
A Proof of Theorem 3

By induction hypothesis, suppose that the clustering C satisfies Invariant 1, Invariant 2, Invariant 4
and Invariant 3 just before a given update. While handling the update, our dynamic algorithm calls
the subroutine in Figure 1. The main WHILE loop in Figure 1 immediately ensures that Invariant 1
and Invariant 4 continue to hold when our dynamic algorithm is done with processing the update.

Moving on to Invariant 2, it is easy to verify that this invariant is not violated by our dynamic
algorithm at any point in time. Specifically, this invariant does not get violated by any step in Figure 1,
or by the steps performed immediately before calling the subroutine described in Figure 1.

It now remains to prove that our algorithm always satisfy Invariant 3. Towards this end, fix any client
j ∈ D. If the client j gets assigned to facility i ∈ F immediately after getting inserted, then the
manner in which our algorithm handles an insertion ensures that ℓ(j) ≥ κ∗ij at that point in time.
Subsequently, consider each of the following two three of events.

(1) The client j remains assigned to the facility i, but moves down to a smaller level (say) k. This
happens only if there is a blocking cluster C = (i, A) with j ∈ A at level k, and we call the
subroutine FIX-BLOCKING(C, k). Hence, Definition 1 ensures that k ≥ κ∗ij . Thus, we continue to
have ℓ(j) = k ≥ κ∗ij immediately after this event.

(2) The client j remains assigned to the facility i, but moves up to a larger level. Clearly, this event
cannot lead to a violation of Invariant 3.

(3) The client j gets reassigned to a different facility i′, by joining a cluster at level k (say) that has
facility i′ as its center. This happens only if the client j is part of a blocking cluster C ′ = (i′, A′) at
level k, with j′ ∈ A′, and we call the subroutine FIX-BLOCKING(C ′, k). Hence, Definition 1 ensures
that k ≥ κ∗i′j . Thus, we continue to have ℓ(j) = k ≥ κ∗i′j immediately after this event.

The above discussion implies that Invariant 3 continues to remain satisfied all the time, even when
the algorithm is handling an update. This concludes the proof of Theorem 3.

B Proof of Theorem 2

We first recall the LP relaxation for the facility location problem:

Minimize
∑
i

fi · yi +
∑
j

∑
i

dij · xij (2)

s.t.
∑
i∈F

xij ≥ 1 for all j ∈ D (3)

xij ≤ yi for all i ∈ F, j ∈ D (4)
yi, xij ≥ 0 for all i ∈ F, j ∈ D (5)

The dual LP is given below.

Maximize
∑
j∈D

αj (6)

s.t.
∑
j∈D

βij ≤ fi for all i ∈ F (7)

αj − βij ≤ dij for all i ∈ F, j ∈ D (8)
αj , βij ≥ 0 for all i ∈ F, j ∈ D (9)

We will prove Theorem 2 using the primal-dual method. Specifically, we will show that given any
nice clustering, we can come up with a pair of feasible primal and dual solutions whose objectives are
within a O(1) multiplicative factor of each other. For the rest of the proof, fix any nice clustering C.

Based on the clustering C, we construct the following natural primal solution (x, y). For all i ∈ F ,
we set yi = 1 if facility i is open (i.e., if C(i) ̸= ∅); otherwise, we set yi = 0. Similarly, for all
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i ∈ F, j ∈ D, we set xij = 1 if the clustering C assigns client j to facility i; otherwise, we set
xij = 0. It is easy to check that this gives us a feasible primal solution. Next, based on the clustering
C, we construct an (infeasible) dual solution (α, β) as described in Figure 5.

1. FOR ALL clusters C = (i, A) ∈ C:
2. FOR ALL clients j ∈ A:
3. Set αj ← 2ℓ(C).
4. FOR ALL facilities i′ ∈ F :
5. Set βij ← max

(
0, αj/2

10 − dij
)
.

Figure 5: Constructing an (infeasible) dual solution (α, β) based on a nice clustering C.

We now show that the primal objective at (x, y) is at most the dual objective at (α, β).
Lemma 3. We have

∑
i∈F fi · xi +

∑
i∈F,j∈D dij · yij ≤

∑
j∈D αj .

Proof. The cost of the primal solution (x, y) is equal to the total cost of all the clusters in the dual
solution (α, β). Thus, we have:∑

i∈F

fi · xi +
∑

i∈F,j∈D

dij · yij =
∑
C∈C

cost(C). (10)

Next, fix any cluster C = (i, A) ∈ C, and observe that:

cost(C) = |C| · costavg(C) ≤ |C| · 2ℓ(C) =
∑
j∈A

αj . (11)

The lemma now follows from (10) and (11) and the observation that each client j ∈ A appears in
exactly one cluster C ∈ C.

The next lemma shows that (α/210, β) is a feasible dual solution.
Lemma 4. For all j ∈ D, define α̂j := αj/2

10. Then (α̂, β) is a feasible solution to LP (6).

Theorem 2 follows from Lemma 3 and Lemma 4. The proof of Lemma 4 appears in Appendix B.1.

B.1 Proof of Lemma 4

Step 5 of Figure 5 ensures that the solution (α̂, β) satisfies constraint (8) of the dual LP. It now
remains to show that the solution (α̂, β) also satisfies constraint (7) of the dual LP. This is achieved
by Lemma 6. In other words, Lemma 4 follows from Lemma 6.
Lemma 5. Consider any facility i ∈ F and clients j, j′ ∈ D with αj ≥ dij and αj′ ≥ dij′ . Then we
have: αj/2

4 ≤ dij + 2αj′ .

Proof. If αj ≤ αj′ , then the lemma trivially holds; so we assume that αj > αj′ throughout the
rest of the proof. From step 3 of Figure 5, it follows that each client j∗ ∈ D appears at a level
ℓ(j∗) = log(αj∗) in the clustering C. Accordingly, since αj′ < αj , we have ℓ(j′) ≤ ℓ(j)− 1.

Let i′ denote the facility to which the client j′ gets assigned in the nice clustering C. Now we
claim that di′j ≥ αj/2

4. For the sake of contradiction, suppose di′j < αj/2
4. We will show that

C := (i′, {j}) forms an satellite blocking cluster at level k := ℓ(j)− 1. Towards this end, we note:

• (a) costavg(C) = di′j < αj · 2−4 = 2ℓ(j)−4 = 2k−3.

• (b) ℓ(j) > k ≥ κ∗i′j , where κ∗i′j is the unique level such that 2κ
∗
i′j−4 ≤ di′j < 2κ

∗
i′j−3.

Here, the first inequality holds because k := ℓ(j)− 1, whereas the second inequality holds
because 2κ

∗
i′j−4 ≤ di′j < 2k−3 as per condition (a) above.

• (c) Since i′ is the center of a cluster at level ℓ(j′) and C is a nice clustering, there exists a
critical cluster C ′ ∈ C(i′) with ℓ(C ′) ≤ ℓ(j′) ≤ ℓ(j)− 1 = k.
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Conditions (a), (b) and (c) imply that C = (i′, {j}) is an satellite blocking cluster at level ℓ(j)− 1,
as per Definition 1. This contradicts the fact that C is a nice clustering. Hence, we get:

di′j ≥ αj/2
4. (12)

Next, since client j′ ∈ D is assigned to facility i′ ∈ F in the nice clustering C, by Invariant 3 we
have κ∗ij′ ≤ ℓ(j′). This implies that:

di′j′ < 2κ
∗
i′j′ ≤ 2ℓ(j

′) = αj′ . (13)
Applying triangle inequality, we now obtain di′j ≤ di′j′ +dij′ +dij ≤ di′j′ +αj′ +dij ≤ 2 ·α′

j+dij
(the last inequality follows from (13)), and dij′ ≤ αj′ by our starting assumption). Thus, from (12)
we infer that: αj/2

4 ≤ di′j ≤ 2α′
j + dij .

Lemma 6. For every facility i ∈ F , we have
∑

j∈D max
(
0,

αj

210 − dij
)
≤ fi.

Proof. Fix a facility i ∈ F for the rest of the proof. Define Ci :=
{
j ∈ D | αj

210 ≥ dij
}

. Note that:∑
j∈D

max
(
0,
αj

210
− dij

)
=

∑
j∈Ci

( αj

210
− dij

)
(14)

Accordingly, for the rest of the proof, we focus on upper bounding the right hand side of (14).

For ease of notations, we assume that Ci = {j1, . . . , jq} and w.l.o.g. αj1 ≤ αj2 ≤ · · · ≤ αjq . Say
that a client j ∈ Ci is big if dij ≥ αj1/2

4 and small otherwise. Let B ⊆ Ci and S = Ci \ B
respectively denote the set of all big and small clients in Ci. Observe that:

αj1 − dij ≤ 24 · dij for all j ∈ B =⇒
∑
j∈B

(αj1 − dij) ≤ 24 ·
∑
j∈B

dij . (15)

Next, we claim that: ∑
j∈S

(αj1 − dij) ≤ 24 · fi + (24 − 1) ·
∑
j∈S

dij . (16)

For the sake of contradiction, suppose that (16) does not hold. Then we have:

|S| · αj1 > 24

fi +∑
j∈S

dij

 =⇒ αj1

24
>
fi +

∑
j∈S dij

|S|
. (17)

We now consider two possible cases.

Case 1: There is no critical cluster in C(i) at level ≤ k := ℓ(j1)− 1 = log(αj1)− 1.

In this case, consider the critical cluster C := (i, S). We will show that C is a blocking cluster at
level k w.r.t. the clustering C. To see why this is true, observe that:

• (a) costavg(C) :=
fi+

∑
j∈S dij

|S| <
αj1

24 = 2ℓ(j1)

24 = 2k−3.

• (b) Consider any client j ∈ S. Since αj ≥ αj1 , we have ℓ(j) = log(αj) ≥ log(αj1) =
ℓ(j1) > k. Furthermore, since j ∈ S, we have dij < αj1/2

4 = 2k−3. This implies that
k ≥ κ∗ij , where κ∗ij is the unique level such that 2κ

∗
ij−4 ≤ dij < 2κ

∗
ij−3. To summarize, we

infer that ℓ(j) > k ≥ κ∗ij for all clients j ∈ S.

• (c) We have ℓ(C ′) > k for all clusters C ′ ∈ C(i). This follows from Invariant 2 and our
assumption that there is no critical cluster in C(i) at level ≤ k.

Conditions (a), (b) and (c) above imply that C is a critical blocking cluster at level k w.r.t. the
clustering C, as per Definition 1. But this contradicts the fact that C is a nice clustering. Thus, we
conclude that (16) holds in this case.

Case 2: There is a critical cluster C∗ ∈ C(i) at level ℓ(C∗) ≤ k.

In this case, let j ∈ S be a client such that dij = minj′∈S dij′ . Consider the satellite cluster
C := (i, {j}). We will show that C is a blocking cluster at level k := ℓ(j1)− 1 w.r.t. the clustering
C. To see why this is true, observe that:
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• (a) costavg(C) := dij <
αj1

24 = 2ℓ(j1)

24 = 2k−3.

• (b) Since αj ≥ αj1 , we have ℓ(j) = log(αj) ≥ log(αj1) = ℓ(j1) > k. Furthermore, since
j ∈ S, we have dij < αj1/2

4 = 2k−3. This implies that k ≥ κ∗ij , where κ∗ij is the unique
level such that 2κ

∗
ij−4 ≤ dij < 2κ

∗
ij−3. To summarize, we infer that ℓ(j) > k ≥ κ∗ij .

• (c) There is a critical cluster C∗ ∈ C(i) at level ℓ(C∗) ≤ k.

Conditions (a), (b) and (c) above imply that C is an satellite blocking cluster at level k w.r.t. the
clustering C, as per Definition 1. But this contradicts the fact that C is a nice clustering. Thus, we
conclude that (16) holds in this case as well.

To summarize, we have proved that (16) holds. Thus, from (15) and (16), we get:∑
j∈Ci

(αj1 − dij) =
∑
j∈B

(αj1 − dij) +
∑
j∈S

(αj1 − dij)

≤ 24 ·
∑
j∈B

dij + 24 · fi + (24 − 1) ·
∑
j∈S

dij

≤ 24 · fi + 24 ·
∑
j∈Ci

dij . (18)

Now consider any client j ∈ Ci. Since j, j1 ∈ Ci, by definition we have dij ≤ αj and dij1 ≤ αj1 .
Accordingly, Lemma 5 gives us:

αj/2
4 ≤ dij + 2 · αj1 =⇒ αj ≤ 24 · dij + 25 · αj1 . (19)

Summing (19) over all the clients j ∈ Ci, we get:∑
j∈Ci

αj ≤
∑
j∈Ci

(
24 · dij + 25 · αj1

)
= (24 + 25)

∑
j∈Ci

dij + 25
∑
j∈Ci

(αj1 − dij)

≤ (24 + 25)
∑
j∈Ci

dij + 29fi + 29
∑
j∈Ci

dij (follows from (18))

≤ 210
∑
j∈Ci

dij + 210fi =⇒
∑
j∈Ci

( αj

210
− dij

)
≤ fi. (20)

The lemma now follows from (14) and (20).

C Proof of Lemma 2

We use the notations introduced in the paragraph just before the statement of Lemma 2. Note that
during its entire lifetime, our algorithm performs

∑λ
r=0 |Ar| units of up-work on the cluster C.

Accordingly, Lemma 2 follows from Claim 1.

Claim 1. We have
∑λ

r=0 |Ar| ≤ fi/2k−2.

Proof. Consider a given round r ∈ [0, λ]. For all j ∈ Ar, we have dij < 2κ
∗
ij−3 ≤ 2k+r−3, where

the last inequality follows from Invariant 3 (this is because every client j ∈ Ar is at level k + r
just before the end of epoch r). The cluster C = (i, A) moves up to level k + r + 1 because
costavg(C) > 2k+r. Thus, we conclude that:

fi + 2k+r−3 · |Ar|
|Ar|

≥
fi +

∑
j∈Ar

dij

|Ar|
= costavg((i, Ar)) > 2k+r.

Multiplying both sides of the above inequality by |Ar| and then rearranging the terms, we get:

fi >
(
2k+r − 2k+r−3

)
· |Ar| ≥ 2k+r−1 · |Ar|.

So, we have |Ar| ≤ fi
2k+r−1 for all r ∈ [0, λ]. This gives us:

∑λ
r=0 |Ar| ≤

∑λ
r=0

2fi
2k+r ≤ fi

2k−2 .
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D Implementation details

In this section we describe how to implement our algorithm to perform only Õ(m) amortized time
per update, and also the cases where we deviate from the straightforward implementation as described
in Section 2.3.

Client insertions. Following the insertion of a client j, we first try to connect it to its nearest open
facility i (by either adding it to the critical cluster centered at i, or create the satellite cluster (i, {j})),
instead trying to connect it to any open facility i ∈ F as described in Section 2.3.

Efficient implementation of Routine FIX-CLUSTERING(.). We describe how to implement the
routine so that, it requires Õ(m) amortized time per update. In particular, we describe an implemen-
tation that takes Õ(m) per update, plus O(m) time per each level change of a client. The latter is still
withing the Õ(m) amortized bound, as each client changes levels O(logm) times on average (see
Section 2.4).

First we need an efficient mechanism to detect whether there is a blocking cluster violating invariant 4,
or if there exists a cluster violating invariant 1. Then, we are going to describe how we implement the
subroutines FIX-BLOCKING(C, k) and FIX-LEVEL(C) that restore the invariants of the algorithm.
We describe our data structure as if we had a parameter ϵ that defines the base of the exponential
bucketing scheme, despite setting it to ϵ← 1 in Section 2.3.

Checking for violations of invariants 4 and 1. Notice, that by simply maintaining the average
cost of each critical cluster one can simply iterate over all critical clusters (which are O(m)) and
check whether Invariant 1 is violated. Satellite clusters need to be checked only at their creation
time, as their set of clients and subsequently their average cost does not change. Hence, we don’t
need to iterate over the satellite clusters at each iteration inside FIX-CLUSTERING(.). In fact, each
satellite cluster is checked iteratively until it is placed at the right level following its creation (either
by inserting a new client, or by converting a critical cluster into an satellite one), and the time for
all of these check is accounted in the bound of the up-work and down-work, which is O(logm)
amortized per update.

Checking for violations of Invariant 4 efficiently requires an additional data structure. Conceptually,
for each facility i, we maintain a two-dimensional matrixW of counters of dimensions log(1+ϵ)(∆)×
(ℓmax−ℓmin), where ℓmax, ℓmin the maximum and minimum level that are non-empty at any point in
time ∆ the ratio of the largest distance over the smallest distance between a client and a facility. The
entryW[x, y] contains the number of clients that are at distance in the interval [(1 + ϵ)x−1, (1 + ϵ)x)
from facility i and are currently placed at level y. This matrix has size at most O(log2(1+ϵ)(∆))

(which is O(log2(m)) as we assume ∆ is polynomially bounded by m), but can be sparsified by
maintaining a two dimensional hash table containing only the entries with positive counter values,
while still maintaining constant time access with high probability. Although we implement the sparse
version of this data structure, for ease of description we assume that we maintain the full matrixW .
Using the matrixW for facility i, we check whether there exists a blocking cluster at level ℓ centered
at a facility i as follows. We iterate over all entries ofW[x, y] such that y > ℓ, and in increasing order
of the x coordinate. Each time we visit an entryW[x, y] we check whether the following inequality
holds:

fi +
(∑x

x′=xmin

∑ymax

y′=ℓ+1W [x′, y′] · (1 + ϵ)y
′
)

(∑x
x′=xmin

∑ymax

y′=ℓ+1 1
) ≤ (1 + ϵ)ℓ,

and if it does then we determine that facility i forms a blocking cluster at level ℓ. By maintaining
appropriate running summations, we can iterate over the appropriate entries of the matrix, each
time testing the aforementioned inequality, in time linear in the size of the matrix. Notice that due
to the bucketisation of the distances in powers of (1 + ϵ), we lose another factor of (1 + ϵ) in the
approximation; that is we say that a cluster is blocking at level ℓ only if its average cost is below
(1 + ϵ)(ℓ−1) instead of if its average cost is below (1 + ϵ)ℓ, which increases the approximation by
another (1 + ϵ) factor. Finally, notice that to maintain the matrixW of each facility updated, we only
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need to spend constant time each time a client changes levels (as the distance between a facility and a
client does not change). That is, for each client changing levels, we spend O(m) time to update the
matrices of all facilities. A client can change levels at most O(logm) times, as described in Section
2.4. Hence, one can check whether there exists a blocking cluster in amortized time Õ(m) over
the sequence of all updates. In order to identify the actual blocking cluster one can do that in time
proportional to the size of the blocking cluster: One needs to maintain the neighbors of each facility
in increasing distance at each level and visit them in increasing distance from the facility and only at
the levels that are eligible (that is, levels greater then ℓ).

Implementing subroutines FIX-BLOCKING(C, k) and FIX-LEVEL(C). The subroutines FIX-
BLOCKING(C, k) and FIX-LEVEL(C) perform the necessary changes to the maintained clustering to
restore any violations to the invariants of the algorithm. The only two scenarios that causes a client to
be assigned to a different cluster at the same level are 1) the case where operation FIX-LEVEL(C)
increases the level of a critical cluster, which causes the critical cluster to merge with other satellite
clusters of the destination level, and 2) the case where a critical cluster gets converted into a set of
satellite clusters at the same level. In both of these scenarios, we can charge the work to the time spent
creating the satellite clusters by insertions of new (which isO(1) per update), plus the time of creating
the critical clusters which then get converted into satellite clusters and is at most O(logm) amortized
per udpate. In all other cases, whenever a client changes the cluster to which it is assigned, it also
changes levels. As discussed in Section 2.4, the number of changes of levels of clients is O(logm)
amortized. This implies that the amortized time spent in the subroutines FIX-BLOCKING(C, k) and
FIX-LEVEL(C) is O(logm) per update.

E Missing experiments

E.1 Missing experiments for KDD-Cup dataset

Figure 6: The running time of the algorithms that we consider, in seconds, on the datasets KDD-Cup-
5% (left) and KDD-Cup-50% (right). The plot is in log scale.

E.2 Experiments for Census dataset

In terms of cost, NICECLUSTERING(µ = 3, ϵ = 0.05) algorithm performs overall the best on
the Census-5% and Census-50% instances. In particular, it maintains solutions that are 20%-
30% better compared to GKLX on average over the whole sequence of updates on the Census
datasets. On the other hand NICECLUSTERING(µ = 1, ϵ = 1) performs roughly 10% worse than
NICECLUSTERING(µ = 3, ϵ = 0.05), but better than GKLX. NICECLUSTERING(µ = 3, ϵ = 1)
runs roughly 70%-80% worse than NICECLUSTERING(µ = 3, ϵ = 0.05), and has the worse
performance in terms of cost overall. The behavior of the algorithms, for a single run, is summarized
in Figure 7.
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Figure 7: The total cost incurred by the algorithms that we consider, on the datasets Census-5% (left)
and Census-50% (right). The full plot of the cost of NEARESTFACILITY is cut off to distinguish the
performance of the rest of the algorithms, and is incomparable the rest of the algorithms.

In terms of recourse, NICECLUSTERING(µ = 3, ϵ = 0.05) exhibits higher recourse than GKLX,
by nearly two orders of magnitude on Census-5%, while GKLX11 incurs around 10× recourse
compared to GKLX. In all cases, recourse remains relatively low in absolute value (around 100),
especially considering the lengths of the update sequence and the instance sizes. The behavior of the
algorithms, for a single run, is summarized in Figure 8.

Figure 8: The cumulative recourse incurred by the algorithms that we consider, on the datasets
Census-5% (left) and Census-50% (right). Missing lines imply 0 recourse throughout. The plot is
in log scale.

The running time of the algorithms on the Census instances is very similar to that on the KDD-Cup
instances, as described in the main body of the paper.

Figure 9: The running time of the algorithms that we consider, in seconds, on the datasets Census-5%
(left) and Census-50% (right). The plot is in log scale.
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E.3 Experiments for song dataset

Figure 10: The total cost incurred by the algorithms that we consider, on the datasets song-5% (left)
and song-50% (right). The full plot of the cost of NEARESTFACILITY is cut off to distinguish the
performance of the rest of the algorithms, and is incomparable the rest of the algorithms.

Figure 11: The cumulative recourse incurred by the algorithms that we consider, on the datasets
song-5% (left) and song-50% (right). Missing lines imply 0 recourse throughout. The plot is in log
scale.

Figure 12: The running time of the algorithms that we consider, in seconds, on the datasets song-5%
(left) and song-50% (right). The plot is in log scale.

F Comparing the relative behavior of the algorithms over multiple runs

Comparison of algorithms In order to compare the relative behavior over multiple repetitions
of each experiment that we consider, we proceed as follows. Consider the case where we want to
compare the cost of the solution produced by algorithm A1 to the cost of the solution produced by
algorithm A2. For each dataset that we consider and each repetition of an experiment we average
the ratio costi(A1)/costi(A2), for all 1 ≤ i ≤ maxu, where costi(A) the cost of the solution
produced by algorithm A on the instance following the i-th update, and maxu the total number
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of updates. Denote this average by ϕ(A1,A2) =
(∑maxu

i=1
costi(A1)
costi(A2)

)
/maxu. This gives us the

relative behavior of the two algorithms with respect to the cost of the solution that they produce, on
average, over the whole sequence of updates, for a single repetition.

We use the same methodology to compare the cumulative recourse of two algorithms, which we
spell out for clarity. For each dataset that we consider and each repetition of an experiment we
average the ratio recoursei(A1)/recoursei(A2), for all 1 ≤ i ≤ maxu, where recoursei(A) the
cumulative recourse of the solution maintained by algorithm A following the i-th update. Denote this
average by ψ(A1,A2) =

(∑maxu

i=1
recoursei(A1)+1
recoursei(A2)+1

)
/maxu. We add +1 to both the nominator and

denominator to avoid division with 0.

To aggregate the behavior over multiple repetitions, we report the mean and the standard deviation of
ϕ(A1,A2) and ψ(A1,A2) over 10 repetitions of the experiment.

F.1 Results

NF NC(3, 1) NC(1, 1) NC(3, 0.05) NC(1, 0.05) GKLX
NF 1 1.27 (±0.41) 1.71 (±0.29) 1.78 (±0.28) 1.79 (±0.28) 1.30 (±0.32)

NC(3, 1) 1.01 (±0.00) 1 1.50 (±0.28) 1.58 (±0.29) 1.58 (±0.29) 1.10 (±0.21)
NC(1, 1) 0.67 (±0.04) 0.72 (±0.10) 1 1.05 (±0.02) 1.05 (±0.02) 0.74 (±0.05)

NC(3, 0.05) 0.64 (±0.04) 0.69 (±0.10) 0.96 (±0.01) 1 1.00 (±0.00) 0.71 (±0.06)
NC(1, 0.05) 0.63 (±0.04) 0.69 (±0.10) 0.95 (±0.01) 1.00 (±0.00) 1 0.71 (±0.06)

GKLX 0.92 (±0.09) 0.98 (±0.13) 1.39 (±0.12) 1.45 (±0.15) 1.46 (±0.16) 1

Table 1: Relative behavior of every pair of algorithms that we consider, in terms of the cost of
the solution that they produce. For a single entry in this table, let A1 (resp., A2 ) be the algorithm
representing in the row (resp., column) of the entry. The entry reports the mean and standard deviation
of ϕ(A1,A2), over 10 repetitions, for the dataset KDD-Cup-5%. ±0.00 means the standard deviation
is less than 0.005.

NF NC(3, 1) NC(1, 1) NC(3, 0.05) NC(1, 0.05) GKLX
NF 1 0.03 (±0.01) 0.04 (±0.02) 0.03 (±0.01) 0.02 (±0.01) 0.42 (±0.28)

NC(3, 1) 78.70 (±32.30) 1 2.61 (±0.78) 1.42 (±0.78) 1.36 (±0.84) 30.20 (±30.70)
NC(1, 1) 35.00 (±18.60) 0.68 (±0.41) 1 0.58 (±0.26) 0.56 (±0.28) 17.40 (±23.30)

NC(3, 0.05) 183.00 (±196.00) 2.93 (±3.29) 5.80 (±0.00) 1 1.02 (±0.27) 82.10 (±157.00)
NC(1, 0.05) 158.00 (±124.00) 2.54 (±2.06) 5.92 (±0.29) 1.14 (±0.29) 1 55.80 (±84.30)

GKLX 9.06 (±5.35) 0.14 (±0.07) 0.34 (±0.12) 0.17 (±0.12) 0.15 (±0.11) 1

Table 2: Relative behavior of every pair of algorithms that we consider, in terms of the cumulative
recourse that they incur. For a single entry in this table, let A1 (resp., A2 ) be the algorithm
representing in the row (resp., column) of the entry. The entry reports the mean and standard
deviation of ψ(A1,A2), over 10 repetitions, for the dataset KDD-Cup-5%. ±0.00 means the standard
deviation is less than 0.005.
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NF NC(3, 1) NC(1, 1) NC(3, 0.05) NC(1, 0.05) GKLX
NF 1 4.00 (±5.63) 4.82 (±5.68) 5.18 (±5.82) 5.20 (±5.81) 1.76 (±2.01)

NC(3, 1) 0.86 (±0.00) 1 1.72 (±0.14) 1.96 (±0.17) 1.97 (±0.17) 0.78 (±0.15)
NC(1, 1) 0.50 (±0.02) 0.62 (±0.04) 1 1.14 (±0.02) 1.15 (±0.02) 0.46 (±0.07)

NC(3, 0.05) 0.44 (±0.02) 0.54 (±0.03) 0.88 (±0.01) 1 1.01 (±0.00) 0.40 (±0.06)
NC(1, 0.05) 0.43 (±0.02) 0.54 (±0.03) 0.88 (±0.01) 0.99 (±0.00) 1 0.40 (±0.06)

GKLX 1.19 (±0.27) 2.18 (±2.43) 3.13 (±2.66) 3.47 (±2.71) 3.49 (±2.71) 1

Table 3: Relative behavior of every pair of algorithms that we consider, in terms of the cost of
the solution that they produce. For a single entry in this table, let A1 (resp., A2 ) be the algorithm
representing in the row (resp., column) of the entry. The entry reports the mean and standard deviation
of ϕ(A1,A2), over 10 repetitions, for the dataset KDD-Cup-50%. ±0.00 means the standard deviation
is less than 0.005.

NF NC(3, 1) NC(1, 1) NC(3, 0.05) NC(1, 0.05) GKLX
NF 1 0.27 (±0.23) 0.22 (±0.05) 0.17 (±0.06) 0.14 (±0.04) 0.37 (±0.27)

NC(3, 1) 7.25 (±4.56) 1 1.46 (±0.65) 0.94 (±0.65) 0.74 (±0.44) 1.97 (±2.11)
NC(1, 1) 7.42 (±1.40) 2.04 (±2.10) 1 0.67 (±0.25) 0.51 (±0.16) 1.84 (±2.36)

NC(3, 0.05) 17.50 (±8.94) 3.82 (±3.15) 2.23 (±0.00) 1 0.85 (±0.25) 3.39 (±3.99)
NC(1, 0.05) 23.00 (±9.53) 5.27 (±4.56) 2.80 (±0.88) 1.54 (±0.88) 1 3.88 (±4.45)

GKLX 21.80 (±15.20) 4.55 (±5.74) 2.71 (±1.12) 1.66 (±1.12) 1.21 (±1.01) 1

Table 4: Relative behavior of every pair of algorithms that we consider, in terms of the cumulative
recourse that they incur. For a single entry in this table, let A1 (resp., A2 ) be the algorithm
representing in the row (resp., column) of the entry. The entry reports the mean and standard
deviation of ψ(A1,A2), over 10 repetitions, for the dataset KDD-Cup-50%. ±0.00 means the
standard deviation is less than 0.005.

NF NC(3, 1) NC(1, 1) NC(3, 0.05) NC(1, 0.05) GKLX
NF 1 4.80 (±0.72) 7.24 (±0.40) 7.91 (±0.38) 8.00 (±0.38) 6.15 (±1.30)

NC(3, 1) 0.23 (±0.00) 1 1.57 (±0.17) 1.73 (±0.20) 1.75 (±0.19) 1.33 (±0.25)
NC(1, 1) 0.15 (±0.00) 0.66 (±0.05) 1 1.10 (±0.02) 1.11 (±0.02) 0.85 (±0.13)

NC(3, 0.05) 0.13 (±0.00) 0.60 (±0.05) 0.91 (±0.02) 1 1.01 (±0.00) 0.77 (±0.11)
NC(1, 0.05) 0.13 (±0.00) 0.59 (±0.05) 0.90 (±0.01) 0.99 (±0.00) 1 0.76 (±0.11)

GKLX 0.19 (±0.04) 0.83 (±0.21) 1.28 (±0.41) 1.40 (±0.44) 1.41 (±0.44) 1

Table 5: Relative behavior of every pair of algorithms that we consider, in terms of the cost of
the solution that they produce. For a single entry in this table, let A1 (resp., A2 ) be the algorithm
representing in the row (resp., column) of the entry. The entry reports the mean and standard deviation
of ϕ(A1,A2), over 10 repetitions, for the dataset Census-5%. ±0.00 means the standard deviation
is less than 0.005.

NF NC(3, 1) NC(1, 1) NC(3, 0.05) NC(1, 0.05) GKLX
NF 1 0.43 (±0.31) 0.08 (±0.03) 0.01 (±0.00) 0.01 (±0.00) 0.57 (±0.29)

NC(3, 1) 4.99 (±3.69) 1 0.33 (±0.04) 0.05 (±0.04) 0.03 (±0.02) 2.64 (±2.42)
NC(1, 1) 19.10 (±10.50) 7.98 (±7.22) 1 0.15 (±0.06) 0.08 (±0.03) 11.24 (±10.02)

NC(3, 0.05) 142.00 (±33.90) 63.09 (±58.76) 9.44 (±0.00) 1 0.61 (±0.11) 72.04 (±48.93)
NC(1, 0.05) 268.00 (±75.00) 113.88 (±108.74) 16.13 (±0.41) 1.84 (±0.41) 1 135.79 (±105.36)

GKLX 9.95 (±7.62) 3.48 (±3.88) 0.64 (±0.04) 0.07 (±0.04) 0.04 (±0.03) 1

Table 6: Relative behavior of every pair of algorithms that we consider, in terms of the cumulative
recourse that they incur. For a single entry in this table, let A1 (resp., A2 ) be the algorithm
representing in the row (resp., column) of the entry. The entry reports the mean and standard
deviation of ψ(A1,A2), over 10 repetitions, for the dataset Census-5%. ±0.00 means the standard
deviation is less than 0.005.
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NF NC(3, 1) NC(1, 1) NC(3, 0.05) NC(1, 0.05) GKLX
NF 1 4.82 (±0.53) 7.25 (±0.33) 7.86 (±0.16) 7.94 (±0.17) 6.28 (±0.65)

NC(3, 1) 0.22 (±0.00) 1 1.54 (±0.14) 1.69 (±0.18) 1.70 (±0.18) 1.35 (±0.21)
NC(1, 1) 0.15 (±0.00) 0.67 (±0.05) 1 1.09 (±0.02) 1.10 (±0.02) 0.87 (±0.08)

NC(3, 0.05) 0.13 (±0.00) 0.61 (±0.05) 0.92 (±0.02) 1 1.01 (±0.00) 0.80 (±0.06)
NC(1, 0.05) 0.13 (±0.00) 0.61 (±0.05) 0.91 (±0.02) 0.99 (±0.00) 1 0.79 (±0.06)

GKLX 0.17 (±0.01) 0.79 (±0.11) 1.18 (±0.14) 1.28 (±0.13) 1.30 (±0.13) 1

Table 7: Relative behavior of every pair of algorithms that we consider, in terms of the cost of
the solution that they produce. For a single entry in this table, let A1 (resp., A2 ) be the algorithm
representing in the row (resp., column) of the entry. The entry reports the mean and standard deviation
of ϕ(A1,A2), over 10 repetitions, for the dataset Census-50%. ±0.00 means the standard deviation
is less than 0.005.

NF NC(3, 1) NC(1, 1) NC(3, 0.05) NC(1, 0.05) GKLX
NF 1 0.30 (±0.28) 0.07 (±0.03) 0.01 (±0.01) 0.01 (±0.00) 0.29 (±0.29)

NC(3, 1) 8.28 (±6.88) 1 0.42 (±0.10) 0.09 (±0.10) 0.07 (±0.08) 2.43 (±4.62)
NC(1, 1) 21.35 (±7.78) 5.10 (±4.33) 1 0.19 (±0.12) 0.14 (±0.10) 5.19 (±7.03)

NC(3, 0.05) 167.01 (±102.33) 62.30 (±95.60) 9.33 (±0.00) 1 0.69 (±0.12) 33.70 (±29.64)
NC(1, 0.05) 274.23 (±141.82) 95.60 (±132.00) 15.59 (±0.42) 1.65 (±0.42) 1 44.07 (±36.83)

GKLX 17.18 (±8.94) 4.38 (±3.61) 0.97 (±0.09) 0.14 (±0.09) 0.09 (±0.06) 1

Table 8: Relative behavior of every pair of algorithms that we consider, in terms of the cumulative
recourse that they incur. For a single entry in this table, let A1 (resp., A2 ) be the algorithm
representing in the row (resp., column) of the entry. The entry reports the mean and standard
deviation of ψ(A1,A2), over 10 repetitions, for the dataset Census-50%. ±0.00 means the standard
deviation is less than 0.005.

NF NC(3, 1) NC(1, 1) NC(3, 0.05) NC(1, 0.05) GKLX
NF 1 6.95 (±1.14) 8.70 (±0.60) 9.77 (±0.53) 9.99 (±0.45) 7.84 (±0.77)

NC(3, 1) 0.16 (±0.00) 1 1.30 (±0.20) 1.46 (±0.18) 1.51 (±0.21) 1.17 (±0.19)
NC(1, 1) 0.13 (±0.00) 0.79 (±0.08) 1 1.14 (±0.03) 1.17 (±0.03) 0.90 (±0.04)

NC(3, 0.05) 0.11 (±0.00) 0.70 (±0.05) 0.88 (±0.02) 1 1.03 (±0.01) 0.80 (±0.04)
NC(1, 0.05) 0.11 (±0.00) 0.68 (±0.06) 0.86 (±0.02) 0.98 (±0.01) 1 0.78 (±0.04)

GKLX 0.14 (±0.01) 0.89 (±0.12) 1.12 (±0.06) 1.27 (±0.09) 1.30 (±0.09) 1

Table 9: Relative behavior of every pair of algorithms that we consider, in terms of the cost of
the solution that they produce. For a single entry in this table, let A1 (resp., A2 ) be the algorithm
representing in the row (resp., column) of the entry. The entry reports the mean and standard deviation
of ϕ(A1,A2), over 10 repetitions, for the dataset song-5%. ±0.00 means the standard deviation is
less than 0.005.

NF NC(3, 1) NC(1, 1) NC(3, 0.05) NC(1, 0.05) GKLX
NF 1 0.92 (±0.23) 0.30 (±0.35) 0.02 (±0.01) 0.01 (±0.00) 0.32 (±0.23)

NC(3, 1) 2.00 (±3.00) 1 0.39 (±0.02) 0.03 (±0.02) 0.02 (±0.02) 0.40 (±0.31)
NC(1, 1) 7.26 (±3.65) 6.34 (±3.52) 1 0.10 (±0.05) 0.06 (±0.03) 1.68 (±0.77)

NC(3, 0.05) 118.00 (±49.10) 106.11 (±54.66) 35.90 (±0.00) 1 0.66 (±0.26) 30.45 (±29.23)
NC(1, 0.05) 222.00 (±100.00) 210.56 (±114.13) 55.97 (±1.22) 2.23 (±1.22) 1 44.09 (±31.32)

GKLX 11.60 (±4.50) 10.29 (±5.33) 2.81 (±0.07) 0.12 (±0.07) 0.07 (±0.04) 1

Table 10: Relative behavior of every pair of algorithms that we consider, in terms of the cumulative
recourse that they incur. For a single entry in this table, let A1 (resp., A2 ) be the algorithm
representing in the row (resp., column) of the entry. The entry reports the mean and standard
deviation of ψ(A1,A2), over 10 repetitions, for the dataset song-5%. ±0.00 means the standard
deviation is less than 0.005.
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NF NC(3, 1) NC(1, 1) NC(3, 0.05) NC(1, 0.05) GKLX
NF 1 6.35 (±1.35) 8.33 (±0.52) 9.70 (±0.42) 9.89 (±0.44) 7.96 (±0.59)

NC(3, 1) 0.18 (±0.00) 1 1.38 (±0.26) 1.64 (±0.37) 1.67 (±0.37) 1.32 (±0.26)
NC(1, 1) 0.13 (±0.00) 0.76 (±0.09) 1 1.18 (±0.03) 1.20 (±0.03) 0.96 (±0.03)

NC(3, 0.05) 0.11 (±0.00) 0.65 (±0.08) 0.85 (±0.02) 1 1.02 (±0.01) 0.81 (±0.03)
NC(1, 0.05) 0.11 (±0.00) 0.63 (±0.08) 0.84 (±0.02) 0.98 (±0.01) 1 0.80 (±0.03)

GKLX 0.14 (±0.00) 0.79 (±0.10) 1.05 (±0.03) 1.24 (±0.05) 1.26 (±0.05) 1

Table 11: Relative behavior of every pair of algorithms that we consider, in terms of the cost of
the solution that they produce. For a single entry in this table, let A1 (resp., A2 ) be the algorithm
representing in the row (resp., column) of the entry. The entry reports the mean and standard deviation
of ϕ(A1,A2), over 10 repetitions, for the dataset song-50%. ±0.00 means the standard deviation is
less than 0.005.

NF NC(3, 1) NC(1, 1) NC(3, 0.05) NC(1, 0.05) GKLX
NF 1 0.99 (±0.04) 0.41 (±0.34) 0.02 (±0.01) 0.01 (±0.00) 0.43 (±0.19)

NC(3, 1) 1.12 (±0.36) 1 0.42 (±0.01) 0.02 (±0.01) 0.01 (±0.00) 0.43 (±0.19)
NC(1, 1) 5.38 (±3.83) 5.19 (±3.79) 1 0.06 (±0.05) 0.03 (±0.02) 2.43 (±2.95)

NC(3, 0.05) 134.83 (±82.51) 132.00 (±81.40) 46.79 (±0.00) 1 0.59 (±0.17) 63.67 (±97.23)
NC(1, 0.05) 239.92 (±108.17) 232.00 (±98.70) 83.56 (±0.62) 2.05 (±0.62) 1 99.59 (±132.35)

GKLX 9.20 (±4.21) 8.84 (±3.74) 3.12 (±0.06) 0.10 (±0.06) 0.05 (±0.02) 1

Table 12: Relative behavior of every pair of algorithms that we consider, in terms of the cumulative
recourse that they incur. For a single entry in this table, let A1 (resp., A2 ) be the algorithm
representing in the row (resp., column) of the entry. The entry reports the mean and standard
deviation of ψ(A1,A2), over 10 repetitions, for the dataset song-50%. ±0.00 means the standard
deviation is less than 0.005.
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