
+Bn. (276)

From (276), we have

E
[∥∥Pn − P∥∥GN ]
≤ 2E

[
R̂n(GN )

]
+Bn (277)

= 2E
[
1{EN}Eε

[
R̂n(GN )

]]
+ 2E

[
1{EcN}Eε

[
R̂n(GN )

]]
+Bn. (278)

Next, by the well-known entropy inequalities for subgaussian process [12], we have

Eε
[
R̂n(GN )

]
≤ inf
g∈GN

Eε
∣∣∣∣n−1

n∑
j=1

εjg(Xj)

∣∣∣∣
+

η√
n

∫ (2 supg∈GN
Png

2)1/2

0

H
1/2
dPn,2

(GN ;u)du (279)
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for some implicit positive constant η > 0.

By the induction assumption, on the event EN ∩ L,

inf
g∈GN

Eε
∣∣∣∣n−1

n∑
j=1

εjg(Xj)

∣∣∣∣ ≤ inf
g∈GN

√√√√Eε
∣∣∣∣n−1

n∑
j=1

εjg(Xj)

∣∣∣∣2 (280)

≤ 1√
n

inf
g∈GN

√
Png2 (281)

≤ 1√
n

inf
f∈FN

√
Pn{f ≤ δN} (282)

≤
√
ε

n
(283)

≤ ε, (284)

where (283) follows from inff∈FN Pn{f ≤ δN} ≤ inff∈FN Pn{f ≤ δ} ≤ Pn{f ≤ δ} ≤ ε by the
induction assumption with f ∈ FN .

We also have on the event EN ∩ L, by (252), it holds that

sup
g∈GN

Png
2 ≤ sup

f∈FN
Pn{f ≤ δN} ≤ rN . (285)

The Lipschitz norm of ϕk−1 and ϕ′k is bounded by

L = 2(δk−1 − δk)−1 = 2δ−1γ−1
k−1 =

2

δ

√
rk−1

ε
(286)

which implies the following bound on the distance:

d2
Pn,2(ϕN ◦ f ;ϕN ◦ g) = n−1

n∑
j=1

∣∣ϕN (f(Xj))− ϕN (g(Xj))
∣∣2 (287)

≤
(

2

δ

√
rN
ε

)2

d2
Pn,2(f, g). (288)

Therefore, on the event EN ∩ L,

1√
n

∫ (2 supg∈GN
Png

2)1/2

0

H
1/2
dPn ,2

(
GN ;u

)
du

≤ 1√
n

∫ (2rN )1/2

0

H
1/2
dPn ,2

(
F ;

δ
√
εu

2
√
rN

)
du (289)

≤
(

2
√
D

1− α/2

)(
rN
ε

)α/4
r

1/2−α/4
N√
nδα/2

(290)

≤
(

21/2+α/4
√
D

1− α/2

)
r

1/2
N

εα/4
ε

2+α
4 (291)

=

(
21/2+α/4

√
D

1− α/2

)
√
rNε, (292)

where (292) follows from the condition (265), which implies that

1

n1/2δα/2
≤ ε

2+α
4 . (293)

From (279) and (292), we obtain that on the event EN ∩ L,

Eε
[
R̂n(GN )

]
≤ ε+

21/2+α/4η
√
D

1− α/2
√
rNε. (294)
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On the other hand, we also have

Eε
[
R̂n(GN )

]
≤ 1. (295)

Hence, by combining with (294) and (295), from (278), we obtain

E
[(∥∥Pn − P∥∥GN )] = 2E

[
1{EN}Eε

[
R̂n(GN )

]]
+ 2E

[
1{EcN}Eε

[
R̂n(GN )

]]
+Bn (296)

≤ 2

[
ε+ η

(
21/2+α/4η

√
D

1− α/2

)
√
rNε

]
+ 8N exp

(
− nε2

2

)
+Bn.

(297)

Now, by the condition (265), it holds that

ε ≥ Bn, (298)

and

8ηN exp

(
− nε2

2

)
≤ 8ηN

n
(299)

≤ 8 log2 log2 ε
−1

n
(300)

≤
8 log2 log2

√
n

2 logn

n
(301)

≤ η
√

2 log n

n
(302)

≤ ηε, (303)

for n sufficiently large, where (299) and (301) follows from ε ≥
√

2 logn
n , (300) follows from (266),

and (302) holds for n sufficiently large.

From (297), (298), and (303), it holds that

E
[∥∥Pn − P∥∥GN ] ≤ 2

[
ε+ η

(
21/2+α/4

√
D

1− α/2

)
√
rNε

]
+ 2ε (304)

= 4ε+ 2η

(
21/2+α/4

√
D

1− α/2

)
√
rNε. (305)

In addition, we have

rN = (C
√
ε)2(1−2−N ) ≥ C2ε, (306)

or

ε ≤ rN
C2

. (307)

Hence, from (305) and (307), we conclude that with some constant η̃ > 0,

E
[∥∥Pn − P∥∥GN ] ≤ η̃√rNε. (308)

From (273) and (308), on the event EN+1 ∩ L, we have

P{f ≤ δN, 12 } ≤ ε+ η̃
√
rNε+

(
K2
√
rNε+K3ε

)√
τmin (309)

≤ 1

2
C
√
rNε (310)

= rN+1/2, (311)

by a proper choice of the constantC > 0, where (311) follows from (307). This means that f ∈ FN+1

and the induction step for (ii) is proved.
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Now, we prove (i). We have on the event EN+1,
sup

f∈FN+1

Pn{f ≤ δN+1} ≤ sup
f∈FN+1

P{f ≤ δN+1}+ sup
f∈FN+1

(Pn − P ){f ≤ δN+1} (312)

≤ sup
f∈FN+1

P{f ≤ δN+1}+ ‖Pn − P‖G′N+1
(313)

≤ rN+1/2 + E‖Pn − P‖G′N+1
+
(
K2
√
rN+1ε+K3ε

)√
τmin. (314)

By Lemma 1, we have
E
∥∥Pn − P∥∥G′N+1

≤ 2E
[
1{EN}Eε

[
R̂n(G′N+1)

]]
+ 2E

[
1{EcN}Eε

[
R̂n(G′N+1)

]]
+Bn (315)

≤ 2E
[
1{EN}Eε

[
R̂n(G′N+1)

]]
+ 2E

[
1{EcN}Eε

[
R̂n(G′N+1)

]]
+ ε, (316)

where (316) follows from the condition (265).

As above, we have

Eε
[
R̂n(G′N+1)

]
≤ inf
g∈G′N+1

Eε
∣∣∣∣n−1

n∑
j=1

εjg(Xj)

∣∣∣∣
+

η√
n

∫ (2 supg∈G′
N+1

Png
2)1/2

0

H
1/2
dPn,2

(
G′N+1;u

)
du. (317)

Since we already proved (i), it implies that on the event EN+1 ∩ L,

inf
g∈G′N+1

Eε
∣∣∣∣n−1

n∑
j=1

εjg(Xj)

∣∣∣∣ ≤ inf
g∈G′N+1

√√√√Eε
∣∣∣∣n−1

n∑
j=1

εjg(Xj)

∣∣∣∣2 (318)

≤ 1√
n

inf
g∈G′N+1

√
Png2 (319)

≤ 1√
n

inf
f∈FN+1

√
Pn{f ≤ δN,1/2} (320)

≤ 1√
n

inf
f∈FN

√
Pn{f ≤ δN,1/2} (321)

≤
√
ε

n
≤ ε. (322)

By the induction assumption, we also have on the event EN+1 ∩ L,

sup
g∈G′N+1

Png
2 ≤ sup

f∈FN+1

Pn{f ≤ δN,1/2} ≤
rN+1

2
≤ rN . (323)

The bound for the Lipschitz norm of ϕ′k gives the following bound on the distance

d2
Pn,2

(
ϕ′N+1 ◦ f ;ϕ′N+1 ◦ f

)
= n−1

n∑
j=1

∣∣ϕ′N+1 ◦ f(Xj)− ϕ′N+1 ◦ g(Xj)
∣∣2 (324)

≤
(

2

δ

√
rN
ε

)2

d2
Pn,2(f, g). (325)

Therefore, on the event EN+1 ∩ L, we get quite similarly to (292),

1√
n

∫ (2 supg∈G′
N+1

Png
2)1/2

0

H
1/2
dPn,2

(
G′N+1;u

)
du

≤ 1√
n

∫ (2rN )1/2

0

H
1/2
dPn,2

(
F ;

δ
√
εu

2
√
rN

)
du (326)

≤
(

21/2+α/4
√
D

1− α/2

)(
rN
ε

)α/4
r

1/2−α4
N√
nδα/2

(327)

=

(
21/2+α/4

√
D

1− α/2

)
√
rNε. (328)
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We collect all bounds to see that on the event EN+1 ∩ L,

sup
f∈FN+1

Pn{f ≤ δN+1} ≤
rN+1

2
+ η̄
√
rNε (329)

for some constant η̄ > 0.

Therefore, it follows that with a proper choice of constant C > 0 in the recurrence relationship
defining the sequence {rk}, we have on the event EN+1 ∩ L

sup
f∈FN+1

Pn{f ≤ δN+1} ≤ C
√
rNε = rN+1, (330)

which proves the induction step for (i) and, therefore, the lemma is proved. Finally, using Lemma 24
and the same arguments as [2, Proof of Theorem 5], we can prove Theorem 6.

Lemma 24. Suppose that for some α ∈ (0, 2) and for some D > 0 such that the condition (19)
holds. Then for any constant ξ > C2, for all δ ≥ 0 and

ε ≥
(

1

nδα

) 2
2+α

∨
√

2 log n

n
∨Bn, (331)

and for all large enough n, the following:

P
[
∃f ∈ F : Pn{f ≤ δ} ≤ ε and P

{
f ≤ δ

2

}
≥ ξε

]
≤ 4/η log2 log2 ε

−1 exp

{
− nε2

2

}
(332)

and

P
[
∃f ∈ F : P{f ≤ δ} ≤ ε and Pn

{
f ≤ δ

2

}
≥ ξε

]
≤ 4/η log2 log2 ε

−1 exp

{
− nε2

2

}
,

(333)

where η is some constant.

Proof. Observe that

P
[
∃f ∈ F : Pn{f ≤ δ} ≤ ε ∧ P{f ≤ δ/2} ≥ ξε

]
≤ P

[{
∃f ∈ F : {Pn{f ≤ δ} ≤ ε} ∧ {P{f ≤ δ/2} ≥ ξε}

}
∩ EN

]
+ P[EcN ] (334)

≤ P
[{
∃f ∈ FN ∩ L} ∧ {P{f ≤ δ/2} ≥ ξε}

}
∩ EN

]
+ P[EcN ] (335)

≤ P
[{
∃f ∈ FN ∩ L} ∧ {P{f ≤ δN} ≥ ξε}

}
∩ EN

]
+ P[EcN ] (336)

≤ P
[{
∃f ∈ FN ∩ L} ∧ {P{f ≤ δN} > rN}

}
∩ EN

]
+ P[EcN ] (337)

= P[EcN ] (338)

≤ 4N exp

(
− nε2

2

)
(339)

≤ 4/η
(

log2 log2 ε
−1
)

exp

(
− nε2

2

)
, (340)

where (335) follows from (ii) in Lemma 23, (337) follows from rN ≤ (C
√
ε)2 < ξε for some

constant ξ > C2, and (338) follows from (i) in Lemma 23, and (340) follows from the condition
(266) in Lemma 23, which holds for n sufficiently large.

Now, we return to prove Theorem 6.
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Proof of Theorem 6. . Consider sequences δj := 2−j
2
γ , and

εj :=

(
1

nδα
′

j

) 1
2+α′

, j ≥ 0, (341)

where

α′ :=
2γ

2− γ
≥ α. (342)

Then, we have
εj = n(γ−2)/42j . (343)

Let
E := {∃j ≥ 0 ∃f ∈ F : Pn{f ≤ δj} ∧ P{f ≤ δj/2} ≥ ξεj}. (344)

By Lemma 24, the condition (19) implies that there exists ξ > 0 such that

P
[
E
]
≤ 4/η

∞∑
j=0

(
log2 log2 ε

−1
j

)
exp

(
−
nε2

j

2

)
(345)

≤ 4υ′
∞∑
j=0

(
log2 log2 n

)∑
j≥0

exp

[
− n

γ
2

2
22j

]
(346)

≤ υ
(

log2 log2 n
)

exp

[
− n

γ
2

2

]
(347)

for some υ, υ′ > 0. Now, since δ̂n(γ; f) ∈ (0, 1], there exists some j ≥ 1 such that

δ̂n(γ; f) ∈ (δj , δj−1]. (348)

Then, by the definition of δ̂n(γ; f) in (18), we have

Pn{f ≤ δj} ≤ Pn{f ≤ δ̂n(γ; f)} (349)

≤
√
δ−γj n−1+ γ

2 (350)

= εj . (351)

Suppose that for some f ∈ F , the inequality ζ−1δ̂n(γ; f) ≤ δn(γ; f) fails, which leads to

δn(γ; f) < ζ−1δ̂n(γ; f) (352)

≤ δj−1

ζ
. (353)

Then, if ζ > 21+ 2
γ , from the definition of δn(γ; f) in (17), it holds that

P{f ≤ δj/2} ≥ P
{
f ≤ δj−1

ζ

}
(354)

≥

√(
δj−1

ζ

)−γ
n−1+γ/2 (355)

=

√
1

2
22jζγn−1+ γ

4 (356)

= εj

√
ζγ

4
(357)

> ξεj (358)
by choosing ζ sufficiently large, where ξ is defined in Lemma 24. From (358), it holds that
ζ−1δ̂n(γ; f) ≤ δn(γ; f) fails for some f ∈ F to hold with probability at most P[E ].

Similarly, we can show that the event δn(γ; f) ≤ ζδ̂n(γ; f) fails for some f ∈ F with probability at
most P[E ].

By using the union bound, we finally obtain (20).
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E Proof of Lemma 7

Proof. Observe that∣∣Pn(f ≤ y)− P (f ≤ y)
∣∣

=
1

n

n∑
i=1

(
1{f(Xi) ≤ y} − P(f(Xi) ≤ y)

)
+

1

n

n∑
i=1

P(f(Xi) ≤ y)− P (f ≤ y). (359)

Now, let
fn(x) := 1{f(x) ≤ y} − P(f(Xn) ≤ y), (360)

for all x ∈ S and n ∈ Z+. It is clear that
‖fn‖∞ ≤ 1. (361)

Now, let

g(x) :=
1

n

n∑
i=1

fi(xi). (362)

Then, we have ∣∣g(x)− g(y)
∣∣ =

1

n

∣∣∣∣ n∑
i=1

(
fi(xi)− fi(yi)

)∣∣∣∣ (363)

≤ 1

n

∣∣∣∣ n∑
i=1

(
1{f(xi) ≤ y} − 1{f(yi) ≤ y}

)∣∣∣∣ (364)

≤ 1

n

n∑
i=1

1{xi 6= yi}. (365)

Then, by applying Lemma 21, it holds that

P
[∣∣∣∣ 1n

n∑
i=1

fi(Xi)

∣∣∣∣ ≥ t√τmin

n

]
≤ 2 exp

(
− 2t2

)
. (366)

On the other hand, for all y ∈ R, let
f̃y(x) := 1{f(x) ≤ y}. (367)

It is clear that supy∈R ‖f̃y‖∞ = 1. Hence, by Lemma 1, it holds that∣∣∣∣ 1n
n∑
i=1

P(f(Xi) ≤ y)− P (f ≤ y)

∣∣∣∣ =

∣∣∣∣ 1n
n∑
i=1

E[f̃y(Xi)]− Eπ
[
f̃y(X)

]∣∣∣∣ (368)

≤
√
Bn, (369)

where (369) follows from Lemma 20 (with M = 1) and the Cauchy–Schwarz inequality.

From (359), (366), and (369), we have

sup
f∈F

sup
y∈R

∣∣Pn(f ≤ y)− P (f ≤ y)
∣∣ ≤√Bn + t

√
τmin

n
(370)

with probability at least 1− 2 exp(−2t2).

F Proof of Lemma 9

Let δ > 0. Let ϕ(x) be equal to 1 for x ≤ 0, 0 for x ≥ 1 and linear in between. Observe that
Ff (y) = P{f ≤ y} (371)

≤ Pϕ
(
f − y
δ

)
(372)

≤ Pnϕ
(
f − y
δ

)
+
∥∥Pn − P∥∥G̃ϕ (373)

≤ Fn,f (y + δ) +
∥∥Pn − P∥∥G̃ϕ , (374)
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and

Fn,f (y) ≤ Pn{f ≤ y} (375)

≤ Pnϕ
(
f − y
δ

)
(376)

≤ Pϕ
(
f − y
δ

)
+
∥∥Pn − P∥∥G̃ϕ (377)

≤ Ff (y + δ) +
∥∥Pn − P∥∥G̃ϕ . (378)

Now, by applying Lemma 21 (see (197)), we have

P
[
‖Pn − P‖G̃ϕ ≥ E

[
‖Pn − P‖G̃ϕ

]
+ t

√
τmin

n

]
≤ 2 exp

(
− 2t2

)
. (379)

From (379), with probability at least 1− 2 exp(−2t2), it holds that

‖Pn − P‖G̃ϕ ≤ E
[
‖Pn − P‖G̃ϕ

]
+ t

√
τmin

n
. (380)

On the other hand, from Lemma 1, we have

E
[∥∥Pn − P∥∥G̃ϕ] ≤ 2E

[
‖P 0

n‖G̃ϕ
]

+Bn. (381)

From (380) and (381), with probability at least 1− 2 exp(−2t2), it holds that

‖Pn − P‖G̃ϕ ≤ 2E
[
‖P 0

n‖G̃ϕ
]

+Bn + t

√
τmin

n
. (382)

From (374), (378), and (382), with probability at least 1− 2 exp(−2t2), we have

L(Ff , Ff,n) ≤ δ + 2E
[
‖P 0

n‖G̃ϕ
]

+Bn + t

√
τmin

n
. (383)

Furthermore, by Talagrand’s contraction lemma [3, 11] for the class of function ϕ̃(x) := ϕ(x)− 1,
we have

E
[
‖P 0

n‖G̃ϕ
]
≤ 2E

[
sup

f∈F,y∈[−M,M ]

∣∣∣∣ n∑
i=1

εi
f(Xi)− y

δ

∣∣∣∣] (384)

=
2

δ
E
[
n−1 sup

f∈F

∣∣∣∣ n∑
i=1

f(Xi)

∣∣∣∣]+
2M

δn
E
∣∣∣∣ n∑
i=1

εi

∣∣∣∣ (385)

≤ 2

δ
E
[
‖P 0

n‖F
]

+
2M

δ
√
n
. (386)

Hence, by setting δ :=
√

4E[‖P 0
n‖F ] + 4M/

√
n, from (383) and (386), it holds with probability at

least 1− 2 exp(−2t2) that

L(Ff , Ff,n) ≤ 4

√
E[‖P 0

n‖F ] +M/
√
n+Bn + t

√
τmin

n
. (387)

G Proof of Theorem 10

Fix M > 0. Since FM ∈ GC(P), we have

E
[
‖Pn − P‖FM

]
→ 0 a.s. n→∞, (388)

which, by Lemma 1 with t =
√

log n,

E
[∥∥Pn − P∥∥FM ] ≥ 1

2
E
[
‖P 0

n‖FM
]
− Ãn. (389)
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By taking n→∞, from (389), we obtain

E
[
‖P 0

n‖FM
]
→ 0, (390)

or

E
[∥∥∥∥n−1

n∑
i=1

εiδXi

∥∥∥∥]
FM
→ 0, as n→∞. (391)

Furthermore, with t =
√

log n, by Lemma 9, we have

P
{

sup
f∈FM

L(Fn,f , Ff ) ≥ 4

√
E[‖P 0

n‖F ] +M/
√
n+Bn + log n

√
τmin

n

}
≤ 2 exp

(
− 2 log n

)
=

2

n2
. (392)

It follows from (392) that
∞∑
n=1

P
{

sup
f∈FM

L(Fn,f , Ff ) ≥ 4

√
E[‖P 0

n‖F ] +M/
√
n+Bn + log n

√
τmin

n

}

≤ 2

∞∑
n=1

1

n2
<∞. (393)

Hence, by Borel-Cantelli’s lemma [13], Bn → 0, and (391), we obtain

sup
f∈FM

L(Fn,f , Ff )→ 0, a.s.. (394)

Since supf∈F L(Fn,fM , FfM ) = supf∈FM L(Fn,f , Ff ), from (394), we have

sup
f∈F

L(Fn,fM , FfM ) = sup
f∈FM

L(Fn,f , Ff )→ 0, a.s.. (395)

Now, by [2], the following facts about Levy’s distance holds:

sup
f∈F

L(Ff , FfM ) ≤ sup
f∈F

P{|f | ≥M} (396)

and

sup
f∈F

L(Fn,f , Fn,fM ) ≤ sup
f∈F

Pn{|f | ≥M}. (397)

Now, by the condition (29), we have

sup
f∈F

P{|f | ≥M} → 0 a.s. M →∞, (398)

so

sup
f∈F

L(Ff , FfM )→ 0, a.s. M →∞. (399)

To prove that

lim
M→∞

lim sup
n→∞

sup
f∈F

L(Fn,f , Fn,fM ) = 0, a.s., (400)

it is enough to show that

lim
M→∞

lim sup
n→∞

sup
f∈F

Pn{|f | ≥M} = 0, a.s. (401)

To this end, consider the function ϕ from R into [0, 1] that is equal to 0 for |u| ≤M − 1, is equal to 1
for |u| > M and is linear in between. We have

sup
f∈F

Pn{|f | ≥M} = sup
f∈FM

Pn{|f | ≥M} (402)

≤ sup
f∈FM

Pnϕ(|f |) (403)

≤ sup
f∈FM

Pϕ(|f |) + ‖Pn − P‖G (404)

≤ sup
f∈FM

P{|f | ≥M − 1}+ ‖Pn − P‖G , (405)
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where

G :=
{
ϕ ◦ |f | : f ∈ FM

}
. (406)

Then, by using the same arguments to obtain (197), it holds with probability 1− 2 exp(−2t2) that

‖Pn − P‖G ≤ E
[
‖Pn − P‖G

]
+ t

√
τmin

n
(407)

≤ 2E[‖P 0
n‖F ] +An + t

√
τmin

n
. (408)

Then, by setting t = log n and using the Borel-Cantelli’s lemma [13], the following holds almost
surely:

‖Pn − P‖G ≤ 2E
[
‖P 0

n‖G
]

+An + log n

√
τmin

n
. (409)

Now, since ϕ ◦ f ∈ ϕ ◦ FM , by (391) and Talagrand contraction lemma [3, 12], we have

E
[
‖P 0

n‖G
]
→ 0 as n→∞. (410)

From (409) and (410), we obtain

‖Pn − P‖G → 0 a.s.. (411)

Hence, we obtain (ii) from (i), the condition (29), and (411).

To prove that (ii) implies (i), we use the following bound [14]∣∣∣∣ ∫ M

−M
td(F −G)(t)

∣∣∣∣ ≤ υL(F,G), (412)

which holds with some constant υ = υ(M) for any two distribution functions on [−M,M ]. This
bound implies that

‖Pn − P‖FM = sup
f∈FM

|Pnf − Pf | (413)

≤ sup
f∈FM

∣∣∣∣ ∫ M

−M
td(Fn,f − Ff )(t)

∣∣∣∣+M sup
f∈FM

∣∣P (|f | ≥M)− Pn(|f | ≥M)
∣∣

(414)

≤ υ sup
f∈FM

L(Fn,f , Ff ) +M sup
f∈FM

∣∣P (|f | ≥M)− Pn(|f | ≥M)
∣∣ (415)

≤ υ sup
f∈F

L(Fn,f , Ff ) +M sup
f∈FM

∣∣P (|f | ≥M)− Pn(|f | ≥M)
∣∣. (416)

Now, by Lemma 7, with probability at least 1− 2 exp(−2t2), the following holds:

sup
y∈R

sup
f∈FM

∣∣Pn(f ≤ y)− P (f ≤ y)
∣∣ ≤ t√τmin

n
+
√
Bn. (417)

By setting t =
√

log n and using the Borel-Cantelli’s lemma, from (417), we obtain

sup
y∈R

sup
f∈FM

∣∣Pn(f ≤ y)− P (f ≤ y)
∣∣→ 0, a.s.. (418)

Finally, from (417), (418), and (ii), we obtain (i). This concludes our proof of Theorem 10.

H Proof of Theorem 12

The proof is based on [2, Proof of Theorem 9]. Since F is uniformly bounded, we can choose M > 0
such that FM = F . To prove the first statement, note that F ∈ BCLT(P) means that

E
[
‖Pn − P‖F

]
= O(n−1/2). (419)
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Now, from Lemma 1, we have

E
[∥∥Pn − P∥∥F] ≥ 1

2
E
[
‖P 0

n‖F
]
− Ãn, (420)

for all t > 0. By applying (420), it easy to see that

E
[∥∥∥∥n−1

n∑
i=1

εiδXi

∥∥∥∥
F

]
= E

[
‖P 0

n‖F
]

(421)

≤ 2Ãn + 2E
[∥∥Pn − P∥∥F] (422)

≤ O
(√

log n

n

)
(423)

since Ãn = O
(√

logn
n

)
by (1).

Now, from Lemma 9, for t =
√

log n,

P
{

sup
f∈F

L(Ff , Ff,n) ≥ 4

√
E[‖P 0

n‖F ] +M/
√
n+Bn +

√
τmin log n

n

}
≤ 2

n2
. (424)

From (423) and (424), it holds that

P
{(

n

log n

)1/4

sup
f∈F

L(Fn,f , Ff ) ≥ D
}
→ 0 (425)

as n→∞ for some constant D, or

sup
f∈F

L(Fn,f , Ff ) = OP

((
log n

n

)1/4)
. (426)

Now, recall

G̃ϕ :=

{
ϕ ◦

(
f − y
δ

)
− 1 : f ∈ F , y ∈ [−M,M ]

}
. (427)

To prove the second statement, we use the following fact [2, p.29]:

Eε
[
‖P 0

n‖G̃ϕ
]
≤ d√

n

[ ∫ √2

0

H
1/2
dPn,2

(F ; δu)du+

√
log

4M

δ
+ 1

]
(428)

for some constant d, which, under the condition (32), satisfies

Eε
[
‖P 0

n‖G̃ϕ
]
≤ d
[

1

δα/2

√
1

n
+

1√
n

(√
log

4M

δ
+ 1

)]
. (429)

Now, by Lemma 9, it holds for all t > 0 and δ > 0 that

P
{

sup
f∈F

L(Ff , Ff,n) ≥ δ + E
[
‖P 0

n‖G̃ϕ
]

+Bn + t

√
τmin

n

}
≤ 2 exp(−2t2). (430)

Since E
∥∥n−1

∑n
i=1 εiδXi

∥∥
G̃ϕ

= E[‖P 0
n‖G̃ϕ ] ≤ d

[√
logn
n δ−α/2 + 1√

n

(√
log 4M

δ + 1
)]

, from (430),
for all t > 0, we have

P
{

sup
f∈F

L(Ff , Ff,n) ≥ δ + d

[√
log n

n
δ−α/2 +

1√
n

(√
log

4M

δ
+ 1

)]
+Bn + t

√
τmin

n

}
≤ 2 exp

(
− 2t2

)
. (431)

Now, by choosing t =
√

log n and δ = (log n)n−
1

2+α , we have

P
{

sup
f∈F

L(Ff , Ff,n) ≥ ν(log n)n−
1

2+α

}
≤ 2

n2
(432)
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for some constant ν and for n ≥ N0 for some finite N0 big enough.

From (432), we have
∞∑
n=1

P
{

sup
f∈F

L(Ff , Ff,n) ≥ ν(log n)n−
1

2+α

}
≤ N0 +

∞∑
n=N0

2

n2
<∞. (433)

Hence, by Borel-Cantelli’s lemma [13], it holds that

sup
f∈F

L(Ff , Ff,n) = OP
(
(log n)n−

1
2+α
)
, a.s. (434)

This concludes our proof of Theorem 12.
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