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A Missing Proofs

A.1 Gradient Derivation of `NAL

The sample-wise `NAL can be rewrite as:

`NAL = `na + λ`b = −
K∑
k=1

qk log(τ(pk − qk) + qk)− λ log τ. (1)

As τ is learned from attention branch. The derivation of the `NAL with respect to the logits is as
follows:
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∂zj
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∂zj
= −
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τqk
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∂pk
∂zj

. (2)

Since pk = softmax(z)= ezk∑K
j=1 e

zj
, we have
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∂
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In the case of k = j :
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In the case of k 6= j :
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Combining Eq. (4) and (5) into Eq. (2), we obtain:
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Therefore, if qj = qy = 1, then
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(7)

If qj = 0, then

∂`NAL

∂zj
=pj

τqypy
τ(py − qy) + qy

= pj
py

py − 1 + 1/τ
. (8)

A.2 Formal Proofs for Theorem 1

Theorem 1. Given the noise attention loss LNAL, we rewrite the sample-wise loss `NAL =

−
∑K
k=1 qk log(τ(pk − qk) + qk) − λ log τ . Its gradient with respect to the logits zj can be de-

rived as

∂`NAL
∂zj

=


py

py − 1 + 1/τ
(pj − 1) ≤ 0, qj = qy = 1 (j is the true class for x) (9a)

py
py − 1 + 1/τ

pj ≥ 0, qj = 0 (j is not the true class for x) (9b)

where the multiplier py
py−1+1/τ ∈ (0, 1).

Proof. From the Appendix A.1, we obtain the gradient of the sample-wise `NAL with respect to the
logits zj is

∂`NAL

∂zj
= −

K∑
k=1

τqk
τ(pk − qk) + qk

∂pk
∂zj

(10)

where ∂pk
∂zj

can be further derived base on whether k = j by follows:

∂pk
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=

{
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(11)

According to Eq. (10) and (11), the gradient of `NAL can be derived as:

∂`NAL

∂zj
=


pj
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py
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(12)

We denote ϕ =
py

py−1+1/τ . Since pj ≤ 1, we have pj − 1 ≤ 0. As τ ∈ (0, 1), the term py
py−1+1/τ ∈

(0, 1), we have (pj − 1)
py

py−1+1/τ ≤ 0 and pj
py

py−1+1/τ ≥ 0.
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Table 1: Description of the datasets used in the experiments.

Dataset # of train # of val # of test # of classes input size Noise rate (%)

Datasets with clean annotation

CIFAR-10 50K - 10K 10 32 × 32 ≈ 0.0
CIFAR-100 50K - 10K 100 32 × 32 ≈ 0.0

Datasets with real world noisy annotation

ANIMAL-10N 50K - 5K 10 64 × 64 ≈ 8
Clothing1M 1M 14K 10K 14 224 × 224 ≈ 38.5

Webvision 1.0 66K - 2.5K 50 256 × 256 ≈ 20.0

B Detail Description of Experiments

Source code for the experiments is available in the zip file. All experiments are implemented in
PyTorch and run in a single Nvidia A100 GPU. For CIFAR-10 and CIFAR-100, we do not perform
early stopping since we don’t assume the presence of clean validation data. All test accuracy are
recorded from the last epoch of training. For Clothing1M, it provides 50k, 14k, 10k refined clean
data for training, validation and testing respectively. Note that we do not use the 50k clean data
for fair comparison with existing methods. Similar to the compared methods [1, 2], we report the
test accuracy when the performance on validation set is optimal. All tables of CIFAR-10/CIFAR-
100 report the mean and standard deviation from 3 trails with different random seeds for different
simulated noise.

B.1 Dataset Description and Preprocessing

The information of datasets are described in Table 1. CIFAR-10 and CIFAR-100 are clean datasets,
we describe the label noise injection in Appendix B.2. ANIMAL-10N contains human-labeled online
images for 10 animals with confusing appearance. Its estimated noise rate is 8%. Clothing1M consists
of 1 million training images from 14 categories collected from online shopping websites with noisy
labels generated from surrounding texts. Its noise level is estimated as 38.5% [3]. Following [4, 5],
we use the mini WebVision dataset which contains the top 50 classes from the Google image subset
of WebVision, which results in approximate 66 thousand images. The noise level of WebVision is
estimated at 20% [6].

As for data preprocessing, we apply normalization and regular data augmentation (i.e. random crop
and horizontal flip) on the training sets of all datasets. The cropping size is consistent with existing
works [1, 7]. Specifically, 32 for CIFAR-10 and CIFAR-100, 224 × 224 for Clothing 1M (after
resizing to 256 × 256), and 227 × 227 for Webvision.

B.2 Simulated Label Noise Injection

Since the CIFAR-10 and CIFAR-100 are initially clean, we follow [8, 9] for symmetric and asym-
metric label noise injection. Specifically, symmetric label noise is generated by randomly flipping a
certain fraction of the labels in the training set following a uniform distribution. Asymmetric label
noise is simulated by flipping their class to another certain class according to the mislabel confusions
in the real world. For CIFAR-10, the asymmetric noisy labels are generated by mapping truck→
automobile, bird→ airplane, deer→ horse and cat↔ dog. For CIFAR-100, the noise flips each
class into the next, circularly within super-classes.

B.3 Training Procedure

CIFAR-10/CIFAR-100: We use a ResNet-34 and train it using SGD with a momentum of 0.9, a
weight decay of 0.001, and a batch size of 64. The network is trained for 500 epochs for both CIFAR-
10 and CIFAR-100. We use the cosine annealing learning rate [10] where the maximum number
of epoch for each period is 10, the maximum and minimum learning rate is set to 0.02 and 0.001
respectively. Note that the reason that we train the model 500 epochs in total is not because of the
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slow convergence (Our method actually converges around 250 epochs, shown in Section E). Instead,
it is to fully evaluate whether the proposed method will overfit mislabeled samples, which avoids
the interference caused by early stopping [11] (i.e. the model may not start overfitting mislabeled
samples when the number of training epochs is small, especially when learning rate scheduler is
cosine annealing [10]).

Clothing1M: Following [12, 2], we use a ResNet-50 without pretrained parameters. We train the
model with batch size 64. The optimization is done using SGD with a momentum 0.9, and weight
decay 0.001. We use the same cosine annealing learning rate as CIFAR-10 except the minimum
learning rate is set to 0.0001 and total epoch is 250. For each epoch, we sample 2000 mini-batches
from the training data ensuring that the classes of the noisy labels are balanced.

Webvision: Following [7, 1], we use an InceptionResNetV2 as the backbone architecture. All other
optimization details are the same as for CIFAR-10, except for the weight decay (0.0005) and the
batch size (32).

B.4 Hyperparameters Selection and Sensitivity

We perform hyperparameter tuning via grid search: λ = [0.01, 0.05, 0.1, 0.5, 5, 10, 50] and α =
[0.7, 0.9, 0.99] using a noisy validation set sampled from the noisy training set, which is similar to [1].
In our experiments, we set α = 0.9 for all datasets. For CIFAR-10, we set λ = 0.5. For CIFAR-100,
we set λ = 10. For ANIMAL-10N, we set λ = 0.5. For Webvision and Clothing1M, we set λ = 50.

C More Results on Training Clothing1M from Scratch

Existing methods use the ResNet-50 pretrained on ImageNet. Here we report the results when
existing methods train the model from scratch in Table 2. We run the official code of SCE, SELC,
DivideMix and ELR+. SCE [2] is a noise robust loss function. SELC [13] is a label correction
method. These two methods only focus on modifying the loss function, thus no extra GPU space is
required. In contrast, DivideMix and ELR+ (i.e. an improved version of ELR) are complex method
that use multiple techniques to boost their performance. Both of them use the two networks and
mixup augmentations. Other technique, such as weight average is also applied in ELR+. Therefore,
more GPU space is required for DivideMix and ELR+. As we can observe in Table 2, the proposed
method NAL still outperforms these methods when training the ResNet-50 from scratch.

Table 2: The accuracy (%) results on Clothing1M. The marker † denotes the methods use ResNet-50
pretrained on ImageNet. The marker ‡ denotes the model is trained from scratch.

Method Batch Size Required GPU Memory Accuracy

SCE† [2] 64 7.39 GB 71.02
SCE‡ [2] 64 7.39 GB 69.40

SELC† [13] 64 7.39 GB 74.01
SELC‡ [13] 64 7.39 GB 72.02

ELR† [1] 64 - 72.87
ELR+† [1] 64 21.70 GB 74.81
ELR+‡ [1] 64 21.70 GB 72.80

DivideMix† [7] 32 19.03 GB 74.76
DivideMix‡ [7] 32 19.03 GB 70.29

NAL‡ (ours) 64 7.46 GB 73.58

D More results of Estimated Targets

We report the confusion matrix for other levels of label noise (symmetric 40%, 80% and asymmetric
40%) on CIFAR-10. Figure 1, Figure 3 and Figure 5 display the confusion matrix of noisy labels w.r.t.
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the clean labels on CIFAR-10 with 40% symmetric, 80% symmetric and 40% asymmetric label noise
respectively. Figure 2, Figure 4 and Figure 6 display the confusion matrix of corrected labels w.r.t.
the clean labels on CIFAR-10 with 40% symmetric, 80% symmetric and 40% asymmetric label noise
after using the proposed method, respectively. As we can observe, the corrected labels (estimated
targets) yield better quality than the original noisy labels, even under the extreme label noise (e.g.
80% symmetric noise).
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Figure 1: Confusion matrix of noisy labels
w.r.t clean labels on CIFAR-10 with 40% sym-
metric label noise.
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Figure 2: Confusion matrix of corrected la-
bels w.r.t clean labels on CIFAR-10 with 40%
symmetric label noise.
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Figure 3: Confusion matrix of noisy labels
w.r.t clean labels on CIFAR-10 with 80% sym-
metric label noise.
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Figure 4: Confusion matrix of corrected la-
bels w.r.t clean labels on CIFAR-10 with 80%
symmetric label noise.
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Figure 5: Confusion matrix of noisy labels
w.r.t clean labels on CIFAR-10 with 40%
asymmetric label noise.
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Figure 6: Confusion matrix of corrected la-
bels w.r.t clean labels on CIFAR-10 with 40%
asymmetric label noise.
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E Accuracy Curves versus Epochs

In this section, we show the accuracy curves during training to show the noise robustness of NAL. As
we can observe in Figure 7, CE fits the whole noisy labels eventually, while NAL only fits around
60% training samples. In Figure 8, the test accuracy of CE decreases due to memorization of noisy
labels, while NAL won’t. We also observe the similar results on CIFAR-10.
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Figure 7: Train accuracy vs. epochs on
CIFAR-100 with 40% symmetric label noise.
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Figure 8: Test accuracy vs. epochs on CIFAR-
100 with 40% symmetric label noise.
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Figure 9: Train accuracy vs. epochs on
CIFAR-10 with 40% symmetric label noise.
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Figure 10: Test accuracy vs. epochs on
CIFAR-10 with 40% symmetric label noise.

F Movement of weight τ Distribution

We monitor the weight τ distribution during training on CIFAR-10 with 40% symmetric noise using
NAL. Figure 11 to Figure 13 show the results. We summarize the weight τ distribution into three
stages. As can be observed, in the stage 1, clean samples and mislabeled samples have the similar τ .
By continuing to train the model with NAL, the weights for clean samples and mislabeled samples
start to separate. Until stage 3, the weight of clean samples is increased towards 1.0, even for most
hard samples (since the weight distribution has only a little overlap between clean and mislabeled
samples).
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