
A Tightening the lower bound

We now introduce a modification to our lower bound that does make the bound tight. This new lower
bound will be more complex than the one introduced above and we have not yet successfully designed
an algorithm for maximizing it. Nonetheless, we believe that presenting the bound may prove useful
for the design of future model-based RL algorithms.

We will use Lγ(θ) to denote this new lower bound. In addition to the policy and dynamics, this bound
will also depend on a time-varying discount, γθ(t), in place of the typical γt term. Similar learned
discount factors have been studied in previous work on model-free RL [39]. We define this objective
as follows:

Lγ(θ) , Eqπθ (τ)

[∞∑
t=0

γθ(t)r̃γ(st, at, st+1)

]
, (10)

where the augmented reward is now defined as

r̃γ(st,at, st+1) , log r(st, at) + log

(
γt

γθ(t)

)
+

1− Γθ(t− 1)

γθ(t)
log

(
p(st+1 | st, at, st−1, at−1, · · ·)
qθ(st+1 | st, at, st−1, at−1, · · ·)

)
,

and Γθ(t) =
∑t
t′=0 γθ(t

′) is the CDF of the learned discount function (i.e., γθ(t) is a probability
distribution over t.). This new lower bound, which differs from our main lower bound by the learnable
discount factor, does provide a tight bound on the expected return objective:
Lemma A.1. Let an arbitrary policy π(at | st) be given. The objective Lγ(θ) is also a lower bound
on the expected return objective, logEπ [

∑∞
t=0 γ

tr(st, at)] ≥ Lγ(θ), and this bound becomes tight
at optimality:

logEπ
[∞∑
t=0

γtr(st, at)

]
= max
qπ(τ),γθ(t)

Lγ(θ).

The proof is presented in Appendix B.4. One important limitation of this result is that the learned
dynamics that maximize this lower bound to make the bound tight may be non-Markovian. Intrigu-
ingly, this analysis suggests that using non-Markovian models, such as RNNs and transformers, may
accelerate learning on Markovian tasks. This paper does not propose an algorithm for optimizing this
more complex lower bound.

B Proofs and Additional Analysis

B.1 VMBPO Maximizes an Upper Bound on Return

While MnM aims to maximize the (log) of the expected return, VMBPO aims to maximize the
expected exponentiated return:

MnM: logEπ

[∞∑
t=0

γtr(st, at)

]
, VMBPO: logEπ

[
eη
∑∞
t=0 γ

tr(st,at)
]
,

where η > 0 is a temperature term used by VMBPO. Note that maximizing the log of the expected
return, as done by MnM, is equivalent to maximizing the expected return, as the function log(·) is
monotone increasing. However, maximizing the log of the expected exponentiated return, as done by
VMBPO, is not equivalent to maximizing the expected return. Rather, it corresponds to maximizing a
sum of the expected return and the variance of the return [31, Page 272]:

1

η
logEπ

[
eη
∑∞
t=0 γ

tr(st,at)
]

= Eπ

[∞∑
t=0

γtr(st, at)

]
+
η

2
Varπ

[∞∑
t=0

γtr(st, at)

]
+O(η2).

Thus, in environments with stochastic dynamics or rewards (e.g., the didactic example in Fig. 3a),
VMBPO will prefer to receive lower returns if the variance of the returns is much higher. We note
that the expected exponentiated return is an upper bound on the expected return:

logEπ
[
eη
∑∞
t=0 γ

tr(st,at)
]
≥ ηEπ

[∞∑
t=0

γtr(st, at)

]
.

15

This statement is a direct application of Jensen’s inequality. The bound holds with a strict inequality
in almost all MDPs. The one exception is trivial MDPs where all trajectories have exactly the same
return. Of course, even a random policy is optimal for these trivial MDPs.

B.2 Helper Lemmas

We start by introducing a simple identity that will help handle discount factors in our analysis.

Lemma B.1. Define p(H) = GEOM(1 − γ) as the geometric distribution. Let discount factor
γ ∈ (0, 1) and random variable xt be given. Then the following identity holds:

Ep(H)

[
H∑
t=0

xt

]
=

∞∑
t=0

γtxt.

The proof involves substituting the definition of the Geometric distribution and then rearranging
terms.

Proof.

Ep(H)

[
H∑
t=0

xt

]
= (1− γ)

∞∑
H=0

γH
H∑
t=0

xt

= (1− γ)
(
x0 + γ(x0 + x1) + γ2(x0 + x1 + x2) + · · ·

)
= (1− γ)

(
x0(1 + γ + γ2 + · · ·) + x1(γ + γ2 + · · ·) + · · ·

)
= (1− γ)

(
x0

1

1− γ
+ x1

γ

1− γ
+ x2

γ2

1− γ
+ · · ·

)
=

∞∑
t=0

γtxt.

The second helper lemma describes how the discounted expected return objective can be written as
the expected terminal reward of a mixture of finite-length episodes.

Lemma B.2. Define p(H) = GEOM(1 − γ) as the geometric distribution, and p(τ | H) as a
distribution over length-H episodes. We can then write the expected discounted return objective as
follows:

Ep(τ |H=∞)

[∞∑
t=0

γtr(st, at)

]
=

1

1− γ
Ep(H)

[
Ep(τ |H=H) [r(sH , aH)]

]
(11)

=
1

1− γ

∫∫
p(H)p(τ | H = H)r(sH , aH)dτdH. (12)

Proof. The first identity follows from the definition of the geometric distribution. The second identity
writes the expectations as integrals, which will make future analysis clearer.

16

B.3 Proof of Theorem 3.1

Proof.

log Eπ

[∞∑
t=0

γ
t
r(st, at)

]
(a)
= log

1

1− γ

∫∫
p(H)p(τ | H = H)r(sH , aH)dτdH

= log

∫∫
p(H)

p(τ | H = H)

qθ(τ | H = H)
qθ(τ | H = H)r(sH , aH)dτdH − log(1− γ)

(b)

≥
∫
p(H)

(
log

∫
p(τ | H = H)

qθ(τ | H = H)
qθ(τ | H = H)r(sH , aH)dτ

)
dH − log(1− γ)

(c)

≥
∫∫

p(H)qθ(τ | H = H) (log p(τ | H = H)− log qθ(τ | H = H) + log r(sH , aH)) dτdH − log(1− γ)

(d)
=

∫∫
p(H)qθ(τ | H = H)

((
H∑
t=0

log p(st+1 | st, at) +((((
((

log πθ(at | st)− log qθ(st+1 | st, at)−((((
((

log πθ(at | st)
)

+ log r(sH , aH)

)
dτdH

− log(1− γ)

(e)
=

∫∫
p(H)qθ(τ | H =∞)

((
H∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)
)

+ log r(sH , aH)

)
dτdH − log(1− γ)

(f)
=

∫
qθ(τ)

∫
p(H)

((
H∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)
)

+ log r(sH , aH)

)
dHdτ − log(1− γ)

(g)
=

∫
qθ(τ)Ep(H)

[(
H∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)
)

+ log r(sH , aH)

]
dτ − log(1− γ)

(h)
=

∫
qθ(τ)

∞∑
t=0

γ
t

(log p(st+1 | st, at)− log qθ(st+1 | st, at) + (1− γ) log r(sH , aH)) dτ − log(1− γ)

(i)
= Eqθ(τ)

[∞∑
t=0

γ
t

(log p(st+1 | st, at)− log qθ(st+1 | st, at) + (1− γ) log r(sH , aH)− (1− γ) log(1− γ))

]
.

For (a), we applied Lemma B.2. For (b), we applied Jensen’s inequality. For (c), we applied Jensen’s
inequality again. For (d), we substituted the definitions of pθ(τ | H) and qθ(τ | H). For (e), we noted
that the term inside the summation only depends on the first H steps of the trajectory, so collecting
longer trajectories will not change the result. This allows us to rewrite the integral as an expectation
using a single infinite-length trajectory. For (f), we recalled the definition qθ(τ) = qθ(τ = H =∞)
and swap the order of integration. For (g), we express the inner integral over p(H) as an expectation.
For (h), we applied the identity from Lemma B.1. For (i), we moved the constant log(1− γ) back
inside the integral and rewrote the integral as an expectation. We have thus obtained the desired
result.

17

B.4 Proof of Lemma A.1

Before presenting the proof of Theorem 3.1 itself, we show how we derived the lower bound in this
more general case. While this step is not required for the proof, we include it because it sheds light
on how similar lower bounds might be derived for other problems. We define γθ(H) to be a learned
distribution over horizons H . We then proceed, following many of the same steps as for the proof of
Theorem 3.1.

log Eπ

[∞∑
t=0

γ
t
r(st, at)

]
(a)
= log

∫∫
p(τ,H)

qθ(τ,H)
qθ(τ,H)r(sH , aH)dτdH − log(1− γ)

(b)

≥
∫∫

qθ(τ,H) (log p(τ,H)− log qθ(τ,H) + log r(sH , aH)dτ) dH − log(1− γ) (13)

(c)
=

∫ ∞∑
H=0

γθ(H)qθ(τ | H)

((
H∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)
)

+ log p(H)− log γθ(H) + log r(sH , aH)dτ

)
− log(1− γ)

(d)
=

∫
qθ(τ | H =∞)

∞∑
H=0

γθ(H)

((
H∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)
)

+ log p(H)− log γθ(H) + log r(sH , aH)dτ

)
− log(1− γ)

(e)
=

∫
qθ(τ)

∞∑
H=0

γθ(H)

((
H∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)
)

+ log p(H)− log γθ(H) + log r(sH , aH)dτ

)
− log(1− γ)

(f)
= Eqθ(τ)

[∞∑
H=0

γθ(H)

((
H∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)
)

+((((log(1− γ) +H log γ − log γθ(H) + log r(sH , aH)

)]
−((((log(1− γ)

(g)
= Eqθ(τ)

[∞∑
H=0

(∞∑
t=H

q(t)

)
(log p(sH+1 | sH , aH)− log qθ(sH+1 | sH , aH)) + γθ(H) (H log γ − log γθ(H) + log r(sH , aH))

]

(h)
= Eqθ(τ)

[∞∑
H=0

(
1−

H−1∑
t=0

q(t)

)
(log p(sH+1 | sH , aH)− log qθ(sH+1 | sH , aH)) + γθ(H) (H log γ − log γθ(H) + log r(sH , aH))

]

(i)
= Eqθ(τ)

[∞∑
H=0

(1− Γθ(H − 1)) (log p(sH+1 | sH , aH)− log qθ(sH+1 | sH , aH)) + γθ(H) (H log γ − log γθ(H) + log r(sH , aH))

]

(j)
= Eqθ(τ)

[∞∑
H=0

γθ(H)

(
1− Γθ(H − 1)

γθ(H)
(log p(sH+1 | sH , aH)− log qθ(sH+1 | sH , aH)) +H log γ − log γθ(H) + log r(sH , aH)

)]
.

For (a), we applied Lemma B.2 and multiplied the integrand by qθ(τ |H=H)γθ(H)
qθ(τ |H=H)γθ(H) = 1. For (b), we

applied Jensen’s inequality. For (c), we factored p(τ,H) = p(τ,H)p(H) and qθ(τ,H) = q(τ |
H)γθ(H). Note that under the joint distribution p(τ,H), the horizon H ∼ p(H) = GEOM(1− γ)
is independent of the trajectory, τ . For (d), we rewrote the expectation as an expectation over
a single infinite-length trajectory and simplified the summand. For (e), we recall the definition
qθ(τ) = qθ(τ = H = ∞). For (f), we rewrote the integral as an expectation and wrote out the
definition of the geometric distribution, p(H). For (g), we regrouped the difference of dynamics
terms. For (h), we noted used the fact that

∑H−1
t=0 γθ(t) + γ∞t=Hγθ(t) = 1. For (i), we substituted

the definition of the CDF function. For (j), we rearranged terms so that all were multiplied by the
discount γθ(H). Thus, we have obtained the desired result. We now prove Lemma A.1, showing that
Eq. 10 becomes tight at optimality.

Proof.

Lγ(θ)
(a)
=

∫∫
qθ(τ,H) (log p(τ,H)− log qθ(τ,H) + log r(sH , aH)dτ) dH − log(1− γ)

(b)
=

∫∫
qθ(τ)γθ(H | τ) (log p(τ) + log p(H)− log qθ(τ)− log γθ(H | τ) + log r(sH , aH)dτ) dH − log(1− γ)

(14)

For (a), we undo some of the simplifications above, going back to Eq. 13 For (b), we factor
qθ(τ,H) = qθ(τ)γθ(H | τ) and p(τ,H) = p(τ)p(H). At this point, we can solve analytically for
the optimal discount distribution, γθ(H | τ):

γ∗θ (H | τ) =
p(H)r(sH , aH)∑∞

H′=0 p(H
′)r(sH′ , aH′)

=
p(H)r(sH , aH)

(1− γ)R(τ)
(15)

18

In the second equality, we substitute the definition of R(τ). We then substitute Eq. 15 into our
expression for Lγ(θ) and simplify the resulting expression.

Lγ(θ) =

∫∫
qθ(τ)γθ(H | τ)

(
log p(τ) +���

�log p(H)− log qθ(τ)−���
�log p(H)−(((

((log r(sH , aH) +((((log(1− γ) + logR(τ) +(((
((log r(sH , aH)dτ

)
dH −((((log(1− γ)

=

∫∫
qθ(τ)γθ(H | τ) (log p(τ)− log qθ(τ) + logR(τ)dτ) dH

=

∫
qθ(τ) (log p(τ)− log qθ(τ) + logR(τ)) dτ.

In the final line we have removed the integral over H because none of the integrands depend on H .
At this point, we can solve analytically for the optimal trajectory distribution, qθ(τ):

q∗(τ) =
p(τ)R(τ)∫
p(τ ′)R(τ ′)dτ ′

. (16)

We then substitute Eq. 16 into our expression for Lγ(θ), and simplify the resulting expression:

Lγ(θ) =

∫
qθ(τ)

(
���log p(τ)−���log p(τ)−���

�logR(τ) + log

∫
p(τ
′
)R(τ

′
)dτ
′
+���

�logR(τ)

)
dτ

= log

∫
p(τ)R(τ)dτ = log Eπ

[∞∑
t=0

γ
t
r(st, at)

]
.

We have thus shown that the lower bound Lγ becomes tight when we use the optimal distribution
over trajectories qθ(τ) and optimal learned discount γθ(H | τ).

B.5 A lower bound for goal-reaching tasks.

Many RL problems can be better formulated as goal-reaching problems, a formulation that does not
require defining a reward function. We now introduce a variant of our method for goal-reaching
tasks. Using ρπ(st+) to denote the discounted state occupancy measure of policy π, we define the
goal-reaching objective as maximizing the probability density of reaching a desired goal sg:

max
θ

log ρπθ (st+ = sg). (17)

We refer the reader to Eysenbach et al. [16] for a more detailed discussion of this objective. For
simplicity, we assume that the goal is fixed, noting that the multi-task setting can be handled by
conditioning the policy on the commanded goal. Similar to Theorem 3.1, we can construct a lower
bound on the goal-conditioned RL problem:

Lemma B.3. Let initial state distribution p1(s1), real dynamics p(st+1 | st, at), reward function
r(st, at) > 0, discount factor γ ∈ (0, 1), and goal g be given. Then the following bound holds for
any dynamics q(st+1 | st, at) and policy π(at | st):

log pπθ (st+ = sg) ≥ Eqπθ (τ)

[∞∑
t=0

γtr̃(st, at)

]
, (18)

where

r̃g(st, at, st+1) ,(1− γ)(log p(st+1 = sg | st, at)− log q(st+1 = sg | st, at)− log(1− γ))

+ log p(st+1 | st, at)− log q(st+1 | st, at).

The proof, presented below, is similar to the proof of Theorem 3.1. The first term in the reward
function, the log ratio of reaching the commanded goal one time step in the future, is similar to prior
work [39]. The correction term log p− log q incentivizes the policy to avoid transitions where the
model is inaccurate, and can be estimated using a separate classifier. One important aspect of this
goal-reaching problem is that it is entirely data-driven, avoiding the need for any manually-designed
reward functions.

19

Proof.

log ρ
πθ (st+ = sg) = log

∫∫
p(H)p(τ | H = H)p(sg | sH , aH)dτdH

= log

∫∫
p(H)

p(τ | H = H)

qθ(τ | H = H)
qθ(τ | H = H)

p(sg | sH , aH)

qθ(sg | sH , aH)
qθ(sg | sH , aH)dτdH − log(1− γ)

≥
∫∫

p(H)qθ(τ | H = H) (log p(τ | H = H)− log qθ(τ | H = H) + log p(sg | sH , aH)− log qθ(sg | sH , aH)) dτdH − log(1− γ)

=

∫∫
p(H)qθ(τ | H =∞)

(
H∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)
)

+ log p(sg | sH , aH)− log qθ(sg | sH , aH)dτdH − log(1− γ)

=

∫
qθ(τ)

∫
p(H)

(
H∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)
)

+ log p(sg | sH , aH)− log qθ(sg | sH , aH)dHdτ − log(1− γ)

=

∫
qθ(τ)

∞∑
t=0

γ
t

(log p(st+1 | st, at)− log qθ(st+1 | st, at) + (1− γ)(log p(sg | st, at)− log qθ(sg | st, at)) dτ − log(1− γ))

= Eqθ(τ)

[∞∑
t=0

γ
t

(log p(st+1 | st, at)− log qθ(st+1 | st, at) + (1− γ)(log p(sg | st, at)− log qθ(sg | st, at)− log(1− γ))

]
.

Similar to the more complex lower bound presented in Eq. 10, this lower bound on goal-reaching can
be modified (by learning a discount factor) to become a tight lower bound. The resulting objective
would resemble a model-based version of the algorithm from Rudner et al. [39].

B.6 Derivation of Model Objective (Eq. 9)

Our lower bound depends on entirely trajectories sampled from the learned dynamics. In this section,
we show how the same objective can be expressed as an expectation of transitions. This expression is
easier to optimize, as it does not require backpropagating gradients through time. We start by writing
our lower bound, conditioned on a current state st.

E π(at|st),
qθ(st+1|st,at)

[∞∑
t′=t

γt
′−tr̃(st′ , at′) | st

]
= E π(at|st),

qθ(st+1|st,at)

[r̃(st, at, st+1) + γV (st+1) | st]

(a)
= E π(at|st),

qθ(st+1|st,at)

[
(1− γ) log r(st, at) + log

Cφ(st, at, st+1)

1− Cφ(st, at, st+1)
− (1− γ) log(1− γ) + γV (st+1) | st

]

In (a), we substituted the definition of the augmented return. For the purpose of optimizing the
dynamics model, we can ignore all terms that do not depend on st+1. Removing these terms, we
arrive at our model training objective (Eq. 9)

C Additional Experiments

Fig. 6. We compare MnM to a number of alternative model learning methods. MBPO [24] uses
a standard maximum likelihood model. We implement a version of VAML [17], which augments
the maximum likelihood loss with an additional temporal difference loss; the model should predict
next states that have low Bellman error. Finally, we compare to a variant of the MBPO maximum
likelihood model that weights transitions based on the Q values, an idea discussed (but not actually
implemented) in Lambert et al. [29]. We implement this value weighting method by computing the Q
values for the current states and computing a softmax over the batch dimension to obtain per-example
weights.

Fig. 8 In this experiment, we show the model MSE throughout the training of MnM-approx, similar
to Fig. 7b. While MnM-approx does not optimize for MSE, the MSE is nonetheless a rough barometer
for whether the model is training stably. On the DClawScrewFixed-v0 task, we observe that 3

3 seeds

20

(a) DClawScrewFixed-v0 (b) metaworld-drawer-open-v2

Figure 8: MnM-approx Model MSE. Different lines show different random seeds, while the dashed horizontal
line shows the minimum MSE of a maximum likelihood model (averaged across seeds).

(a) DClawScrewFixed-v0 (b) DClawScrewRandom-v0

Figure 9: MnM-approx Q-values

all train stably, converges towards (though not quite reaching) the MSE of the maximum likelihood
model. On the metaworld-drawer-open-v2 task, the results are a bit more complicated, with 3

5
seeds achieving a model MSE much lower than the maximum likelihood model, while two seeds
seem to have failed to converge. Overall, these plots indicate that MnM-approx often trains stably,
but some seeds can fail to converge on some environments.

Figure 10: Adding the classifier term
to MnM degrades performance on the
metaworld-drawer-open-v2 task.

Fig. 9 In this experiment, we show the Q-values through-
out the training of MnM-approx, similar to Fig. 7a. In both
environments, we observe that the Q-values from MnM-
approx are more stable than the Q-values from MBPO.
Note how the Q-values from MBPO tend to peak early
during training, suggesting that they have overestimated
the true returns and then correct towards a less inflated
estimate of the agent’s expected return

Fig. 10. This is a plot from a preliminary version of
MnM, when we were testing the effect of the classifier
term. In experiments like these, we found that the classifier
term significantly hurt performance, motivating us to not
include the classifier term in the “MnM-Approx” method used in the continuous control experiments.

Figure 11: Stochastic gridworld ablation.

Fig. 11 In this experiment, we ablate the two factors of
the MnM augmented reward (Eq. 3, using the stochastic
gridworld from Fig. 2a. The first ablation removes the
logarithm, while the second ablation removes the classifier.
The results, shown in Fig. 11, indicate that the logarithm
term is crucial for getting good performance, but that
removing classifier term has a relative small effect, and
may even boost performance by a small margin. Not to
read into these results too much, the aliasing experiment
in Fig. 2b has already demonstrated that the classifier term
is critical for ensuring good performance in the presence
of function approximation.

21

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

start A

B

C

0 500 1000 1500
environment steps

0
5

10
15
20
25
30
35

re
wa

rd

0 500 1000 1500
environment steps

0

1

2

3

4

0.0 0.5 1.0 1.5
environment steps 1e3

0.00

0.25

0.50

0.75

1.00

1.25

1.50
transferred
MnM dynamics
real dyamics

Figure 13: Transferring the learned dynamics to a new task. We applied Q-learning with either the true
environment dynamics or with the dynamics learned by MnM on the original task (reaching the green star). The
shaded region corresponds to the [25%, 75%] region across 5 random seeds.

Figure 12: Model horizon

Fig. 12 In our experiments, we used very short model
rollouts, only collecting a single transition from the
model. Fig. 12 shows an ablation experiment on the
metaworld-drawer-open-v2 task where we increased
the model horizon, finding that it uniformly degrades per-
formance.

Fig. 13 In this experiment, we examine the transferabil-
ity of MnM’s learned dynamics model to new tasks. When
learning a similar task, we might expect that the optimistic
dynamics produced by MnM would be more useful than
the true environment dynamics. However, when learning
dissimilar tasks, the optimism for one task might hinder exploration towards solving the new task,
and might be worse than using the true environment dynamics.

We tested these hypotheses using the stochastic gridworld from Fig. 2a. We took the dynamics learned
by MnM (Fig. 2a (right)) and used it to solve new tasks, defined by placing the goal in different
locations. As shown in Fig. 13 (right), tasks B and C are similar to the original task, in that they
involve navigating around the wall; task A is not as similar to the original task, but is much easier.

To study the effectiveness of transferring the dynamics, we applied Q-learning to each of these tasks,
either using the (incorrect) optimistic dynamics learned from the original task, or by using the true
environment dynamics. We show the results in Fig. 13. On Tasks A and B, we observe little difference
between Q-learning with the transferred dynamics model versus the true dynamics model. However,
on task C, only by using the transferred dynamics is Q-learning able to solve this challenging task.
In summary, these results suggest that the bias of the learned dynamics does not seem to hurt when
learning dissimilar tasks, but can accelerate learning of challenging, similar tasks.

D Implementation Details

All experiments were run on at least three random seeds. Although we were limited by computational
constraints, we find that most of our conclusions hold with p < 0.05, as noted in the main text.

D.1 Algorithms

Value Iteration (Fig. 2a (right), Fig. 2b, Fig. 3b) For the tabular experiments that perform value
iteration, we perform Polyak averaging of the policy and learned dynamics model with parameter
τ = 0.5. We found that the value iteration version of MnM diverged without this Polyak averaging
step. Experiments were stopped when the MnM dynamics model (which depends on the value
function) changed by less than 1e-6 across iterations, as measured using an L0 norm. For VMBPO
we used η = 1.

Q-learning (Fig. 2a) For the experiments with Q-learning (both with and without the MnM compo-
nents), we performed ε-greedy exploration with ε = 0.5. We used a learning rate of 1e− 2. For this
task alone, we compute the MnM dynamics analytically by combining the true environment dynamics
with the learned value function, allowing for clearer theoretical analysis. For fair comparison, all

22

Table 2: Gradient updates per real environment step: This parameter was separately tuned for each method
and each environment.

SAC MBPO MnM
HalfCheetah-v2 - 40 20

Hopper-v2 - 40 20
Walker2d-v2 - 40 20

metaworld-drawer-open-v2 40 40 40
DClawPoseRandom-v0 20 20 20
DClawTurnRandom-v0 40 40 40
DClawScrewFixed-v0 40 40 40
DClawScrewRandom-v0 40 40 40

methods receive the same amount of data, perform the same number of updates, and are evaluated
using the real environment dynamics. For VMBPO we used η = 1.

SAC for continuous control tasks. We used the SAC implementation from TF-Agents [21] with
the default hyperparameters.

MBPO for continuous control tasks. We implement MBPO on top of the SAC implementation
from TF-Agents [21]. Unless otherwise mentioned, we take the default parameters from this imple-
mentation. We use an ensemble of 5 dynamics models, each with 4 hidden layers of size 256. The
dynamics model predicts the whitened difference between the next state and the current state. That
is, to obtain the prediction for the next state, the predictions are scaled by a per-coordinate variance,
shifted by a per-coordinate mean, and then added to the current state. These whitened predictions
are clipped to have a minimum standard deviation of 1e-5; without this, we found that the MBPO
model resulted in numerical instability. The model is trained using the standard maximum likelihood
objective, with all members of the ensemble being trained on the same data. To sample data from
this model we perform 1-step rollouts, starting at states visited in the true dynamics. We perform
one batch of rollouts in parallel using a batch size of 256. To sample the corresponding action, with
probability 50% we take the action that was executed in the true dynamics; with probability 50%
we sample an action from the current policy. We found that this modification slightly improves the
results of MBPO. We use a batch size of 256. We have two replay buffers: the model replay buffer
has size 256e3 and the replay buffer of real experience has size 1e6. At the start of training, we
collect 1e4 transitions from the real environment, train the dynamics model on this experience for
1e5 batches, and only then start training the policy. We use a learning rate of 3e-4 for all components.
To stabilize learning, we maintain a target dynamics model using an exponential moving average
(τ = 0.001), and use this target dynamics model to sample transitions for training. We update the
model, policy, and value functions at the same rate we sample experience from the learned model,
which is more frequently than we collect experience from the real environment (see Table 2).

MnM for Continuous Control Tasks We implement MnM on top of the SAC implementation
from TF-Agents [21]. Unless otherwise mentioned, we take the default parameters from this imple-
mentation. Our model architecture is exactly the same as our MBPO implementation, and we follow
the same training protocol.

Unlike MBPO, MnM also learns a classifier for distinguishing real versus model transitions. The
classifier architecture is a 2 layers neural network with 1024 hidden units in each layer. We found
that this large capacity was important for stable learning. We add input noise with σ = 0.1 while
training the classifier. We whiten the inputs to the classifier by subtracting a coordinate-wise mean
and dividing by a coordinate-wise standard deviation. When training the classifier, we take samples
from both the dynamics model and the target dynamics model as negative examples, finding that this
stabilizes learning somewhat. Following the suggestion of prior work [40], we use one-sided label
smoothing with value 0.1, only smoothing the negative predictions and not the positive predictions.

We found that gradient penalties and spectral normalization decreased performance. We found that
automatically tuning the classifier input noise also decreased performance. We found that mixup had
little effect. We found that the loss would often plateau around 1e4 batches, but would eventually
start decreasing again after 2e4 - 2e5 batches.

23

Figure 14: Environments: Our experiments included three tasks from OpenAI Gym and four tasks from
ROBEL.

Like the MBPO model, we first collect 1e4 transitions of experience from the real environment using
a random policy, then train the dynamics model and classifier for 1e5 batches, and only then start
updating the policy. Because the Q values are poor at the start of training, we only add the value
term to the model loss (resulting in the optimistic dynamics model) after 2e5 batches (1e5 batches
of model training, then 1e5 batches of model+policy training). To further improve stability, we
compute the value term in the model loss by taking the minimum over two target value functions (like
TD3 [18]). We update the model, classifier policy, and value functions at the same rate we sample
experience from the learned model, which is more frequently than we collect experience from the
real environment (see Table 2).

D.2 Environments

This section provides details for the environments used in our experiments. We visualize the
environments in Fig. 14.

Gridworld for Fig. 2a. This task is a 10× 10 gridworld with obstacles shown in Fig. 2a. There
are four discrete actions, corresponding to moving to the four adjacent cells. With probability 50%,
the agent’s action is ignored and a random action is taken instead. The agent starts in the top-left cell.
The agent receives a reward of +0.001 at each time step and a reward of +10 when at the goal state.
Episodes have 200 steps and we use a discount γ = 0.9.

Gridworld for Fig. 2b. This task is a 15× 15 gridworld with obstacles shown in Fig. 2b. There
are four discrete actions, corresponding to moving to the four adjacent cells. The dynamics are
deterministic. The agent starts in the top-left cell. The reward is +1.0 at every state except the goal
state, where the agent receives a reward of +100.0. We use γ = 0.9 and compute optimal policies
analytically using value iteration. We implement the aliasing by averaging together the dynamics
for each block of 3× 3 states. Importantly, the averaging was done to the relative dynamics (e.g.,
action 1 corresponds to move right) not the absolute dynamics (e.g., action 1 corresponds to moving
to state (3, 4)). To handle edge effects, we modified the averaged dynamics so that the agent could
not exit the gridworld. We computed the classifier analytically using the true and learned dynamics
models. However, the augmented rewards become infinite because the learned model assigns non-zero
probability to transitions that cannot occur under the true dynamics. This is not a failure of our
theory, as the optimal policy would choose to never visit these states, but it presents a challenge for
optimization. We therefore added label smoothing with parameter 0.7 to the classifier.

Gridworld for Fig. 2a This task is a 10× 10 gridworld with obstacles shown in Fig. 2a (Right).
There are four discrete actions, corresponding to moving to the four adjacent cells. With probability
90%, the agent’s action is ignored and a random action is taken instead. The agent starts in the top-left
cell. The rewards depend on the Manhattan distance to the goal: transitions that lead away from the
goal have a reward of +0.001, transitions that do not change the distance to the goal have a reward
of +1.001, and transitions that decrease the distance to the goal have a reward of +2.001. We use
γ = 0.5 and compute values and returns analytically using value iteration.

Gridworld for Fig. 3b. This task used the same dynamics as Fig. 2a. The one change is that the
agent receives a reward of +1.0 at each time step and a reward of +10.0 at the goal state. We estimate
the more complex lower bound (Eq. 10) by also learning the discount factor. However, since we
currently do not have a method for learning non-Markovian dynamics to fully optimize this lower
bound, we do not expect the lower bound to become tight.

24

HalfCheetah-v2, Hopper-v2, Walker2d-v2. These tasks are taken directly from the OpenAI
benchmark [7] without modification.

metaworld-drawer-open-v2. This task is based on the drawer-open-v2 task from the
Metaworld benchmark [50]. To increase the difficulty of this task, we remove the reward
shaping term (reward_for_caging) and just optimize the reward for opening the drawer
(reward_for_opening).

DClawPoseRandom-v0, DClawTurnRandom-v0, DClawScrewFixed-v0, DClawScrewRandom-v0.
These tasks are taken directly from the ROBEL benchmark [1] without modification.

D.3 Differences between MnM and MnM-Approx

Both MnM and MnM-Approx learn the same dynamics classifier, and both use the same GAN-like
objective (Eq. 9) to update the model. Both perform the same policy updates. The difference is the
reward function used to update the Q-function:

r̃(st, at, st+1) = (1− γ) log r(st, at) + log

(
p(st+1 | st, at)
q(st+1 | st, at)

)
(MnM)

r̃(st, at, st+1) = r(st, at). (MnM-Approx)

25

