A ADDITIONAL PROOFS

A. 1 Proof of Lemma ■ (strongly convex case)

Proof. The major part of the proof is adapted from Muzellec et al [[$2 \mathbf{I} 21$, Lemma 3.1]. We denote $T=\nabla f$ and T_{0} an OT map between μ and ν such that there exists a convex potential f_{0} verifying $\nabla f_{0}=T_{0}$. By definition of the Fenchel-Legendre transform, we have for any convex function f and point x

$$
\begin{equation*}
f(x)+f^{*}(\nabla f(x))=x^{\top} \nabla f(x), \tag{2}
\end{equation*}
$$

Integrating this relation over μ for the optimal potential f_{0} yields

$$
\begin{equation*}
\left\langle f_{0}, \mu\right\rangle+\left\langle f_{0}^{*} \circ T_{0}, \mu\right\rangle=\int x^{\top} T_{0}(x) \mathrm{d} \mu(x) \tag{3}
\end{equation*}
$$

Using the property $T_{\#}(\mu)=\nu$, we obtain that the r.h.s. is equal to J_{0}. We use this same property to re-write $J(f)=\int f(x)+f^{*}\left(T_{0}(x)\right) \mathrm{d} \mu(x)$. Finally, using the Legendre identity stated above, we have $J(f)=\int f^{*}\left(T_{0}(x)\right)-f^{*}(\nabla f(x))+x^{\top} \partial f(x) \mathrm{d} \mu(x)$, which leads to

$$
\begin{equation*}
J(f)-J_{0}=\int f^{*}\left(T_{0}(x)\right)-f^{*}(\nabla f(x))-\left(T_{0}(x)-\nabla f(x)\right)^{\top} x \mathrm{~d} \mu(x) \tag{4}
\end{equation*}
$$

Recalling that $\partial f^{*}(\nabla f(x))=x$, where f^{*} is a subgradient of f^{*}, we identify in the integrand a Bregman divergence $D_{f^{*}}\left(T_{0}(x), \nabla f(x)\right)$ where for a convex function h the Bregman divergence $D_{h}(y, x)=h(y)-h(x)-\partial h(x)^{\top}(y-x)$. When f is assumed γ-strongly convex, f^{*} is $\frac{1}{\gamma}$-smooth and $D_{f^{*}}\left(T_{0}(x), \nabla f(x)\right)$ is upper-bounded by $\frac{1}{2 \gamma}\left\|T(x)-T_{0}(x)\right\|^{2}$ which yields

$$
\begin{equation*}
J(f)-J_{0} \leq \frac{1}{2 \gamma} \int\left\|T(x)-T_{0}(x)\right\|^{2} \mathrm{~d} \mu(x) \tag{5}
\end{equation*}
$$

Conversely, when f is assumed M-smooth, f^{*} is $\frac{1}{2 M}$-strongly convex and $D_{f^{*}}\left(T_{0}(x), \nabla f(x)\right)$ is lower-bounded by $\frac{1}{2 M}\left\|T(x)-T_{0}(x)\right\|^{2}$ which yields

$$
\begin{equation*}
J(f)-J_{0} \geq \frac{1}{2 M} \int\left\|T(x)-T_{0}(x)\right\|^{2} \mathrm{~d} \mu(x) \tag{6}
\end{equation*}
$$

A. 2 Proof of Prop. [l]

Proof. Define the potential $g_{0}(x)=|x|+\frac{x^{2}}{2}$ and for $0 \leq \lambda \leq \frac{1}{2}$, define the translated potential $g_{\lambda}=g_{0}(\cdot-\lambda)$. Let us start by computing the Legendre transform of g_{0}. The Legendre transform of g_{0} is defined for all y as

$$
\begin{equation*}
g_{0}^{*}(y)=\sup _{x \in \mathbb{R}} x y-g_{0}(x) . \tag{7}
\end{equation*}
$$

Since $g_{0}(x) \geq|x|$ for all x, then if $y \in[-1,1]$ then $g_{0}^{*}(y)=0$. If $y>1$, since g_{0} is pair and positive, the maximum is attained on \mathbb{R}^{+}. Denoting $\phi(x, y)=x y-g_{0}(x)$, we have that $\phi(\cdot, y)$ increases between $[0, y-1]$ and decreases between $[y-1,+\infty[$ hence the maximum is attained in $x=y-1$ which yields $g_{0}^{*}(y)=\frac{(y-1)^{2}}{2}$. Conversely, if $y<-1$ we have $g_{0}^{*}(y)=\frac{(y+1)^{2}}{2}$. From this result, we can compute g_{λ}^{*} in virtue of the relation $g_{\lambda}^{*}(y)=g^{*}(y)+\lambda y$.

Let us now compute the semi-dual $J\left(g_{\lambda}\right)$. The first term is given by

$$
\begin{align*}
\int_{-\frac{1}{2}}^{\frac{1}{2}} g_{\lambda}(x) \mathrm{d} x & =\int_{-\frac{1}{2}}^{\lambda} g(x-\lambda) \mathrm{d} x+\int_{\lambda}^{\frac{1}{2}} g(x-\lambda) \mathrm{d} x \tag{8}\\
& =\int_{-\frac{1}{2}}^{\lambda} \frac{(x-\lambda)^{2}}{2}+(\lambda-x) \mathrm{d} x+\int_{\lambda}^{\frac{1}{2}} \frac{(x-\lambda)^{2}}{2}+(x-\lambda) \mathrm{d} x \tag{9}\\
& =\left[\frac{(\cdot-\lambda)^{3}}{6}\right]_{-\frac{1}{2}}^{\frac{1}{2}}+\left[-\frac{(\cdot-\lambda)^{2}}{2}\right]_{-\frac{1}{2}}^{\lambda}+\left[-\frac{(\lambda-\cdot)^{2}}{2}\right]_{\lambda}^{\frac{1}{2}} \tag{10}\\
& =\frac{\left(\frac{1}{2}-\lambda\right)^{3}+\left(\frac{1}{2}+\lambda\right)^{3}}{6}+\frac{\left(\frac{1}{2}+\lambda\right)^{2}+\left(\frac{1}{2}-\lambda\right)^{2}}{2} \tag{11}\\
& =\frac{1}{4}+\frac{\frac{1}{4}+3 \lambda^{2}}{6}+\lambda^{2} \tag{12}
\end{align*}
$$

The second term is given by

$$
\begin{align*}
\int_{\mathbb{R}} g_{\lambda}^{*}(y) \mathrm{d}\left(\nabla g_{0}\right)(\mu)(y) & =\int_{-\frac{1}{2}}^{\frac{1}{2}} g_{\lambda}^{*}\left(\nabla g_{0}(y)\right) \mathrm{d} y \tag{13}\\
& =\int_{-\frac{1}{2}}^{0} g_{0}^{*}(y-1-\lambda) \mathrm{d} y+\int_{0}^{\frac{1}{2}} g_{0}^{*}(y+1-\lambda) \mathrm{d} y \tag{14}\\
& =\int_{-\frac{1}{2}} \frac{(u-\lambda)^{2}}{2} \mathrm{~d} u+\int_{\lambda}^{\frac{1}{2}} \frac{(u-\lambda)^{2}}{2} \mathrm{~d} u \tag{15}\\
& =\left[\frac{(\cdot-\lambda)^{3}}{6}\right]_{-\frac{1}{2}}^{0}+\left[\frac{(u-\lambda)^{3}}{6}\right]_{\lambda}^{\frac{1}{2}} \tag{16}\\
& =\frac{\left(\frac{1}{2}+\lambda\right)^{3}+\left(\frac{1}{2}-\lambda\right)^{3}-\lambda^{3}}{6} \tag{17}\\
& =\frac{\frac{1}{4}+3 \lambda^{2}-\lambda^{3}}{6} \tag{18}
\end{align*}
$$

$$
\begin{align*}
e_{\mu}\left(g_{\lambda}\right) & =\int_{-\frac{1}{2}}^{0}\left(\nabla g_{0}(x)-\nabla g_{\lambda}(x)\right)^{2} \mathrm{~d} x+\int_{0}^{\lambda}\left(\nabla g_{0}(x)-\nabla g_{\lambda}(x)\right)^{2} \mathrm{~d} x+\int_{\lambda}^{\frac{1}{2}}\left(\nabla g_{0}(x)-\nabla g_{\lambda}(x)\right)^{2} \mathrm{~d} x \tag{19}\\
& =\frac{\lambda^{2}}{2}+\lambda(2+\lambda)^{2}+\lambda^{2}\left(\frac{1}{2}-\lambda\right) \tag{20}\\
& =4 \lambda+5 \lambda^{2} \tag{21}
\end{align*}
$$

499

A. 3 Proof of Prop. \rrbracket

Proof. We begin with splitting $\hat{J}\left(f_{i_{0}}\right)-J_{0}$ in non-stochastic and stochastic terms

$$
\begin{equation*}
\hat{J}\left(f_{i_{0}}\right)-J_{0}=J\left(f_{i_{0}}\right)-J_{0}+\hat{J}\left(f_{i_{0}}\right)-J\left(f_{i_{0}}\right) \tag{22}
\end{equation*}
$$

502 where we denoted \hat{J} the empirical semi-dual $J_{\hat{\mu}, \hat{\nu}}$ Using Lemma 四, we get the lower bound

$$
\begin{equation*}
\hat{J}\left(f_{i_{0}}\right)-J_{0} \geq \frac{1}{2 M} e_{\mu}\left(f_{i_{0}}\right)+\hat{J}\left(f_{i_{0}}\right)-J\left(f_{i_{0}}\right) \tag{23}
\end{equation*}
$$

503
By construction, $f_{i_{0}}$ verifies for all $1 \leq i \leq p$

$$
\begin{aligned}
\hat{J}\left(f_{i_{0}}\right)-J_{0} & \leq \hat{J}\left(f_{i}\right)-J_{0} \\
& =J\left(f_{i}\right)-J_{0}+\hat{J}\left(f_{i}\right)-J\left(f_{i}\right)
\end{aligned}
$$

Picking $i=i_{1}$ and using Lemma (I, we obtain

$$
\begin{equation*}
\hat{J}\left(f_{i_{0}}\right)-J_{0} \leq \frac{1}{2 \gamma} e_{\mu}\left(f_{i_{1}}\right)+\hat{J}\left(f_{i_{1}}\right)-J\left(f_{i_{1}}\right) . \tag{24}
\end{equation*}
$$

Equations (23) and (24) give

$$
\begin{align*}
e_{\mu}\left(f_{i_{0}}\right) \leq & \frac{M}{\gamma} e_{\mu}\left(f_{i_{1}}\right)+2 M\left(\hat{J}\left(f_{i_{1}}\right)-J\left(f_{i_{1}}\right)\right) \tag{25}\\
& +2 M\left(J\left(f_{i_{0}}\right)-\hat{J}\left(f_{i_{0}}\right)\right) \tag{26}
\end{align*}
$$

506 The Hoeffding lemma gives for all $t>0$

$$
\begin{equation*}
\mathbb{P}\left(\left\langle f_{i}, \hat{\mu}-\mu\right\rangle \geq t\right) \leq \exp \left(-\frac{2 n t^{2}}{\left\|f_{i}\right\|_{o s c, X}^{2}}\right) . \tag{27}
\end{equation*}
$$

We place ourselves on the event

$$
\begin{align*}
A= & \left(\left\langle f_{i_{1}}, \hat{\mu}-\mu\right\rangle \geq t\right) \cup\left(\left\langle f_{i_{1}}^{*}, \hat{\nu}-\nu\right\rangle \geq t\right) \\
& \cup\left(\left\langle f_{i_{0}}, \mu-\hat{\mu}\right\rangle \geq t\right) \cup\left(\left\langle f_{i_{0}}^{*}, \nu-\hat{\nu}\right\rangle \geq t\right) . \tag{28}
\end{align*}
$$

We want to set $\mathbb{P}(A) \leq \delta$. By triangle inequality, we get the upper-bound

$$
\begin{equation*}
\mathbb{P}(A) \leq 4 \exp \left(-\frac{2 n t^{2}}{C^{2}}\right) \tag{29}
\end{equation*}
$$

509 where $C=\max \left(C_{i_{0}}, C_{i_{1}}\right)$ and C_{i} defined as $C_{i}=\max \left(\left\|f_{i}\right\|_{X, o},\left\|f_{i}^{*}\right\|_{Y, o}\right)$. Hence setting, $t=$ $C \sqrt{\frac{\ln (4 / \delta)}{2 n}}$, we have with probability at least $1-\delta$

$$
\begin{equation*}
e_{\mu}\left(f_{i_{0}}\right) \leq \frac{M}{\gamma} e_{\mu}\left(f_{i_{1}}\right)+8 M C \sqrt{\frac{\ln (4 / \delta)}{2 n}} \tag{30}
\end{equation*}
$$

511

A. 4 Proof of Prop. ${ }^{\square}$

513 Proof. Take $\mu \sim[0,1]$ and $f_{0} \equiv 0$ and let us compute the error for $g=M \frac{x^{2}}{2}$.

$$
\begin{align*}
e_{\mu}(g) & =\int_{0}^{1}(M x)^{2} \mathrm{~d} x \tag{31}\\
& =\frac{M^{2}}{3} \tag{32}
\end{align*}
$$

514 Conversely, defining $h_{\epsilon}=\gamma \frac{x^{2}}{2}+\left(\epsilon+\alpha_{M, \gamma}\right) x$ with

$$
\begin{equation*}
\alpha_{M, \gamma}=\frac{\gamma}{2}\left[\sqrt{1+\frac{4(M-\gamma)}{3 \gamma}}-1\right], \tag{33}
\end{equation*}
$$

$$
\begin{align*}
e_{\mu}(h) & =\int_{0}^{1}\left(\gamma x+\left(\epsilon+\alpha_{M, \gamma}\right)\right)^{2} \mathrm{~d} x \tag{34}\\
& =\frac{\gamma^{2}}{3}+\gamma\left(\alpha_{M, \gamma}+\epsilon\right)+\left(\alpha_{M, \gamma}+\epsilon\right)^{2} \tag{35}\\
& =\frac{\gamma^{2}}{3}+\gamma \epsilon+\gamma \alpha_{M, \gamma}+\epsilon^{2}+2 \epsilon \alpha_{M, \gamma}+\alpha_{M, \gamma}^{2} \tag{36}\\
& =\frac{\gamma^{2}}{3}+\gamma \epsilon+\frac{\gamma^{2}}{2} \sqrt{1+\frac{4(M-\gamma)}{3 \gamma}}-\frac{\gamma^{2}}{2}+\epsilon^{2}+2 \epsilon \alpha_{M, \gamma}+\frac{\gamma^{2}}{4}\left[2+\frac{4(M-\gamma)}{3 \gamma}-2 \sqrt{1+\frac{4(M-\gamma)}{3 \gamma}}\right]
\end{align*}
$$

$$
\begin{equation*}
=\frac{\gamma^{2}}{3}+\gamma \epsilon+\epsilon^{2}+2 \epsilon \alpha_{M, \gamma}+\frac{\gamma(M-\gamma)}{3} \tag{37}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{M \gamma}{3}+\gamma \epsilon+\epsilon^{2}-\gamma \epsilon+\gamma \epsilon \sqrt{1+\frac{4(M-\gamma)}{3 \gamma}} \tag{38}
\end{equation*}
$$

$$
=\frac{M \gamma}{3}\left[1+\frac{3 \epsilon^{2}}{M \gamma}+\frac{3 \epsilon}{M} \sqrt{1+\frac{4(M-\gamma)}{3 \gamma}}\right] .
$$

In particular, we obtain $\frac{e_{\mu}(g)}{e_{\mu}\left(h_{\epsilon}\right)}=\frac{M}{\gamma} \times \frac{1}{1+\frac{3 \epsilon}{M}\left[\frac{\epsilon}{\gamma}+\sqrt{1+\frac{4(M-\gamma)}{3 \gamma}}\right]} \rightarrow \underset{\epsilon \rightarrow 0}{\rightarrow} \frac{M}{\gamma}$. Now, let us compute the semi-duals $J(g)$ and $J\left(h_{\varepsilon}\right)$. Since $f_{0} \equiv 0$, we have $\nu=\delta_{0}$ a Dirac mass in 0 . Hence we simply need to compute the Legendre transform of g and h_{ϵ} in 0

$$
\begin{align*}
g^{*}(0) & =\sup _{x}-M \frac{x^{2}}{2} \tag{41}\\
& =0 \tag{42}
\end{align*}
$$

and

$$
\begin{align*}
h_{\varepsilon}^{*}(0) & =\sup _{x}-\gamma \frac{x^{2}}{2}-\left(\epsilon+\alpha_{M, \gamma}\right) x \tag{43}\\
& =\frac{\left(\epsilon+\alpha_{M, \gamma}\right)^{2}}{2 \gamma} . \tag{44}
\end{align*}
$$

Hence we obtain

$$
\begin{align*}
J(g) & =\int_{0}^{1} M \frac{x^{2}}{2} \mathrm{~d} x \tag{45}\\
& =\frac{M}{6} \tag{46}
\end{align*}
$$

521 and

$$
\begin{align*}
J\left(h_{\epsilon}\right) & =\int_{0}^{1} \gamma \frac{x^{2}}{2}+\left(\epsilon+\alpha_{M, \gamma}\right) x \mathrm{~d} x+\frac{\left(\epsilon+\alpha_{M, \gamma}\right)^{2}}{2 \gamma} \tag{47}\\
& =\frac{\gamma}{6}+\frac{\epsilon+\alpha_{M, \gamma}}{2}+\frac{\left(\epsilon+\alpha_{M, \gamma}\right)^{2}}{2 \gamma} \tag{48}\\
& =\frac{\gamma}{6}+\frac{\epsilon+\alpha_{M, \gamma}}{2}+\frac{\epsilon^{2}+2 \epsilon \alpha_{M, \gamma}+\alpha_{M, \gamma}^{2}}{2 \gamma} \tag{49}\\
& =\frac{1}{2 \gamma}\left(\frac{\gamma^{2}}{3}+\gamma\left(\epsilon+\alpha_{M, \gamma}\right)+\epsilon^{2}+2 \epsilon \alpha_{M, \gamma}+\alpha_{M, \gamma}^{2}\right) . \tag{50}
\end{align*}
$$

We recognize between brackets the same expression as $e_{\mu}\left(h_{\epsilon}\right)$ in Equation (52) hence we obtain

$$
\begin{equation*}
J\left(h_{\epsilon}\right)=\frac{M}{6}\left[1+\frac{3 \epsilon^{2}}{M \gamma}+\frac{3 \epsilon}{M} \sqrt{1+\frac{4(M-\gamma)}{3 \gamma}}\right] . \tag{51}
\end{equation*}
$$

A. 5 Proof of Prop. \square

Proof. Applying Lemma 四, we have for all $\delta>0$ the inequality $J\left(Q_{\delta}(f)\right)-J_{0} \leq \frac{1}{2 \delta} e_{\mu}\left(Q_{\delta}(f)\right)$. The right hand side is decomposed in $\left\langle Q_{\delta}(f), \mu\right\rangle+\left\langle Q_{\delta}(f)^{*}, \nu\right\rangle$. The first term is simply $\langle f, \mu\rangle+$ $\delta\langle q, \mu\rangle$. For the second-term we use the standard result $Q_{\delta}(f)^{*}=M_{\delta}(f)$ the Moreau-Yosida transform of f reading $M_{\tau}(f)=\inf _{y} f(y)+\frac{q(x-y)}{\tau}$. If f^{*} is L-Lipschitz on the support of ν, we have the lower bound $M_{\delta}(f) \geq f-\frac{L^{2} \delta}{2}$. Hence we recover

$$
\begin{equation*}
J(f)-J_{0}-\frac{L^{2} \delta}{2}+\delta\langle q, \mu\rangle \leq \frac{1}{2 \delta} e_{\mu}\left(Q_{\delta}(f)\right) \tag{52}
\end{equation*}
$$

The term $e_{\mu}\left(Q_{\delta}(f)\right)$ is upper-bounded by $2\left(e_{\mu}(f)+2 \delta^{2}\langle q, \mu\rangle\right)$ which gives $J(f)-J_{0} \leq \frac{e_{\mu}(f)}{\delta}+$ $\delta\langle q, \mu\rangle+\frac{L^{2} \delta}{2}$. Optimizing on δ leads to

$$
\begin{equation*}
J(f)-J_{0} \leq 2 \sqrt{e_{\mu}(f)\left(\frac{L^{2}}{2}+\langle q, \mu\rangle\right)} \tag{53}
\end{equation*}
$$

A. 6 Proof of Prop.

Proof. Recall that the Fenchel-Legendre of a standard Log-Sum-Exp function $\operatorname{LSE}(x)=$ $\log \left(\sum_{i=1}^{n} e^{x_{i}}\right)$ is given by

$$
\begin{align*}
\operatorname{LSE}^{*}(y) & =\sum_{i=1}^{n} y_{i} \log \left(y_{i}\right)+\iota\left(y \in \mathcal{S}_{n}\right) \tag{54}\\
& =-\operatorname{Ent}(y)+\iota\left(y \in \mathcal{S}_{n}\right) \tag{55}
\end{align*}
$$

where \mathcal{S}_{n} is the probability simplex. More generally, defining $\operatorname{LSE}_{b}(x)=\log \left(\sum_{i=1}^{n} e^{x_{i}+b_{i}}\right)$, using the fact that $f^{*}(\cdot+\tau)=f^{*}(\cdot)-\tau^{\top} \cdot$, we have

$$
\begin{equation*}
\left(\operatorname{LSE}_{b}\right)^{*}(y)=-\operatorname{Ent}(y)-b^{\top} y+\iota\left(y \in \mathcal{S}_{n}\right) \tag{56}
\end{equation*}
$$

At the optimum, for empirical measures $\hat{\mu}=\frac{1}{m} \sum_{i=1}^{m} \delta_{x_{i}}, \hat{\nu}=\frac{1}{n} \sum_{i=1}^{n} \delta_{y_{i}}$ the empirical Sinkhorn Kantorovitch potentials $\left(\hat{\phi}_{\varepsilon}, \hat{\psi}_{\varepsilon}\right)$ are linked as

$$
\begin{equation*}
\hat{\phi}_{\varepsilon}(x)=-\varepsilon \log \left(\frac{1}{n} \sum_{i=1}^{n} e^{2 \frac{2 \hat{\psi}_{\varepsilon}\left(y_{i}\right)-\left\|x-y_{i}\right\|^{2}}{2 \varepsilon}}\right) \tag{57}
\end{equation*}
$$

hence the Sinkhorn Brenier potential f_{ε} can be written as

$$
\begin{equation*}
f_{\varepsilon}(x)=\varepsilon \operatorname{LSE}_{b_{\varepsilon}}\left(C_{\varepsilon} x\right), \tag{58}
\end{equation*}
$$

where we defined

$$
\left\{\begin{array}{l}
C_{\varepsilon}=\left(\frac{y_{i}}{\varepsilon}\right)_{1 \leq i \leq n} \in \mathbb{R}^{n \times d} \tag{59}\\
b_{\varepsilon, n}=\left(\frac{2 \psi_{\varepsilon}\left(y_{i}\right)-\left\|y_{i}\right\|^{2}}{2 \varepsilon}-\log (n)\right)_{1 \leq i \leq n} \in \mathbb{R}^{n}
\end{array}\right.
$$

Now recall that

- $(\varepsilon f(\cdot))^{*}=\varepsilon f^{*}(\dot{\bar{\varepsilon}})$.
- $\forall z,(f(A .))^{*}(z)=\inf _{A y=z} f^{*}(y)$.

Hence we can deduce

$$
f_{\varepsilon}^{*}(y)=\varepsilon \inf _{C \Delta=y}-\operatorname{Ent}(\Delta)-\Delta^{\top} b_{\varepsilon, n}+\iota\left(\Delta \in \mathcal{S}_{n}\right),
$$

where $C \in \mathbb{R}^{n \times d}$ is the matrix of the samples $\left(y_{i}\right)$. In particular if f_{ε}^{*} is evaluated outside the convex hull of $\hat{\nu}$, it is infinite. Since ν has continuous density, there almost surely exists $\left(y_{0}, r\right), r>0$ such that $B\left(y_{0}, r\right) \subset \operatorname{Supp}(\nu)$ and $B\left(y_{0}, r\right) \cap \operatorname{Conv}(\hat{\nu})=\emptyset$ where $\operatorname{Conv}(\hat{\nu})$ is the convex hull of the samples $\hat{\nu}$. In particular, almost surely

$$
\begin{equation*}
\left\langle f_{\varepsilon}^{*}, \nu\right\rangle=+\infty . \tag{60}
\end{equation*}
$$

A. 7 Proof of Prop. \square

The proof is largely inspired from an article on the online blog of Francis Bach ${ }^{\text {T}}$.
Since the 2-self-concordance is scaling invariant, we shall simply prove that $f(x)=\mathrm{LSE}_{b}(C$.$) is$ $(2, D(C))$ self-concordant with $b \in \mathbb{R}_{+}^{n}, C \in \mathbb{R}^{n \times d}$ the matrix whose rows are centers $\left(c_{i}\right)_{1 \leq i \leq n}$ and $D(C)=\max _{i j}\left\|c_{i}-c_{j}\right\|$.

Proof. Defining the (non-normalized) distribution $\zeta=\frac{1}{n} \sum_{i=1}^{n} b_{i} \delta_{c_{i}}$, we can remark that f is the normalizing factor of the conditional exponential distribution

$$
\begin{align*}
h(c \mid x) & \propto e^{c^{\top} x} d \zeta(c) \tag{61}\\
& =e^{c^{\top} x-f(x)} d \zeta(c) \tag{62}
\end{align*}
$$

The gradient of f is given by

$$
\begin{align*}
\nabla f(x) & =\frac{\int c e^{c^{\top} x} d \zeta(c)}{\int e^{c^{\top} x} d \zeta(c)} \tag{63}\\
& =\mathbb{E}_{h}(c) \tag{64}
\end{align*}
$$

and using the results of Pistone and Wynn [1999], we have for higher order derivatives

$$
\begin{equation*}
\nabla^{p} f(x)=\mathbb{E}_{h}\left(\otimes_{j=1}^{p}(c-\nabla f(x))\right), \tag{65}
\end{equation*}
$$

where for a vector $v \in \mathbb{R}^{d}, \otimes_{j=1}^{p} v$ is a tensor V_{p} in $\mathbb{R}^{d^{p}}$ whose entries are $\left(v_{i_{1}} \times \cdots \times v_{i_{p}}\right)$. In particular, applying the formula for $p=3$ and denoting $H=(c-\nabla f(x)) \otimes(c-\nabla f(x))$

$$
\begin{equation*}
\nabla^{3} f(x)=\mathbb{E}_{h}[(c-\nabla f(x)) \otimes H] \tag{66}
\end{equation*}
$$

Using the linearity of the expectation, we have

$$
\begin{align*}
\left|\left(\nabla^{3} f(x)[v] u\right)^{\top} u\right| & =\left|\mathbb{E}_{h}\left[(c-\nabla f(x))^{\top} v \times(H u)^{\top} u\right]\right| \tag{67}\\
& \leq \mathbb{E}_{h}\left[\left|(c-\nabla f(x))^{\top} v\right| \times\left|(H u)^{\top} u\right|\right] \tag{68}
\end{align*}
$$

Since $\nabla f(x) \in \operatorname{Conv}(C)$, we have in particular that $\|c-\nabla f(x)\| \leq D(C)$. Furthermore since H is a positive matrix, we obtain the following upper-bound

$$
\begin{align*}
\left|\left(\nabla^{3} f(x)[v] u\right)^{\top} u\right| & \leq D(C)\|v\| \mathbb{E}_{h}\left[(H u)^{\top} u\right] \tag{69}\\
& \leq D(C)\|v\|\left(\nabla^{2} f(x) u\right)^{\top} u \tag{70}
\end{align*}
$$

A. 8 Proof of Prop. $\sqrt{\square}$

Proof. The Sinkhorn Brenier empirical potentials are of the form $f_{\varepsilon}=\varepsilon \operatorname{LSE}_{b_{\varepsilon, n}}\left(C_{\varepsilon}\right.$.) where C_{ε} and $b_{\varepsilon, n}$ are defined in (区प). Using the formulas from the previous proof, we simply have to bound $H_{c, x}=(c-\nabla f(x)) \otimes(c-\nabla f(x))$

$$
\begin{align*}
u^{\top} H_{c, x} u & =\left(u^{\top}(c-\nabla f(x))\right)^{2} \tag{71}\\
& \leq\|u\|_{2}^{2}\|c-\nabla f(x)\|_{2}^{2} \tag{72}
\end{align*}
$$

Since $\nabla f(x)$ is in the convex hull of $\frac{\hat{\nu}}{\varepsilon}$ and $c \in \operatorname{Supp}\left(\frac{\hat{\nu}}{\varepsilon}\right)$, we deduce that $\left\|H_{c, x}\right\|_{o p} \leq \frac{D^{2}(\hat{\nu})}{\varepsilon^{2}}$, where $\|\cdot\|_{o p}$ is the spectral norm. In particular $\left\|\nabla^{2} f(x)\right\|_{o p} \leq \frac{D^{2}(\hat{\nu})}{\varepsilon}$.

B MISCELLANEOUS

B. 1 DA experiment

We present here the results in the Domain Adaptation experiment where the source terms are (D) and (W) respectively. The results are displayed on Table a: again, the best accuracy for the downstream classification task is not correlated with the minimization of the semi-dual, in particular the best OT maps are not suited for label transfer.

[^0]| | ICNN | | Sinkhorn | | SSNB | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\operatorname{acc}\left(f_{i_{1}}\right)$ | $\operatorname{acc}\left(f_{i_{0}}\right)$ | $\operatorname{acc}\left(f_{i_{1}}\right)$ | $\operatorname{acc}\left(f_{i_{0}}\right)$ | $\operatorname{acc}\left(f_{i_{1}}\right)$ | $\operatorname{acc}\left(f_{i_{0}}\right)$ |
| D/A | 0.5 | $0.47(2 / 48)$ | 0.91 | $0.78(5 / 5)$ | 0.91 | $\mathbf{0 . 8 4}(11 / 11)$ |
| D/C | 0.54 | $0.43(2 / 48)$ | 0.83 | $0.74(5 / 5)$ | 0.83 | $\mathbf{0 . 7 5}(9 / 11)$ |
| D/W | 0.52 | $0.28(11 / 48)$ | 0.96 | $0.85(4 / 5)$ | 0.99 | $\mathbf{0 . 9 5}(8 / 11)$ |
| W/A | 0.48 | $0.25(17 / 48)$ | 0.89 | $\mathbf{0 . 7 8}(4 / 5)$ | 0.87 | $0.77(11 / 11)$ |
| W/C | 0.4 | $0.2(13 / 48)$ | 0.77 | $0.73(4 / 5)$ | 0.78 | $\mathbf{0 . 7 4}(10 / 11)$ |
| W/D | 0.62 | $0.51(2 / 48)$ | 0.95 | $0.9(3 / 5)$ | 1.0 | $\mathbf{1 . 0}(1 / 11)$ |

Table 5: Potential Selection for Domain-Adaptation. The column acc $\left(f_{i_{1}}\right)$ corresponds to the best (highest) accuracy and $\operatorname{acc}\left(f_{i_{0}}\right)$ corresponds to the accuracy of the potential selected with the Brenier criterion. On this Table, the potentials are ranked with respect to the accuracy; the closer to one, the better the classification. In bold, the highest accuracy after being calibrated with the semi-dual.

B. 2 SSNB algorithm

For $l<L$, the SSNB model is defined as

$$
\begin{equation*}
\inf _{f \in \mathcal{F}_{l, L}} W_{2}^{2}\left((\nabla f)_{\#}(\mu), \nu\right) \tag{73}
\end{equation*}
$$

where $\mathcal{F}_{l, L}$ is the set of l-strongly convex, L-smooth functions. For empirical potentials $\hat{\mu}=$ $\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}$ and $\hat{\nu}=\frac{1}{m} \sum_{i=1}^{m} \delta_{y_{i}}$, the authors propose to solve the non-convex problem (\mathbb{Z}) in an alternate fashion: for a fixed $f \in \mathcal{F}_{l, L}$, they estimate the transport coupling $\left(P_{i j}\right) \in \mathbb{R}^{n \times m}$ from $(\nabla f)_{\#}(\hat{\mu})$ to $\hat{\nu}$ by solving the associated linear program (or an entropic approximation) and then, once the coupling is fixed, they estimate f (pointwise on $\hat{\mu}$) by solving
$\min _{\left(z_{1}, \cdots, z_{n}\right) \in \mathbb{R}^{n \times d}, u \in \mathbb{R}^{n}} \sum_{i j} P_{i j}\left\|z_{i}-y_{j}\right\|_{2}^{2}$
subject to $u_{i} \geq u_{j}+z_{j}^{\top}\left(x_{i}-x_{j}\right)+\frac{1}{2(1-l / L)}\left(\frac{1}{L}\left\|z_{i}-z_{j}\right\|^{2}+\frac{1}{l}\left\|x_{i}-x_{j}\right\|_{2}^{2}-\frac{2 l}{L}\left(z_{j}-z_{i}\right)^{\top}\left(x_{i}-x_{j}\right)\right)$,
where $z_{i}=\nabla f\left(x_{i}\right)$ and $u_{i}=f\left(x_{i}\right)$. The problem above is a convex Quadratically Constrained Quadratic Problem and can be numerically solved with CVXPY for instance. However, when such an option is chosen the $n(n-1)$ constraints must be computed at each iterations which induces a large overhead. Instead, we reformulate this problem as a standard linear conic problem of the form $A x-b \in \mathcal{K}$, with \mathcal{K} a fixed cone to be compiled only once.

From QCQP to SOCP First we show how to reformulate a (convex) QCQP without equality constraints into an SOCP. The standard formulation of a QCQP is

$$
\begin{array}{ll}
\inf _{x} & \frac{1}{2} x^{\top} Q_{0} x+c_{0}^{\top} x \tag{75}\\
\text { s. t. } & \frac{1}{2} x^{\top} Q_{i} x+c_{i}^{\top} x+r_{i} \leq 0, \quad i=1, \cdots, p .
\end{array}
$$

Introducing the slack variables $\left(t_{0}, t_{1}, \cdots, t_{p}\right)=\frac{1}{2}\left(x^{\top} Q_{0} x, x^{\top} Q_{1} x, \cdots, x^{\top} Q_{p} x\right)$, we re-write the problem as

$$
\begin{align*}
& \inf _{x, t} t_{0}+c_{0}^{\top} x \\
& \text { s. t. } t_{i}+c_{i}^{\top} x+r_{i}=0, \quad i=1, \cdots, p \tag{76}\\
& \quad t_{i} \geq \frac{1}{2} x^{\top} Q_{i} x, \quad i=0, \cdots, p .
\end{align*}
$$

594 Decomposing Q_{i} as $Q_{i}=F_{i}^{\top} F_{i}$ with F_{i} having p rows, the constraint $t_{i}=\frac{1}{2} x^{\top} Q_{i} x$ becomes 595

$$
\begin{equation*}
\mathcal{Q}_{r}^{d+2}=\left\{\left(x_{1}, x_{2}, \cdots, x_{d+2}\right) \text { s.t. } 2 x_{1} x_{2} \geq \sum_{k=1}^{d} x_{i+2}^{2}\right\} . \tag{77}
\end{equation*}
$$

We obtain a MOSEK-friendly formulation of the QCQP as

$$
\begin{align*}
& \inf _{x, t} t_{0}+c_{0}^{\top} x \\
& \text { s. t. } t_{i}+c_{i}^{\top} x+r_{i}=0, \quad i=1, \cdots, p \tag{78}\\
& \quad\left(1, t_{i}, F_{i} x\right) \in \mathcal{Q}_{r}^{d+2}, i=0, \cdots, p,
\end{align*}
$$

which has the form $A x-b \in \mathcal{K}$ where \mathcal{K} is a fixed product of Lorentz cone whose number and dimensions solely depend on n and d in the case of SSNB. Hence we can compile \mathcal{K} only once for fixed (n, d), which allows us to considerably reduce the overhead.

Decomposition of $Q_{i j} \quad$ In the SSNB model the symmetric positive matrices $Q_{i j} \in \mathcal{S}_{n(d+1)}^{+}(\mathbb{R})$ are defined up to a common scaling parameter as

$$
\left\{\begin{array}{l}
q_{k l}=1 \text { if } k=l \in\{d i, \cdots(d+1) i\} \cup\{d j, \cdots(d+1) j\} \tag{79}\\
q_{k l}=-1 \text { if } l=k+d j, k \in\{d i, \cdots(d+1) i\} \\
q_{k l}=-1 \text { if } k=l+d j, l \in\{d i, \cdots(d+1) i\} .
\end{array}\right.
$$

The matrix $Q_{i j}$ is factorized as $F_{i j}^{\top} F_{i j}$ with $F_{i j} \in \mathbb{R}^{d \times n(d+1)}$ defined as

$$
\left\{\begin{array}{l}
f_{k l}=1 \text { if } l=k+d i, k \in\{1, \cdots, d\} \tag{80}\\
f_{k l}=-1 \text { if } l=k+d j, k \in\{1, \cdots, d\} .
\end{array}\right.
$$

B. 3 Models parameters

ICNN We used a 3-layers ICNN with softplus activations. The number of hidden neurons was chosen in $\{64,128,256\}$, the soft convexity penalty for the potential g and the matching moment/variance penalty were both chosen in $\{0,0.001,0.01,0.1\}$. As recommended by the authors, the batch size was set to 60 , the number of epochs was set to 60 , the number of inner iterations to approximate the conjugate was set to 25 and the learning rate is initially set to $1 \mathrm{e}-4$ and is then divided by 2 every 2 -epochs.
To compute the semi-dual, we regularized the potential f by adding $\frac{\delta}{2}\|x\|^{2}$ with $\delta=1 \mathrm{e}-3$. The numerical optimization was done with SciPy with a stopping condition set to 0.001 ; for a lower stopping criterion, the minimization would not converge.

Sinkhorn The temperature ε was chosen in $\{0.5,0.1,0.05,0.01,0.005\}$. We stopped the training when the optimality conditions are almost met

$$
\left\{\begin{array}{l}
\langle | \phi_{\varepsilon}(.)+\varepsilon \log \left(\int_{y} e^{\frac{\psi_{\varepsilon}(y)-c(., y)}{\varepsilon}} d \hat{\nu}(y)\right)|, \hat{\mu}\rangle \leq 1 \mathrm{e}-5 \tag{81}\\
\langle | \psi_{\varepsilon}(.)+\varepsilon \log \left(\int_{x} e^{\frac{\phi_{\varepsilon}(y)-c(x .,)}{\varepsilon}} d \hat{\mu}(x)\right)|, \hat{\nu}\rangle \leq 1 \mathrm{e}-5 .
\end{array}\right.
$$

The resulting Sinkhorn Brenier potential \hat{f}_{ε} is regularized with $\frac{\delta}{2}\|x\|^{2}, \delta=0.001$. When the semidual is computed on a point y_{i}, the stopping criterion is given by

$$
\begin{equation*}
\left\|\nabla \hat{f}_{\varepsilon}\left(z_{t}\right)-y_{i}\right\| \leq 1 \mathrm{e}-5 \tag{82}
\end{equation*}
$$

where z_{t} is the current point of the optimization at time step t.

SSNB The strong convexity parameter l is chosen in $\{0.2,0.5,0.7,0.9\}$ and the smoothness parameter L is chosen in $\{0.2,0.5,0.7,0.9,1.2\}$ with $l<L$. The number of iterations in the alternate minimization is set to 10 . The conjugate is computed with a first order scheme with learning rate $\frac{1}{2 L}$ and is stopped with the same criterion as above.

Figure 4: Empirical Semi-Dual against Quadratic Error on the Quadratic and Log-Sum-Exp experiments for the Sinkhorn model, $n=10000$ and $d=8$.

B. 4 Additional Experiment Sinkhorn

We run 10 times the Quadratic and Log-Sum-Exp experiments with the Sinkhorn model but on $n=10000$ points for the training of the model, the semi-dual and the computation of the error. The results are reported on Figure B.4. Just as for SSNB, the semi-dual can accurately rank the potentials according to their error $e_{\mu}\left(f_{i}\right)=\int\left\|\nabla f_{i}(x)-T_{0}(x)\right\|_{2}^{2} d \mu(x)$ where T_{0} is the ground truth OT map.

[^0]: ${ }^{4}$ https://francisbach.com/self-concordant-analysis-for-logistic-regression/

