
A Justification for The Acquisition Functions Being Sampled from GPs

For our Algo. 1, the work of [24] has shown that if βt = 1, then after running lines 4-7 of Algo. 1,
the resulting function f it (x; θit) corresponds to a function sampled from the GP posterior with the
NTK as the kernel function: GP(µt−1(·), σ2

t−1(·, ·)) conditioned on the (t − 1) × B observations
from the first t− 1 iterations. The GP posterior mean and covariance function are expressed as:

µt−1(x) , kt−1(x)>(Kt−1 + σ2I)−1yt−1 , (1)

σ2
t−1(x,x′) , k(x,x′)− kt−1(x)>(Kt−1 + σ2I)−1kt−1(x′) (2)

where kt−1(x) , (k(x,xiτ ))>τ=1,...,t−1,i=1,...,B which is a (t − 1)B−dimensional vector,
yt , (yiτ )>τ=1,...,t−1,i=1,...,B which is also a (t − 1)B−dimensional vector, and Kt ,

(k(xiτ ,x
i′

τ ′))τ=1,...,t−1,i=1,...,B;τ ′=1,...,t−1,i′=1,...,B which is a (t − 1)B × (t − 1)B−dimensional
squared matrix.

For our Algo. 2, when βt = 1, because every run of the procedure in lines 4-6 corresponds to running
the sample-then-optimize method [42] while treating the neural tangent features as the input features,
therefore, the resulting linear function f it (x; θit) w.r.t. θit also corresponds to a sampled function from
the GP posterior GP(µt−1(·), σ2

t−1(·, ·)) with the NTK (if the NN is infinite-width) or empirical
NTK (if the NN if finite-width) as the kernel function according to the work of [42].

Next, for both Algo. 1 and Algo. 2, when βt = 2 log(π2t2|X |/δ), since we have multiplied the output
of NN by βt which corresponds to multiplying the gradient of the NN by βt, therefore, the resulting
NTK will be multiplied by β2

t . Also note that we have also multiplied the noise variance σ2 by β2
t in

(1). As a result, after plugging these two changes into the equations for GP posterior mean (2) and
variance (3), it is easy to verify that the GP posterior variance will be multiplied by β2

t while the GP
posteior mean is unchanged.

B GP Posterior Variance with NTK

When using the NTK as the kernel function, the GP posterior variance (3) at any input x can be easily
approximated by

σ2
t−1(x,x) ≈ ∇θf(x; θ0)>

[
Σt−1 + σ2I

]−1
∇θf(x; θ0), (3)

in which

Σt−1 =

t−1∑
τ=0

B∑
i=1

∇θf(xiτ ; θ0)∇θf(xiτ ; θ0)>, (4)

and θ0 ∼ init(·) are randomly initialized parameters. Therefore, to run the uncertainty sampling
algorithm as the initialization stage, we simply need to sequentially maximize equation (4), i.e.,
in iteration t of the initialization stage, we simply choose the next initial input x by maximizing
equation (4).

C Proof of Theorem 1

Here, to simplify the analysis, we follow the work of [17] and reparameterize the iterations to view
our algorithms in the sequential setting. Specifically, in the main text (Algos. 1 and 2), every B
function evaluations are counted as an iteration t; however, we reparameterize the iterations such that
every query selection is counted as an iteration t. That is, every time an input query is selected, we
increment the number of iterations by 1. As a result, before the reparameterization, the cumulative
regret is expressed as RT =

∑T/B
t=1

∑B
i=1(f(x∗) − f(xit)); after reparameterization, the same

cumulative regret is now expressed as RT =
∑T
t=1(f(x∗)− f(xt)). Note that when B = 1, the two

parameterizations are the same. Therefore, in the entire proof in this section, we index the iterations
sequentially by 1, 2, . . . , t, t+ 1, . . . , T .

At iteration t, we use fb[t] to denote the largest iteration index whose observation has been collected.
For example, if the batch size is B = 3, assuming that after the most recent batch of inputs
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have been collected, we have in total gathered t − 1 observations; then when selecting the input
queries in iterations t, t + 1 and t + 2, we have that fb[t] = fb[t + 1] = fb[t + 2] = t − 1,
because the index of the most recent observation is fixed at t − 1 since we do not collect any
new observations during this process. Next, when choosing the input query at iterations t + 3,
t + 4 and t + 5, we have that fb[t + 3] = fb[t + 4] = fb[t + 5] = t + 2. As a result of our
reparameterization here, the requirement on the constant C from Theorem 1 should be slightly
modified into: maxA⊂X ,|A|≤B−1 I(f ;yA|y1:fb[t]) ≤ C, ∀t ≥ 1, where y1:fb[t] represents the output
observations from iterations 1 to fb[t].

Our reparameterization mentioned above allows us to derive more general theoretical results which
hold for both synchronous and asynchronous batch BO. In the setting of synchronous batch evaluations
which we have focused on in the main text, max{t − B, 0} ≤ fb[t] ≤ t − 1. In this setting, fb[t]
is a deterministic function of t, which is determined before the algorithm starts. Of note, although
we focus on the setting of synchronous batch BO in our theoretical analysis, the only requirement
of our theoretical analysis on fb[t] is that t − fb[t] ≤ B, i.e., the number of pending observations
t− fb[t]− 1 should be upper-bounded by B − 1. Therefore, our theoretical results also hold in the
setting of asynchronous batch BO, because the number of pending observations in asynchronous
batch BO is always equal to B − 1 [17].

Denote as µfb[t] and σfb[t] the GP posterior mean and standard deviation conditioned on the ob-
servations from iteration 1 to fb[t]. Define Ft−1 = {x1, y1, . . . ,xfb[t], yfb[t],xfb[t]+1, . . . ,xt−1}
as the history of selected inputs and observed outputs for those completed observations, as well
as the selected inputs of those pending observations. Define βt = 2 log(π2t2|X |/(3δ)), and
ct = βt(1 +

√
2 log(|X |t2)).

Lemma 1. Choose δ ∈ (0, 1). Define Ef (t) as the event that |µfb[t](x)− f(x)| ≤ βtσfb[t](x),∀x ∈
X . We have that P(Ef (t)) ≥ 1− δ/2,∀t ≥ 1.

The proof of Lemma 1, which follows from the proof of Lemma 5.1 of [57], makes use of our assump-
tion that f is sampled from a GP and relies on simple applications of the concentration of Gaussian
distributions and union bounds. Denote by ft the acquisition function in iteration t, which is sampled
from the GP posterior with the NTK as the kernel function: ft ∼ GP(µfb[t](·), β2

t σ
2
fb[t](·, ·)) as we

have justified in Appendix A. Note that the query in iteration t is selected by xt = arg maxx∈X ft(x),
which corresponds to line 8 of Algo. 1 and line 7 of Algo. 2 respectively.

Lemma 2. Define Eft(t) as the event that |µfb[t](x)− ft(x)| ≤ βt
√

2 log(|X |t2)σfb[t](x),∀x ∈ X .
We have that P(Eft(t)) ≥ 1− 1/t2,∀t ≥ 1.

The proof of Lemma 2 follows from Lemma 5 of the work of [7]. Importantly, conditioned on both
events Ef (t) and Eft(t), we have that

|f(x)− ft(x)| ≤ ctσfb[t](x). (5)

We next define the set of saturated points, which can be understood as the set of undesirable points in
every iteration.

Definition 1. Define the set of saturated inputs in iteration t as

St = {x ∈ X : ∆(x) > ctσfb[t](x)},

in which ∆(x) = f(x∗)− f(x).

An important consequence of the definition above is that x∗ is always unsaturated, because ∆(x∗) =
0 < ctσfb[t](x

∗).

Lemma 3. For any Ft−1, conditioned on the events Ef (t), we have that ∀x ∈ X ,

P
(
ft(x) > f(x)|Ft−1

)
≥ p, (6)

in which p = 1
4e
√
π

.
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Proof.

P
(
ft(x) > f(x)|Ft−1

)
= P

(
ft(x)− µfb[t](x)

βtσfb[t](x)
>
f(x)− µfb[t](x)

βtσfb[t](x)

∣∣∣Ft−1)

≥ P

(
ft(x)− µfb[t](x)

βtσfb[t](x)
>
|f(x)− µfb[t](x)|

βtσfb[t](x)

∣∣∣Ft−1)
(a)

≥ P

(
ft(x)− µfb[t](x)

βtσfb[t](x)
> 1
∣∣∣Ft−1)

(b)

≥ e−1

4
√
π
.

(7)

(a) follows from Lemma 1, which holds because we condition on the event Ef (t) here. (b) follows
since ft(x) ∼ N (µfb[t](x), β2

t σ
2
fb[t](x)) and makes use of the Gaussian anti-concentration inequality,

i.e., P(Z > a) ≥ e−a2

4
√
πa

where Z follows a standard Gaussian distribution.

The next Lemma shows that the probability that the selected input is unsaturated (i.e., desirable
according to Definition 1) can be lower-bounded.
Lemma 4. For any Ft−1, conditioned on the event Ef (t), we have that

P
(
xt ∈ X \ St, |Ft−1

)
≥ p− 1/t2.

Proof. To begin with, we can lower-bounded the probability that the selected xt is unsaturated as
follows:

P
(
xt ∈ X \ St|Ft−1

)
≥ P

(
ft(x

∗) > ft(x),∀x ∈ St|Ft−1
)
. (8)

The inequality above holds because the event on the right hand sight implies the event on the left
hand side. Specifically, because x∗ is always unsaturated (Definition 1), therefore, as long as
ft(x

∗) > ft(x),∀x ∈ St, then the selected xt is guaranteed to be unsaturated because it is selected
as xt = arg maxx∈X ft(x).

Next, we assume that both events Ef (t) and Eft(t) holds, which allows us to derive an upper bound
on ft(x) for all x ∈ St:

ft(x)
(a)

≤ f(x) + ctσfb[t](x)
(b)

≤ f(x) + ∆(x) = f(x) + f(x∗)− f(x) = f(x∗), (9)

in which (a) results from Lemma 1 and Lemma 2 and (b) follows from Definition 1. As a re-
sult,equation (10) implies that when both both events Ef (t) and Eft(t) hold, we have that

P
(
ft(x

∗) > ft(x),∀x ∈ St|Ft−1
)
≥ P

(
ft(x

∗) > f(x∗)|Ft−1
)
. (10)

Next, combining equations (9) and (11) and separately considering the cases where the event Eft(t)
is true or false, we have that

P
(
xt ∈ X \ St|Ft−1

)
≥ P

(
ft(x

∗) > ft(x),∀x ∈ St|Ft−1
)

(a)

≥ P
(
ft(x

∗) > f(x∗)|Ft−1
)
− P

(
Eft(t)|Ft−1

)
(b)

≥ p− 1/t2.

(11)

This completes the proof.

We use σt−1(·) to represent the GP posterior standard deviation conditioned on all selected input
queries from iterations 1 to t− 1.
Lemma 5. We have for all t ≥ 1 and all x ∈ X that

σfb[t](x)

σt−1(x)
≤ eC .
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Proof. We use y1:fb[t] to denote the output observations from iterations 1 to fb[t], use yfb[t]+1:t−1 to
represent the the output observations from iterations fb[t] + 1 to t − 1, and use yA to denote the
vector of observations at a set of inputs A ⊂ X . We use H(·) to represent the entroy of a random
variable.

To begin with, we establish the relationship between the following conditional information gain and
the ratio of GP posterior standard deviations which we intend to upper-bound:

I(f(x);yfb[t]+1:t−1|y1:fb[t])) = H(f(x)|y1:fb[t]))−H(f(x)|y1:t−1))

=
1

2
log(2πeσ2

fb[t](x))− 1

2
log(2πeσ2

t−1(x))

= log
σfb[t](x)

σt−1(x)
.

(12)

The first equality comes from the definition of conditional information gain and the second equality
follows immediately from the entroy of Gaussian random variables. The equation above allows us to
upper-bound the ratio of GP posterior standard deviations as follows:

σfb[t](x)

σt−1(x)
= exp(I(f(x);yfb[t]+1:t−1|y1:fb[t])))

(a)

≤ exp(I(f ;yfb[t]+1:t−1|y1:fb[t])))

(b)

≤ exp
(

max
A⊂X ,|A|≤B−1

I(f ;yA|y1:fb[t])
) (c)

≤ eC ,

(13)

in which (a) is because the information gain about f is larger than that of f(x), (b) follow since the
size of yfb[t]+1:t−1 is at most B − 1 in our batch setting with a batch size of B, and (c) is a result of
the definition of the constant C. This completes the proof.

Next, we are ready to prove an upper bound on the expected instantaneous regret rt = f(x∗)− f(xt).

Lemma 6. For any Ft−1, conditioned on the event Ef (t), we have that

E
[
rt|Ft−1

]
≤ cteC

(
1 +

10

p

)
E
[
σt−1(xt)|Ft−1

]
+

2B′

t2
.

Proof. To begin with, define
xt , arg minx∈X\St

σfb[t](x). (14)

That is, xt is the unsaturated input with the smallest GP posterior standard deviation. Note that given
a Ft−1, xt is deterministic. Next, we have that

E[σfb[t](xt)|Ft−1] ≥ E
[
σfb[t](xt)|Ft−1,xt ∈ X \ St

]
P
(
xt ∈ X \ St|Ft−1

)
≥ σfb[t](xt)(p− 1/t2),

(15)

where the second inequality makes use of Lemma 4, which holds here because we have also
conditioned on the event Ef (t) in Lemma 4. Next, conditioned on both Ef (t) and Eft(t), we
have that

rt = f(x∗)− f(xt) = f(x∗)− f(xt) + f(xt)− f(xt)

(a)

≤ ∆(xt) + ft(xt) + ctσfb[t](xt)− ft(xt) + ctσfb[t](xt)

(b)

≤ ctσfb[t](xt) + ctσfb[t](xt) + ctσfb[t](xt) + ft(xt)− ft(xt)
(c)

≤ ct

(
2σfb[t](xt) + σfb[t](xt)

)
,

(16)

in which (a) makes use of Lemma 1 and Lemma 2, (b) follows since xt is unsaturated, and (c)
follows from the way in which xt is selected: xt = arg maxx∈X ft(x). Next, the expected value of
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rt can be upper-bounded as follows:

E
[
rt|Ft−1

]
≤ E

[
ct

(
2σfb[t](xt) + σfb[t](xt)

)
|Ft−1

]
+ 2B′P

(
Eft(t)|Ft−1

)
(a)

≤ E

[
ct

(
2

p− 1/t2
σfb[t](xt) + σfb[t](xt)

)
|Ft−1

]
+

2B′

t2

= E

[
ct

(
1 +

2

p− 1/t2

)
σfb[t](xt)|Ft−1

]
+

2B′

t2

(b)

≤ ct

(
1 +

2

p− 1/t2

)
E
[
eCσt−1(xt)|Ft−1

]
+

2B′

t2

(c)

≤ cte
C

(
1 +

10

p

)
E
[
σt−1(xt)|Ft−1

]
+

2B′

t2
,

(17)

where (a) follows from equation (16) and (b) makes use of Lemma 5. (c) follows since 2/(p−1/t2) ≤
10/p, which holds because (i) p− 1/t2 < 0 for t < 5, (ii) 2/(p− 1/t2) ≤ 10/p for t = 5, and (iii)
2/(p− 1/t2) is decreasing as t increases when t ≥ 5.

Definition 2. Define Y0 = 0, and for all t = 1, . . . , T ,

rt = rtI{Ef (t)},

Xt = rt − cteC
(

1 +
10

p

)
σt−1(xt)−

2B′

t2

Yt =

t∑
s=1

Xs.

Lemma 7. Conditioned on the event Ef (t), (Yt : t = 0, . . . , T ) is a super-martingale with respect
to the filtration Ft.

Proof.
E[Yt − Yt−1|Ft−1] = E[Xt|Ft−1]

= E[rt − cteC
(

1 +
10

p

)
σt−1(xt)−

2B′

t2
|Ft−1]

= E[rt|Ft−1]−

(
cte

C

(
1 +

10

p

)
E[σt−1(xt)|Ft−1] +

2B′

t2

)
≤ 0.

(18)

If the event Ef (t) holds, then rt = rt and the inequality follows from Lemma 6. If Ef (t) does not
hold, rt = 0 and the inequality holds trivially.

Lastly, we can apply the Azuma-Hoeffding’s inequality to the martingale (Yt : t = 0, . . . , T ) to
derive the upper bound on the cumulative regret RT .
Lemma 8. Define C1 , 2

log(1+σ−2) . With probability of ≥ 1− δ, we have that

RT ≤ cT eC
(

1 +
10

p

)√
C1TγT +

B′π2

3
+

[
4B′ + cT e

C

(
1 +

10

p

)
K0

]√
2T log(2/δ). (19)

Proof. To begin with, note that

|Yt − Yt−1| = |Xt| ≤ |rt|+ cte
C

(
1 +

10

p

)
σt−1(xt) +

2B′

t2

≤ 2B′ + cte
C

(
1 +

10

p

)
K0 + 2B′

= 4B′ + cte
C

(
1 +

10

p

)
K0,

(20)
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where we have made use of our assumption that Θ(x,x′) ≤ K0 in the second inequality. Next,
applying the Azuma-Hoeffding’s inequality to (Yt : t = 0, . . . , T ) with a probability of δ/2, we have
with probability ≥ 1− δ/2 that

T∑
t=1

rt ≤
T∑
t=1

cte
C
(

1 +
10

p

)
σt−1(xt) +

T∑
t=1

2B′

t2
+

√√√√2 log(2/δ)

T∑
t=1

(
4B′ + cteC

(
1 +

10

p

)
K0

)2
(a)

≤ cT e
C
(

1 +
10

p

) T∑
t=1

σt−1(xt) +
B′π2

3
+

[
4B′ + cT e

C

(
1 +

10

p

)
K0

]√
2T log(2/δ)

(b)

≤ cT e
C
(

1 +
10

p

)√
C1TγT +

B′π2

3
+

[
4B′ + cT e

C

(
1 +

10

p

)
K0

]√
2T log(2/δ).

(21)

(a) follows since ct is increasing in t, and (b) follows from the proof of Lemma 5.4 in the work
of [57]. Next, note that rt = rt,∀t ≥ 1 with probability of ≥ 1 − δ/2 according to Lemma 1.
Therefore, the upper bound derived in the equation above is an upper bound on RT =

∑T
t=1 rt (with

probability of ≥ 1− δ), and the proof is completed.

Note that cT = O(log2 T ). From Lemma 8, we have that

RT = O
(
eC(log2 T )

√
T
(
1 +
√
γT
))

= Õ
(
eC
√
T
(
1 +
√
γT
))
. (22)

D Proof of Theorem 2

In this section, the main technical challenge is to rigorously account for the mismatch between the
kernel with which we assume the objective function f is sampled (i.e., the exact NTK Θ) and the
kernel with which the acquisition function is sampled (i.e., the empirical NTK Θ̃). For ease of
exposition, we use k and k̃ (instead of Θ and Θ̃) to represent the exact and empirical NTK in the
proof in this section. Similarly, we also use˜ to indicate that a term is associated with the empirical
NTK k̃. For example, we use µ̃fb[t](·) and σ̃2

fb[t](·) to represent the GP posterior mean and variance

calculated using the empirical NTK k̃.

For simplicity, we assume that the event in Proposition 1 holds throughout the entire proof, which
happens with probability of ≥ 1− δ/4. That is, the approximation error between exact and empirical
NTKs is bounded:

|k̃(x,x′)− k(x,x′)| =
∣∣∣〈∇θf(x, θ̃),∇θf(x′, θ̃)〉 −Θ(x,x′)

∣∣∣ ≤ (L+ 1)ε, ∀x,x′ ∈ X . (23)

To begin with, we use the following lemma to bound the difference between the GP posterior standard
deviations calculated using the exact and empirical NTKs. Here, to simplify the derivations and
results, we assume that (L+ 1)ε ≤ 1 and σ2 ≤ 1. Note that these assumptions are not essential to
the proof but are only used get cleaner expressions. Here, again for ease of expositions, we define
K̂0 , max{1,K0}, and K̂2

0 , max{1,K2
0}.

Lemma 9. We have ∀t ≥ 1,∀x ∈ X that

|σfb[t](x)− σ̃fb[t](x)| ≤

√√√√(L+ 1)ε

(
1 +

4K̂2
0 t

2

σ4

)
.

Proof. Denote by Kt the fb[t] × fb[t]-dimensional gram matrix of exact NTK covariance values
calculated using all fb[t] observations up to iteration fb[t], and use K̃t to represent the corresponding
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gram matrix calculated using the empirical NTK k̃. If we define A = (Kt + σ2)−1 or A =

(K̃t + σ2)−1, then for both values of A, we have that

‖A‖2 =
√

max[eig(A>A)] =
√

max[eig(A)2] ≤ 1

σ2
. (24)

This allows us to derive the following equation:∥∥∥(Kt + σ2)−1 − (K̃t + σ2)−1
∥∥∥
2
≤
∥∥∥(Kt + σ2)−1

∥∥∥
2

∥∥∥(K̃t + σ2)−1
∥∥∥
2

∥∥∥Kt − K̃t

∥∥∥
2

≤ 1

σ2
× 1

σ2
× t(L+ 1)ε =

t(L+ 1)ε

σ4
.

(25)

Define the fb[t]-dimensional vectors kt(x) = [k(x,xτ )]τ=1,...,fb[t] and k̃t(x) = [k̃(x,xτ )]τ=1,...,fb[t].
Then making use of the approximation guarantee from equation (24), we define k̃t(x) = kt(x) +
(L+ 1)εν(x), where ν(x) is an fb[t]−dimensional vector where every element satisfies |ν(x)i| ≤
1,∀i ∈ [fb[t]]. Now we can use these definitions to derive the following upper bound.

|σ2
fb[t](x)− σ̃2

fb[t](x)| = |k(x,x)− kt(x)>(Kt + σ2I)−1kt(x)

− k̃(x,x) + k̃t(x)>(K̃t + σ2I)−1k̃t(x)|

≤ |k(x,x)− k̃(x,x)|+ |kt(x)>(Kt + σ2I)−1kt(x)− k̃t(x)>(K̃t + σ2I)−1k̃t(x)|

≤ (L+ 1)ε+
∣∣∣kt(x)>

(
(Kt + σ2I)−1 − (K̃t + σ2I)−1

)
kt(x)

− 2(L+ 1)εν(x)>(K̃t + σ2I)−1kt(x)− (L+ 1)2ε2ν(x)>(K̃t + σ2I)−1ν(x)
∣∣∣

≤ (L+ 1)ε+
∥∥kt(x)

∥∥
2

∥∥∥(Kt + σ2)−1 − (K̃t + σ2)−1
∥∥∥
2

∥∥kt(x)
∥∥
2

+

2(L+ 1)ε
∥∥ν(x)

∥∥
2

∥∥∥(K̃t + σ2)−1
∥∥∥
2

∥∥kt(x)
∥∥
2

+ (L+ 1)2ε2
∥∥ν(x)

∥∥
2

∥∥∥(K̃t + σ2I)−1
∥∥∥
2

∥∥ν(x
∥∥
2
)

≤ (L+ 1)ε+K0

√
t
t(L+ 1)ε

σ4
K0

√
t+ 2(L+ 1)ε

√
t

1

σ2
K0

√
t+ (L+ 1)2ε2

√
t

1

σ2

√
t

= (L+ 1)ε+K2
0

t2(L+ 1)ε

σ4
+ 2K0(L+ 1)ε

t

σ2
+ (L+ 1)2ε2

t

σ2

≤ (L+ 1)ε+ 4K̂2
0

t2(L+ 1)ε

σ4

≤ (L+ 1)ε

(
1 +

4K̂2
0 t

2

σ4

)
.

(26)

Elementary calculation tells us that for a, b, c > 0, if a2 − b2 ≤ c2, then a ≤
√
b2 + c2 ≤ b + c,

which leads to a − b ≤ c. As a result, the equation above tells us that |σfb[t](x) − σ̃fb[t](x)| ≤√
(L+ 1)ε

(
1 +

4K̂2
0 t

2

σ4

)
.

The next Lemma gives an upper bound on the difference between the GP posterior means calculated
using the exact and empirical NTKs.
Lemma 10. With probability of ≥ 1− δ/4, we have ∀t ≥ 1,∀x ∈ X that

|µfb[t](x)− µ̃fb[t](x)| ≤ 2K̂0
t2(L+ 1)ε

σ4

(
B′ + σ

√
2 log(4T/δ)

)
.

Proof. Define yt = [yτ ]τ=1,...,fb[t]. We have that yτ = f(xτ ) + ε where ε ∼ N (0, σ2). Standard
Gaussian concentration tells us that |ε| ≤ zσ with probability of ≥ 1− exp(−z2/2). Substituting
z =

√
2 log(4T/δ) and making use of the assumption that |f(x)| ≤ B′,∀x ∈ X , we have that

|yτ | ≤ B′+σ
√

2 log(4T/δ) with probability of≥ 1−δ/(4T ). Now taking a union bound over all T
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iterations, we have that |yτ | ≤ B′ + σ
√

2 log(4T/δ),∀τ = 1, . . . , T with probability of ≥ 1− δ/4.

This further implies that‖yt‖2 =

√∑fb[t]
τ=1 y

2
τ ≤
√
t
(
B′ + σ

√
2 log(4T/δ)

)
. Now we are ready to

bound the term in question:

|µfb[t](x)− µ̃fb[t](x)| = |kt(x)>(Kt + σ2I)−1yt − k̃t(x)>(K̃t + σ2I)−1yt|

= |kt(x)>(Kt + σ2I)−1yt − kt(x)>(K̃t + σ2I)−1yt − (L+ 1)εν(x)>(K̃t + σ2I)−1yt|

≤
∥∥kt(x)

∥∥
2

∥∥∥(Kt + σ2I)−1 − (K̃t + σ2I)−1
∥∥∥‖yt‖2 + (L+ 1)ε

∥∥ν(x)
∥∥
2

∥∥∥(K̃t + σ2I)−1
∥∥∥
2
‖yt‖2

≤ K0

√
t
t(L+ 1)ε

σ4

√
t
(
B′ + σ

√
2 log(4T/δ)

)
+ (L+ 1)ε

√
t

1

σ2

√
t
(
B′ + σ

√
2 log(4T/δ)

)
≤ 2K̂0

t2(L+ 1)ε

σ4

(
B′ + σ

√
2 log(4T/δ)

)
.

(27)

Next, similar to the proof in Appendix C, here we also need a lemma showing the concentration of
the function f . Define βt = 2 log(2π2t2|X |/(3δ)), and ct = βt(1 +

√
2 log(|X |t2)). Note that the

value of βt defined here is slightly different due to the use of different error probabilities (i.e., we
have used an error probability of δ/2 in the proof in Appendix C yet δ/4 in this section).
Lemma 11. |µfb[t](x)− f(x)| ≤ βtσfb[t](x),∀x ∈ X , with probability of ≥ 1− δ/4,∀t ≥ 1.

The proof of Lemma 11 is the same as that of Lemma 1. The next Lemma proves the concentration
of the objective function f around the GP posterior mean calculated using the empirical NTK k̃,
which consists of an additional error term εm,t due to the use of the empirical NTK compared with
Lemma 11 above.
Lemma 12. Define

εm,t , 2K̂0
t2(L+ 1)ε

σ4

(
B′ + σ

√
2 log(4T/δ)

)
+ βt

√√√√(L+ 1)ε

(
1 +

4K̂2
0 t

2

σ4

)
.

Define Ef̃ (t) as the event that |µ̃fb[t](x) − f(x)| ≤ βtσ̃fb[t](x) + εm,t,∀x ∈ X . We have that

P(Ef̃ (t)) ≥ 1− δ/2,∀t ≥ 1.

Proof.

|µ̃fb[t](x)− f(x)| ≤ |µ̃fb[t](x)− µfb[t](x)|+ |µfb[t](x)− f(x)|
(a)

≤ 2K̂0
t2(L+ 1)ε

σ4

(
B′ + σ

√
2 log(4T/δ)

)
+ βtσfb[t](x)

(b)

≤ 2K̂0
t2(L+ 1)ε

σ4

(
B′ + σ

√
2 log(4T/δ)

)
+ βt

σ̃fb[t](x) +

√√√√(L+ 1)ε

(
1 +

4K̂2
0 t

2

σ4

)
= βtσ̃fb[t](x) + 2K̂0

t2(L+ 1)ε

σ4

(
B′ + σ

√
2 log(4T/δ)

)
+ βt

√√√√(L+ 1)ε

(
1 +

4K̂2
0 t

2

σ4

)
= βtσ̃fb[t](x) + εm,t

(28)

(a) follows from Lemma 10 and Lemma 11 and hence holds with probability of ≥ 1− δ/4− δ/4 =
1− δ/2, and (b) results from Lemma 9.

Denote by f̃t the sampled function in iteration t using the empirical NTK, i.e., f̃t ∼
GP(µ̃fb[t](·), β2

t σ̃
2
fb[t](·, ·)).
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Lemma 13. DefineEf̃t(t) as the event that |µ̃fb[t](x)− f̃t(x)| ≤ βt
√

2 log(|X |t2)σ̃fb[t](x),∀x ∈ X .

We have that P(Ef̃t(t)) ≥ 1− 1/t2,∀t ≥ 1.

Lemma 13 is the counterpart to Lemma 2 in Appendix C and can be proved using the same techniques.
Of note, conditioned on both events Ef̃ (t) and Ef̃t(t), we have that

|f(x)− f̃t(x)| ≤ |f(x)− µ̃fb[t](x)|+ |µ̃fb[t](x)− f̃t(x)|

≤ βtσ̃fb[t](x) + εm,t + βt
√

2 log(|X |t2)σ̃fb[t](x)

= ctσ̃fb[t](x) + εm,t.

(29)

Next, we similarly define the set of saturated inputs.

Definition 3. Define the set of saturated inputs in iteration t as

St = {x ∈ X : ∆(x) > ctσ̃fb[t](x) + 2εm,t},

in which ∆(x) = f(x∗)− f(x).

Again, x∗ is always unsaturated.

Lemma 14. For any Ft−1, conditioned on the events Ef̃ (t), we have that ∀x ∈ X ,

P
(
f̃t(x) + εm,t > f(x)|Ft−1

)
≥ p, (30)

in which p = 1
4e
√
π

.

Proof.

P
(
f̃t(x) + εm.t > f(x)|Ft−1

)
= P

(
f̃t(x)− µ̃fb[t](x) + εm.t

βtσ̃fb[t](x)
>
f(x)− µ̃fb[t](x)

βtσ̃fb[t](x)

∣∣∣Ft−1)

≥ P

(
f̃t(x)− µ̃fb[t](x) + εm.t

βtσ̃fb[t](x)
>
|f(x)− µ̃fb[t](x)|

βtσ̃fb[t](x)

∣∣∣Ft−1)

= P

(
f̃t(x)− µ̃fb[t](x)

βtσ̃fb[t](x)
>
|f(x)− µ̃fb[t](x)| − εm.t

βtσ̃fb[t](x)

∣∣∣Ft−1)
(a)

≥ P

(
f̃t(x)− µ̃fb[t](x)

βtσ̃fb[t](x)
> 1
∣∣∣Ft−1)

(b)

≥ exp(−1)

4
√
π

.

(31)

(a) follows from Lemma 12, and (b) follows because f̃t(x) ∼ N (µ̃fb[t](x), β2
t σ̃

2
fb[t](x)) and makes

use of the Gaussian anti-concentration inequality.

Next, we again prove a lower bound on the probability that the selected input is unsaturated.

Lemma 15. For any Ft−1, conditioned on the event Ef̃ (t), we have that

P
(
xt ∈ X \ St, |Ft−1

)
≥ p− 1/t2.

Proof. The proof here follows similar steps as the proof of Lemma 4. To begin with, we have the
following relationship.

P
(
xt ∈ X \ St|Ft−1

)
≥ P

(
f̃t(x

∗) > f̃t(x),∀x ∈ St|Ft−1
)
, (32)
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The validity of this equation can be justified in a similar way as equation (9) in the proof of Lemma 4,
i.e., the event on the right hand sight implies the event on the left hand side.

Next, we assume that both events Ef̃ (t) and Ef̃ (t) are true, which allows us to derive an upper
bound on f̃t(x) for all x ∈ St:

f̃t(x)
(a)

≤ f(x) + ctσ̃fb[t](x) + εm,t
(b)

≤ f(x) + ∆(x)− εm,t = f(x∗)− εm,t, (33)

in which (a) follows from Lemmas 12 and 13, and (b) is a result of Definition 3.

Therefore, (34) implies that when both both events Ef̃ (t) and Ef̃t(t) hold,

P
(
f̃t(x

∗) > f̃t(x),∀x ∈ St|Ft−1
)
≥ P

(
f̃t(x

∗) > f(x∗)− εm,t|Ft−1
)
. (34)

Next, we can show that

P
(
xt ∈ X \ St|Ft−1

)
≥ P

(
f̃t(x

∗) > f̃t(x),∀x ∈ St|Ft−1
)

≥ P
(
f̃t(x

∗) > f(x∗)− εm,t|Ft−1
)
− P

(
Ef̃t(t)|Ft−1

)
≥ p− 1/t2,

(35)

where the last inequality makes use of Lemma 14.

The next Lemma derives an upper bound on the expected instantaneous regret rt = f(x∗)− f(xt).

Lemma 16. For any Ft−1, conditioned on the event Ef̃ (t), we have that

E
[
rt|Ft−1

]
≤ cteC

(
1 +

10

p

)
E
[
σt−1(xt)|Ft−1

]
+ ε′m,t +

2B′

t2
,

where

ε′m,t , 3ct

√√√√(L+ 1)ε

(
1 +

4K̂2
0 t

2

σ4

)
+ 4εm,t. (36)

Proof. Define
xt , arg minx∈X\St

σfb[t](x). (37)

Note that given a Ft−1, xt is deterministic. Next, this definiton also leads to:

E[σfb[t](xt)|Ft−1] ≥ E
[
σfb[t](xt)|Ft−1,xt ∈ X \ St

]
P
(
xt ∈ X \ St|Ft−1

)
≥ σfb[t](xt)(p− 1/t2),

(38)

where the last inequality makes use of Lemma 15.

Next, conditioned on both Ef̃ (t) and Ef̃t(t), we have that

rt = f(x∗)− f(xt) = f(x∗)− f(xt) + f(xt)− f(xt)

(a)

≤ ∆(xt) + f̃t(xt) + ctσ̃fb[t](xt) + εm,t − f̃t(xt) + ctσ̃fb[t](xt) + εm,t
(b)

≤ ctσ̃fb[t](xt) + 2εm,t + ctσ̃fb[t](xt) + ctσ̃fb[t](xt) + 2εm,t + f̃t(xt)− f̃t(xt)
(c)

≤ ct

(
2σ̃fb[t](xt) + σ̃fb[t](xt)

)
+ 4εm,t

(d)

≤ ct

(
2σfb[t](xt) + σfb[t](xt)

)
+ 3ct

√√√√(L+ 1)ε

(
1 +

4K̂2
0 t

2

σ4

)
+ 4εm,t

= ct

(
2σfb[t](xt) + σfb[t](xt)

)
+ ε′m,t.

(39)
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(a) follows from Lemmas 12 and 13, (b) follows from the definition of unsaturated inputs (Defini-
tion 3), (c) results from the way in which xt is selected: xt = arg maxx∈X f̃t(x), (d) makes use of
Lemma 9.

Next, we can upper-bound the expected instantaneous regret:

E
[
rt|Ft−1

]
≤ E

[
ct

(
2σfb[t](xt) + σfb[t](xt)

)
+ ε′m,t|Ft−1

]
+ 2B′P

(
Ef̃t(t)|Ft−1

)
(a)

≤ E

[
ct

(
2

p− 1/t2
σfb[t](xt) + σfb[t](xt)

)
+ ε′m,t|Ft−1

]
+

2B′

t2

= E

[
ct

(
1 +

2

p− 1/t2

)
σfb[t](xt) + ε′m,t|Ft−1

]
+

2B′

t2

(b)

≤ ct

(
1 +

2

p− 1/t2

)
E
[
eCσt−1(xt)|Ft−1

]
+ ε′m,t +

2B′

t2

(c)

≤ cte
C

(
1 +

10

p

)
E
[
σt−1(xt)|Ft−1

]
+ ε′m,t +

2B′

t2
.

(40)

(a) follows from equation (39), (b) makes use of Lemma 5, and (c) follows since 2/(p−1/t2) ≤ 10/p.
This completes the proof.

We similarly define the following stochastic process, which will be shown to be a super-martingale in
the subsequent Lemma.

Definition 4. Define Y0 = 0, and for all t = 1, . . . , T ,

rt = rtI{Ef̃ (t)},

Xt = rt − cteC
(

1 +
10

p

)
σt−1(xt)− ε′m,t −

2B′

t2

Yt =

t∑
s=1

Xs.

Lemma 17. Conditioned on the event Ef (t), (Yt : t = 0, . . . , T ) is a super-martingale with respect
to the filtration Ft.

The proof of Lemma 17 above follows closely the proof of Lemma 7 and is hence omitted.

Lemma 18. Define C1 , 2
log(1+σ−2) . With probability of ≥ 1− δ,

RT ≤ cT eC
(

1+
10

p

)√
C1TγT+Tε′m,T+

B′π2

3
+
(

4B′+cT e
C
(
1+

10

p

)
K0+ε′m,T

)√
2T log(4/δ).

(41)

Proof. To begin with, we have that

|Yt − Yt−1| = |Xt| ≤ |rt|+ cte
C

(
1 +

10

p

)
σt−1(xt) + ε′m,t +

2B′

t2

≤ 2B′ + cte
C

(
1 +

10

p

)
K0 + ε′m,t + 2B′

= 4B′ + cte
C

(
1 +

10

p

)
K0 + ε′m,t.

(42)
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Using the Azuma-Hoeffding’s inequality with an error probability of δ/4, we have that

T∑
t=1

rt ≤
T∑
t=1

cte
C

(
1 +

10

p

)
σt−1(xt) +

T∑
t=1

ε′m,t +

T∑
t=1

2B′

t2
+√√√√2 log(4/δ)

T∑
t=1

(
4B′ + cteC

(
1 +

10

p

)
K0 + ε′m,t

)2

(a)

≤ cT e
C

(
1 +

10

p

) T∑
t=1

σt−1(xt) +

T∑
t=1

ε′m,t +
B′π2

3
+(

4B′ + cT e
C

(
1 +

10

p

)
K0 + ε′m,T

)√
2T log(4/δ)

(b)

≤ cT e
C

(
1 +

10

p

)√
C1TγT +

T∑
t=1

ε′m,t +
B′π2

3
+(

4B′ + cT e
C

(
1 +

10

p

)
K0 + ε′m,T

)√
2T log(4/δ)

≤ cT eC
(

1 +
10

p

)√
C1TγT + Tε′m,T +

B′π2

3
+(

4B′ + cT e
C

(
1 +

10

p

)
K0 + ε′m,T

)√
2T log(4/δ).

(43)

(a) follows since ct is increasing in t, and (b) follows from the proof of Lemma 5.4 in the work of [57].
Next, note that rt = rt,∀t ≥ 1 with probability of≥ 1−δ/2 according to Lemma 12. Also recall that
throughout the entire proof in this section, we have conditioned on the event in Proposition 1, which
also holds with probability of ≥ 1− δ/4. Therefore, also taking into account the error probability of
δ/4 from the Azuma-Hoeffding’s inequality, the upper bound derived above is an upper bound on the
cumulative regret RT =

∑T
t=1 rt with probability of ≥ 1− δ/2− δ/4− δ/4 = 1− δ.

Now let’s analyze the asymptotic scaling of the regret upper bound derived above. Firstly, note
that cT = O(log2 T ). Next, recall that we have in the main text that (L + 1)ε = Cntk(L +

1)L3/2 log1/4(4L|X |2/δ)m−1/4. This allows us to analyze the scaling of ε′m,T .

ε′m,T = 3cT

√√√√(L+ 1)ε

(
1 +

4K̂2
0T

2

σ4

)
+ 4
(

2K̂0
T 2(L+ 1)ε

σ4

(
B′ + σ

√
2 log(4T/δ)

)
+

βT

√√√√(L+ 1)ε

(
1 +

4K̂2
0T

2

σ4

))
= Õ

(
(log T )2

√
(L+ 1)εT + T 2(L+ 1)ε+ log T

√
(L+ 1)εT

)
= Õ

(
T 2
√

(L+ 1)ε
)

= Õ
(
T 2m−1/8(L+ 1)5/4

)

(44)

This allows us to analyze the asymptotic scaling of our regret upper bound (ignoring all log factors)

RT = Õ
(
eC
√
TγT + Tε′m,T + (eC + ε′m,T )

√
T
)

= Õ
(
eC
√
T (
√
γT + 1) + Tε′m,T +

√
Tε′m,T

)
= Õ

(
eC
√
T (
√
γT + 1) + T 3m−1/8(L+ 1)5/4

)
.

(45)
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E Extension to Continuous Input Domains

To extend our theoretical results to cases where the input domain X is continuous, we can follow the
techniques discussed in Section 3.1 of the work of [39]. We assume that X ⊂ [0, 1]d. To begin with,
we need to additionally assume that the objective function f is Lipschitz continuous with a Lipschitz
constant L > 0. Next, we can construct a finite sub-domain X̃ of the continuous domain X , where
X̃ has equal spacing of 1√

T
in each dimension. As a result, the finite sub-domain X̃ contains T d/2

points, i.e., |X̃ | = T d/2. Then, we can simply run our algorithms (Algo. 1 and Algo. 2) on this finite
sub-domain X̃ .

As a consequence, for Theorem 1, we only need to make two changes to our theoretical results.
Firstly, we need to modify βt to be βt = 2 log(π2t2|X̃ |/(3δ)) = 2 log(π2t2T d/2/(3δ)), which will
only introduce an additional dependence onO(d log T ) into cT (Appendix C) and hence an additional
multiplicative factor of O(d log T ) = Õ(d) into the regret upper bound in Theorem 1. Secondly,
due to the Lipschitz continuity of f and the fact that every input x ∈ X has a neighbor in the finite
sub-domain X̃ whose distance to it is less than d√

T
, we have that f(x∗) ≤ maxx̃∈X̃ f(x̃) +O( Ld√

T
).

As a result, this will introduce an additional additive term of O(T × Ld√
T

) = O(Ld
√
T ) to the final

upper bound on the cumulative regret.

For Proposition 1, an additional multiplicative factor of d log T will be introduced into the condition
on m. For Theorem 2, to begin with, same as the analysis of Theorem 1 in the paragraph above, an
additional additive factor of O(Ld

√
T ) will be introduced, and an additional multiplicative factor of

O(d log T ) = Õ(d) will be introduced into the first term in Theorem 2. Moreover, as a result of the
additional factor of d log T in the condition on m (Proposition 1), an additional multiplicative factor
of d log T will also be introduced into the approximation quality of (L+ 1)ε (Sec. 4.2). As a result,
in the proof of Theorem 2 (Appendix D), an additional multiplicative factor of

√
d will be introduced

into the term ε′m,T (see (45)) and hence into the second term in the upper bound in Theorem 2.

Of note, the modified results discussed above do not affect the scaling of our theoretical results
(Theorem 1 and Theorem 2) in T (we ignore all dependencies on log T ), because the only additional
term depending on T for both theorems is an additive term of Õ(

√
T ).

F More Experimental Details

In all experiments, for simplicity, we set βt = 1,∀t ≥ 1, which is consistent with many previous
papers on BO which have found the theoretical values of βt to be overly conservative [57]. For
fair comparisons, in every experiment, all methods under comparison use the same set of initial
inputs which are selected by random search. We use the ERF activation function in the synthetic
experiment (Sec. 5.1) because the synthetic function we have adopted is very smooth. In all real-world
experiments (Secs. 5.2, 5.3 and 5.4), we use the ReLU activation function since it has been found to
be very effective in modeling complicated real-world functions.

For all methods under comparison, when maximizing the acquisition function to choose an input
query, if the domain is discrete, we simply evaluate the acquisition function value at every input in the
domain and then choose the input that maximizes it. When the domain is continuous, we firstly use
random search to randomly sample 10, 000 inputs in the domain to evaluate their acquisition function
values, and then use L-BFGS-B with 100 random restarts to refine the search. When the domain is
mixed (i.e., consisting of both continuous and discrete inputs), we treat it as a continuous domain
and after finding the input the maximizes the acquisition function, we round the discrete inputs to
the nearest integer. For Neural UCB [69], we treat the UCB value calculated for each arm (input)
as the acquisition function; for Neural TS, we treat the reward sampled for each arm (input) as the
acquisition function [66].

We implement the training of the surrogate model f it (x; θ) for both Algos. 1 and 2 based on the
implementations from the work of [24], and we adopt all their default parameter settings (refer to
the implementations of [24] for the specific parameter settings, available at https://github.com/
bobby-he/bayesian-ntk) and only vary the architecture of the NN surrogate model (e.g., the
depth and width of the NN, we replace the NN with a CNN for our experiments in Sec. 5.4) as we
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have mentioned in the main text. For both Neural UCB and Neural TS, we adopt the implementations
from the work of [66], use all their default parameter settings, and only modify the architecture of
their NN surrogate model for a fair comparison with our methods. As we have mentioned in the main
text, to apply Neural UCB and Neural TS for problems with continuous domains, we adapt their
implementations such that we optimize their acquisition functions in the same way as our methods
(i.e., through a combination of random search and L-BFGS-B as discussed above). Our experiments
are performed using a computing cluster where each machine has an NVIDIA A100 GPU and 96
CPUs.

F.1 Synthetic Experiments

In the synthetic experiment, the objective function f is sampled from a GP with an SE kernel using a
lengthscale of 0.1. The domain of f is a uniform grid of size 1, 000 in the interval of [0, 1].

F.2 Real-world Experiments on Automated ML

In this section, we give more details on the three hyperparameter tuning experiments in Sec. 5.2.

Hyperparamter Tuning of Random Forest. Here we tune 6 categorical hyperparameters of
random forest:

• the maximum depth of any individual tree (integer within [1, 10]),

• the minimum number of samples required to split an internal node (integer within [2, 10]),

• the minimum number of samples required to be at a leaf node (integer within [1, 10]),

• the maximum number of features to consider when looking for the best split (integer within
[1, 8]),

• the criterion to measure the quality of a split (binary, "entropy" or "gini"),

• whether bootstrap samples are used when building trees (binary, True or False).

We use the publicly available diabetes prediction dataset which can be accessed from https://
www.kaggle.com/uciml/pima-indians-diabetes-database and has the CC0 License. This
dataset does not contains personally identifiable information or offensive content. It consists of 768
data instances, each containing 8 input features. We use 70% of the dataset as the training set and the
remaining 30% as the validation set. We use random search to choose 5 initial inputs as the set of
initialization, which is shared among all methods under comparison.

Hyperparameter Tuning of XGBoost. The MNIST dataset is publicly available and associated
with the GNU General Public License, and can be obtained from the Keras Package1. It does not
contain personally identifiable information or offensive content. In this experiment, we use the
MNIST dataset to tune 9 hyperparameters of XGBoost [6]:

• gamma which represents the minimum loss reduction required to make a further partition on
a leaf node of the tree (continuous, [0, 10]),

• the learning rate (continuous, [10−6, 1]),

• the maximum depth of any individual tree (integer, [1, 15]),

• which booster to use (binary, "dart" or "gbtree"),

• the grow policy which controls the way new nodes are added to the tree (binary, "depthwise"
or "lossguide"),

• the objective (bianry, "multi:softprob" or "multi:softmax"),

• the tree construction method (binary, "exact" or "hist"),

• alpha which is the L1 regularization term on the weights (continuous, [0, 10]), and

• lambda which is the L2 regularization term on the weights (continuous, [0, 10]).
1https://keras.io/

14

https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://keras.io/


0 25 50 75 100 125 150
Iterations

2.0

2.5

3.0

3.5

4.0

4.5

Va
lid

at
io

n 
Er

ro
r (

%
)

STO-BNTS (L = 2, m = 256)
STO-BNTS (L = 1, m = 512)
STO-BNTS (L = 8, m = 64)
STO-BNTS (L = 2, m = 256, B = 4)
STO-BNTS-Linear (L = 2, m = 256)
Deep Ensemble (L = 2, m = 256)

0 25 50 75 100 125 150
Iterations

2.0

2.5

3.0

3.5

4.0

4.5

Va
lid

at
io

n 
Er

ro
r (

%
)

GP-TS
GP-UCB
Neural TS (L = 2, m = 256)
Neural UCB (L = 2, m = 256)
STO-BNTS (L = 2, m = 256)
STO-BNTS (L = 2, m = 256, B = 4)

(a) (b)

Figure 1: Validation errors for hyperparameter tuning of CNN. B = 1 unless specified otherwise.

Hyperparameter Tuning of Convolutional Neural Networks. Here we use the MNIST dataset
to tune 9 hyperparameters of convolutional neural networks (CNN). The CNN consists of one
convolutional layer, followed by a max pooling layer and subsequently a fully connected layer. The 9
hyperparameters are:

• the learning rate (continuous, [10−4, 0.1]),
• the weight decay (continuous, [10−6, 10−2]),
• the batch size (integer, [64, 512]),
• the max pooling size (integer, [3, 5]),
• the number of neurons in the convolutional layer (integer, 4, 16),
• the size of the convolutional kernel (integer, [3, 5]),
• the number of neurons in the fully connected layer (integer, [4, 16]),
• which activation function to use (binary, ReLU or Tanh),
• which optimization method to use (binary, ADAM or RMSprop).

F.3 Real-world Experiments on Reinforcement Learning

The lunar lander task involves tuning 12 parameters of a heuristic controller which is used to
control the LunarLander-v2 environment from OpenAI Gym [4]. The heuristic controller is
provided by OpenAI Gym and can be found at https://github.com/openai/gym/blob/
8a96440084a6b9be66b2216b984a1c170e4a061c/gym/envs/box2d/lunar_lander.py#
L447. OpenAI Gym2 is open-sourced and under the MIT License. The (14-dimensional) robots
pushing and (20-dimensional) rover trajectory planning tasks were firstly introduced by the work
of [62] where the detailed experimental settings can be found. Both tasks are publicly available
at https://github.com/zi-w/Ensemble-Bayesian-Optimization and are under the MIT
license. Due to the large number of iterations (500) of these three experiments (which is necessary
as a result of the high dimensionality of the input spaces), standard GP-UCB and GP-TS become
too computationally costly to run. Therefore, we applied random Fourier features approximations
[11, 12] to the GP using a large number 1, 000 of random features, with which GP-UCB and GP-TS
perform well and are still computationally feasible to run.

Using the Lunar-Lander experiment, we have also compared our STO-BNTS and STO-BNTS-Linear
with batch versions of GP-TS and Neural TS. The results are shown in Fig. 5 (a), in which all methods
use the same batch size of B = 4. The figure shows that our STO-BNTS and STO-BNTS-Linear are
still able to significantly outperform the other baseline methods when the same batch size is used.

We also use the Lunar-Lander experiment to show an alternative visualization of the performances of
our algorithms with batch evaluations in Fig. 5 (b). Specifically, the horizontal axis in Fig. 5 (b) is the
number of function evaluations, in contrast to iterations in Fig. 3a. Same as Fig. 3a, this figure also
shows the benefit of batch evaluations, because compared with the sequential algorithms (B = 1,

2https://github.com/openai/gym
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Figure 2: (a) Comparison of different algorithms with the same batch size of B = 4, including batch
versions of our STO-BNTS and STO-BNTS-Linear, as well as batch GP-TS and batch Neural TS.
(b) An alternative visualization of the performance of our algorithms with batch evaluations, using
the 12-D Lunar-Lander experiment (Fig. 3a). The horizontal axis here is the number of function
evaluations, in contrast to iterations in Fig. 3a.

0 10 20 30 40 50
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e STO-BNTS (m = 64)
STO-BNTS-Linear (m = 64)
STO-BNTS-Linear (m = 256)
STO-BNTS-Linear (m = 512)

Figure 3: Results of STO-BNTS-Linear in the experiments on optimization over images (Sec. 5.4).

purple and yellow curves), our algorithms with a batch size of B = 4 only suffer slight degradations
of the per-function evaluation performances.

F.4 Optimization over Images

In this experiment, to construct the score function (Fig. 3d), we firstly use the training set of the
MNIST dataset (consisting of 60, 000 images) to train a CNN, and then use the trained CNN to
predict the class probabilities for the 10 different classes using the testing set of 10, 000 images.
Next, we use the predicted probability of class 0 for the 10, 000 testing images as the score function.
As a result of our construction of the score function, similar images in general have similar score
values since they share similar representations from the CNN, and images of 0 overall have much
larger scores than images from the other classes. This can simulate the real-world scenario of image
recommender system, in which the user may prefer a certain type of images and hence give higher
ratings to them.

For all three CNN-based methods in Fig. 3d, we use a CNN with one convolutional layer (with
convolutional kernels size of 3), followed by a max pooling layer (with a pooling size of 3), and then
followed by a fully connected layer. We have used the ReLU activation function. The width of both
the convolutional and fully connected layers are m = 64. Fig. 6 plots the results for STO-BNTS-
Linear in this experiment, which shows that its performance can be dramatically improved if we
increase the width m of the NN surrogate model (Sec. 5.4).
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