
A ADDITIONAL PROOFS470

A.1 Proof of Lemma 1 (strongly convex case)471

Proof. The major part of the proof is adapted from Muzellec et al. [2021, Lemma 3.1]. We denote472

T = ∇f and T0 an OT map between µ and ν such that there exists a convex potential f0 verifying473

∇f0 = T0. By definition of the Fenchel-Legendre transform, we have for any convex function f474

and point x475

f(x) + f∗(∇f(x)) = x"∇f(x) , (2)

Integrating this relation over µ for the optimal potential f0 yields476

〈f0, µ〉+ 〈f∗
0 ◦ T0, µ〉 =

∫
x"T0(x) dµ(x) . (3)

Using the property T#(µ) = ν, we obtain that the r.h.s. is equal to J0. We use this same property to477

re-write J(f) =
∫
f(x) + f∗(T0(x)) dµ(x). Finally, using the Legendre identity stated above, we478

have J(f) =
∫
f∗(T0(x))− f∗(∇f(x)) + x"∂f(x) dµ(x), which leads to479

J(f)− J0 =

∫
f∗(T0(x))− f∗(∇f(x))− (T0(x)−∇f(x))"x dµ(x) . (4)

Recalling that ∂f∗(∇f(x)) = x, where f∗ is a subgradient of f∗, we identify in the integrand a480

Bregman divergence Df∗(T0(x),∇f(x)) where for a convex function h the Bregman divergence481

Dh(y, x) = h(y)− h(x)− ∂h(x)"(y− x). When f is assumed γ-strongly convex, f∗ is 1
γ -smooth482

and Df∗(T0(x),∇f(x)) is upper-bounded by 1
2γ ‖T (x)− T0(x)‖2 which yields483

J(f)− J0 ≤ 1

2γ

∫
‖T (x)− T0(x)‖2 dµ(x) . (5)

Conversely, when f is assumed M -smooth, f∗ is 1
2M -strongly convex and Df∗(T0(x),∇f(x)) is484

lower-bounded by 1
2M ‖T (x)− T0(x)‖2 which yields485

J(f)− J0 ≥ 1

2M

∫
‖T (x)− T0(x)‖2 dµ(x) . (6)

486

A.2 Proof of Prop. 1487

Proof. Define the potential g0(x) = |x| + x2

2 and for 0 ≤ λ ≤ 1
2 , define the translated potential488

gλ = g0(· − λ). Let us start by computing the Legendre transform of g0. The Legendre transform489

of g0 is defined for all y as490

g∗0(y) = sup
x∈R

xy − g0(x) . (7)

Since g0(x) ≥ |x| for all x, then if y ∈ [−1, 1] then g∗0(y) = 0. If y > 1, since g0 is pair and positive,491

the maximum is attained on R+. Denoting φ(x, y) = xy − g0(x), we have that φ(·, y) increases492

between [0, y − 1] and decreases between [y− 1,+∞[ hence the maximum is attained in x = y− 1493

which yields g∗0(y) =
(y−1)2

2 . Conversely, if y < −1 we have g∗0(y) =
(y+1)2

2 . From this result, we494

can compute g∗λ in virtue of the relation g∗λ(y) = g∗(y) + λy.495
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Let us now compute the semi-dual J(gλ). The first term is given by496

∫ 1
2

− 1
2

gλ(x) dx =

∫ λ

− 1
2

g(x− λ) dx+

∫ 1
2

λ
g(x− λ) dx (8)

=

∫ λ

− 1
2

(x− λ)2

2
+ (λ− x) dx+

∫ 1
2

λ

(x− λ)2

2
+ (x− λ) dx (9)

= [
(·− λ)3

6
]
1
2

− 1
2
+ [− (·− λ)2

2
]λ− 1

2
+ [− (λ− ·)2

2
]
1
2
λ (10)

=
( 12 − λ)3 + ( 12 + λ)3

6
+

( 12 + λ)2 + ( 12 − λ)2

2
(11)

=
1

4
+

1
4 + 3λ2

6
+ λ2 . (12)

The second term is given by497

∫

R
g∗λ(y) d(∇g0)(µ)(y) =

∫ 1
2

− 1
2

g∗λ(∇g0(y)) dy (13)

=

∫ 0

− 1
2

g∗0(y − 1− λ) dy +

∫ 1
2

0
g∗0(y + 1− λ) dy (14)

=

∫

− 1
2

(u− λ)2

2
du+

∫ 1
2

λ

(u− λ)2

2
du (15)

= [
(·− λ)3

6
]0− 1

2
+ [

(u− λ)3

6
]
1
2
λ (16)

=
( 12 + λ)3 + ( 12 − λ)3 − λ3

6
(17)

=
1
4 + 3λ2 − λ3

6
. (18)

Hence the semi-dual is given by J(gλ) =
1
3 + 2λ2 − λ3. Finally, let us compute the error eµ498

eµ(gλ) =

∫ 0

− 1
2

(∇g0(x)−∇gλ(x))
2 dx+

∫ λ

0
(∇g0(x)−∇gλ(x))

2 dx+

∫ 1
2

λ
(∇g0(x)−∇gλ(x))

2 dx

(19)

=
λ2

2
+ λ(2 + λ)2 + λ2(

1

2
− λ) (20)

= 4λ+ 5λ2 . (21)

499

A.3 Proof of Prop. 2500

Proof. We begin with splitting Ĵ(fi0)− J0 in non-stochastic and stochastic terms501

Ĵ(fi0)− J0 = J(fi0)− J0 + Ĵ(fi0)− J(fi0) , (22)

where we denoted Ĵ the empirical semi-dual Jµ̂,ν̂ Using Lemma 1, we get the lower bound502

Ĵ(fi0)− J0 ≥ 1

2M
eµ(fi0) + Ĵ(fi0)− J(fi0) . (23)

By construction, fi0 verifies for all 1 ≤ i ≤ p503

Ĵ(fi0)− J0 ≤ Ĵ(fi)− J0

= J(fi)− J0 + Ĵ(fi)− J(fi) .
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Picking i = i1 and using Lemma 1, we obtain504

Ĵ(fi0)− J0 ≤ 1

2γ
eµ(fi1) + Ĵ(fi1)− J(fi1) . (24)

Equations (23) and (24) give505

eµ(fi0) ≤
M

γ
eµ(fi1) + 2M(Ĵ(fi1)− J(fi1)) (25)

+ 2M(J(fi0)− Ĵ(fi0)) . (26)

The Hoeffding lemma gives for all t > 0506

P(〈fi, µ̂− µ〉 ≥ t) ≤ exp

(
− 2nt2

‖fi‖2osc,X

)
. (27)

We place ourselves on the event507

A =(〈fi1 , µ̂− µ〉 ≥ t) ∪ (〈f∗
i1 , ν̂ − ν〉 ≥ t)

∪ (〈fi0 , µ− µ̂〉 ≥ t) ∪ (〈f∗
i0 , ν − ν̂〉 ≥ t) .

(28)

We want to set P(A) ≤ δ. By triangle inequality, we get the upper-bound508

P(A) ≤ 4 exp

(
−2nt2

C2

)
, (29)

where C = max(Ci0 , Ci1) and Ci defined as Ci = max(‖fi‖X,o, ‖f∗
i ‖Y,o). Hence setting, t =509

C
√

ln(4/δ)
2n , we have with probability at least 1− δ510

eµ(fi0) ≤
M

γ
eµ(fi1) + 8MC

√
ln(4/δ)

2n
. (30)

511

A.4 Proof of Prop. 3512

Proof. Take µ ∼ [0, 1] and f0 ≡ 0 and let us compute the error for g = M x2

2 .513

eµ(g) =

∫ 1

0
(Mx)2 dx (31)

=
M2

3
. (32)

Conversely, defining hε = γ x2

2 + (ε+ αM,γ)x with514

αM,γ =
γ

2

[√

1 +
4(M − γ)

3γ
− 1

]
, (33)
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the error eµ(hε) is given by515

eµ(h) =

∫ 1

0
(γx+ (ε+ αM,γ))

2 dx (34)

=
γ2

3
+ γ(αM,γ + ε) + (αM,γ + ε)2 (35)

=
γ2

3
+ γε+ γαM,γ + ε2 + 2εαM,γ + α2

M,γ (36)

=
γ2

3
+ γε+

γ2

2

√

1 +
4(M − γ)

3γ
− γ2

2
+ ε2 + 2εαM,γ +

γ2

4

[
2 +

4(M − γ)

3γ
− 2

√

1 +
4(M − γ)

3γ

]

(37)

=
γ2

3
+ γε+ ε2 + 2εαM,γ +

γ(M − γ)

3
(38)

=
Mγ

3
+ γε+ ε2 − γε+ γε

√

1 +
4(M − γ)

3γ
(39)

=
Mγ

3

[
1 +

3ε2

Mγ
+

3ε

M

√

1 +
4(M − γ)

3γ

]
. (40)

In particular, we obtain eµ(g)
eµ(hε)

= M
γ × 1

1+ 3ε
M

[
ε
γ+

√
1+ 4(M−γ)

3γ

] →
ε→0

M
γ . Now, let us compute the516

semi-duals J(g) and J(hε). Since f0 ≡ 0, we have ν = δ0 a Dirac mass in 0. Hence we simply517

need to compute the Legendre transform of g and hε in 0518

g∗(0) = sup
x

−M
x2

2
(41)

= 0 , (42)
and519

h∗
ε(0) = sup

x
− γ

x2

2
− (ε+ αM,γ)x (43)

=
(ε+ αM,γ)2

2γ
. (44)

Hence we obtain520

J(g) =

∫ 1

0
M

x2

2
dx (45)

=
M

6
, (46)

and521

J(hε) =

∫ 1

0
γ
x2

2
+ (ε+ αM,γ)x dx+

(ε+ αM,γ)2

2γ
(47)

=
γ

6
+
ε+ αM,γ

2
+

(ε+ αM,γ)2

2γ
(48)

=
γ

6
+
ε+ αM,γ

2
+
ε2 + 2εαM,γ + α2

M,γ

2γ
(49)

=
1

2γ
(
γ2

3
+ γ(ε+ αM,γ) + ε2 + 2εαM,γ + α2

M,γ) . (50)

We recognize between brackets the same expression as eµ(hε) in Equation (52) hence we obtain522

J(hε) =
M

6

[
1 +

3ε2

Mγ
+

3ε

M

√

1 +
4(M − γ)

3γ

]
. (51)

523
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A.5 Proof of Prop. 4524

Proof. Applying Lemma 1, we have for all δ > 0 the inequality J(Qδ(f)) − J0 ≤ 1
2δ eµ(Qδ(f)).525

The right hand side is decomposed in 〈Qδ(f), µ〉 + 〈Qδ(f)∗, ν〉. The first term is simply 〈f, µ〉 +526

δ〈q, µ〉. For the second-term we use the standard result Qδ(f)∗ = Mδ(f) the Moreau-Yosida527

transform of f reading Mτ (f) = infy f(y) +
q(x−y)
τ . If f∗ is L-Lipschitz on the support of ν, we528

have the lower bound Mδ(f) ≥ f − L2δ
2 . Hence we recover529

J(f)− J0 −
L2δ

2
+ δ〈q, µ〉 ≤ 1

2δ
eµ(Qδ(f)) . (52)

The term eµ(Qδ(f)) is upper-bounded by 2(eµ(f) + 2δ2〈q, µ〉) which gives J(f) − J0 ≤ eµ(f)
δ +530

δ〈q, µ〉+ L2δ
2 . Optimizing on δ leads to531

J(f)− J0 ≤ 2

√

eµ(f)

(
L2

2
+ 〈q, µ〉

)
. (53)

532

A.6 Proof of Prop. 6533

Proof. Recall that the Fenchel-Legendre of a standard Log-Sum-Exp function LSE(x) =534

log(
∑n

i=1 e
xi) is given by535

LSE∗(y) =
n∑

i=1

yi log(yi) + ι(y ∈ Sn) (54)

= −Ent(y) + ι(y ∈ Sn) , (55)
where Sn is the probability simplex. More generally, defining LSEb(x) = log(

∑n
i=1 e

xi+bi), using536

the fact that f∗(·+ τ) = f∗(·)− τ"·, we have537

(LSEb)
∗(y) = −Ent(y)− b"y + ι(y ∈ Sn) . (56)

At the optimum, for empirical measures µ̂ = 1
m

∑m
i=1 δxi , ν̂ = 1

n

∑n
i=1 δyi the empirical Sinkhorn538

Kantorovitch potentials (φ̂ε, ψ̂ε) are linked as539

φ̂ε(x) = −ε log
(
1

n

n∑

i=1

e2
2ψ̂ε(yi)−‖x−yi‖

2

2ε

)
, (57)

hence the Sinkhorn Brenier potential fε can be written as540

fε(x) = εLSEbε(Cεx) , (58)
where we defined541 {

Cε = ( yi

ε )1≤i≤n ∈ Rn×d

bε,n = ( 2ψε(yi)−‖yi‖2

2ε − log(n))1≤i≤n ∈ Rn
. (59)

Now recall that542

• (εf(·))∗ = εf∗( ·
ε ).543

• ∀z, (f(A.))∗(z) = inf
Ay=z f

∗(y).544

Hence we can deduce545

f∗
ε (y) = ε inf

C∆=y
−Ent(∆)−∆"bε,n + ι(∆ ∈ Sn) ,

where C ∈ Rn×d is the matrix of the samples (yi). In particular if f∗
ε is evaluated outside the convex546

hull of ν̂, it is infinite. Since ν has continuous density, there almost surely exists (y0, r), r > 0 such547

that B(y0, r) ⊂ Supp(ν) and B(y0, r) ∩ Conv(ν̂) = ∅ where Conv(ν̂) is the convex hull of the548

samples ν̂. In particular, almost surely549

〈f∗
ε , ν〉 = +∞ . (60)

550
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A.7 Proof of Prop. 7551

The proof is largely inspired from an article on the online blog of Francis Bach4.552

Since the 2-self-concordance is scaling invariant, we shall simply prove that f(x) = LSEb(C.) is553

(2, D(C)) self-concordant with b ∈ Rn
+, C ∈ Rn×d the matrix whose rows are centers (ci)1≤i≤n554

and D(C) = maxij ‖ci − cj‖.555

Proof. Defining the (non-normalized) distribution ζ = 1
n

∑n
i=1 biδci , we can remark that f is the556

normalizing factor of the conditional exponential distribution557

h(c|x) ∝ ec
$xdζ(c) (61)

= ec
$x−f(x)dζ(c) . (62)

The gradient of f is given by558

∇f(x) =

∫
cec

$xdζ(c)∫
ec$xdζ(c)

(63)

= Eh(c) , (64)
and using the results of Pistone and Wynn [1999], we have for higher order derivatives559

∇pf(x) = Eh(⊗p
j=1(c−∇f(x))) , (65)

where for a vector v ∈ Rd, ⊗p
j=1v is a tensor Vp in Rdp

whose entries are (vi1 × · · · × vip). In560

particular, applying the formula for p = 3 and denoting H = (c−∇f(x))⊗ (c−∇f(x))561

∇3f(x) = Eh[(c−∇f(x))⊗H] . (66)
Using the linearity of the expectation, we have562

|(∇3f(x)[v]u)"u| = |Eh[(c−∇f(x))"v × (Hu)"u]| (67)

≤ Eh[|(c−∇f(x))"v|× |(Hu)"u|] . (68)
Since ∇f(x) ∈ Conv(C), we have in particular that ‖c−∇f(x)‖ ≤ D(C). Furthermore since H563

is a positive matrix, we obtain the following upper-bound564

|(∇3f(x)[v]u)"u| ≤ D(C)‖v‖Eh[(Hu)"u] (69)

≤ D(C)‖v‖(∇2f(x)u)"u . (70)

565

A.8 Proof of Prop. 5566

Proof. The Sinkhorn Brenier empirical potentials are of the form fε = εLSEbε,n(Cε.) where Cε567

and bε,n are defined in (59). Using the formulas from the previous proof, we simply have to bound568

Hc,x = (c−∇f(x))⊗ (c−∇f(x))569

u"Hc,xu = (u"(c−∇f(x)))2 (71)
≤ ‖u‖22‖c−∇f(x)‖22 . (72)

Since ∇f(x) is in the convex hull of ν̂ε and c ∈ Supp( ν̂ε ), we deduce that ‖Hc,x‖op ≤ D2(ν̂)
ε2 , where570

‖.‖op is the spectral norm. In particular ‖∇2f(x)‖op ≤ D2(ν̂)
ε .571

B MISCELLANEOUS572

B.1 DA experiment573

We present here the results in the Domain Adaptation experiment where the source terms are (D) and574

(W) respectively. The results are displayed on Table 5: again, the best accuracy for the downstream575

classification task is not correlated with the minimization of the semi-dual, in particular the best OT576

maps are not suited for label transfer.577

4https://francisbach.com/self-concordant-analysis-for-logistic-regression/
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ICNN Sinkhorn SSNB
acc(fi1) acc(fi0) acc(fi1) acc(fi0) acc(fi1) acc(fi0)

D/A 0.5 0.47 (2/48) 0.91 0.78 (5/5) 0.91 0.84 (11/11)
D/C 0.54 0.43 (2/48) 0.83 0.74 (5/5) 0.83 0.75 (9/11)
D/W 0.52 0.28 (11/48) 0.96 0.85 (4/5) 0.99 0.95 (8/11)
W/A 0.48 0.25 (17/48) 0.89 0.78 (4/5) 0.87 0.77 (11/11)
W/C 0.4 0.2 (13/48) 0.77 0.73 (4/5) 0.78 0.74 (10/11)
W/D 0.62 0.51 (2/48) 0.95 0.9 (3/5) 1.0 1.0 (1/11)

Table 5: Potential Selection for Domain-Adaptation. The column acc(fi1) corresponds to the best
(highest) accuracy and acc(fi0) corresponds to the accuracy of the potential selected with the Brenier
criterion. On this Table, the potentials are ranked with respect to the accuracy; the closer to one, the
better the classification. In bold, the highest accuracy after being calibrated with the semi-dual.

B.2 SSNB algorithm578

For l < L, the SSNB model is defined as579

inf
f∈Fl,L

W 2
2 ((∇f)#(µ), ν) , (73)

where Fl,L is the set of l-strongly convex, L-smooth functions. For empirical potentials µ̂ =580
1
n

∑n
i=1 δxi and ν̂ = 1

m

∑m
i=1 δyi , the authors propose to solve the non-convex problem (73) in581

an alternate fashion: for a fixed f ∈ Fl,L, they estimate the transport coupling (Pij) ∈ Rn×m from582

(∇f)#(µ̂) to ν̂ by solving the associated linear program (or an entropic approximation) and then,583

once the coupling is fixed, they estimate f (pointwise on µ̂) by solving584

min
(z1,··· ,zn)∈Rn×d,u∈Rn

∑

ij

Pij‖zi − yj‖22

subject to ui ≥ uj + z"j (xi − xj) +
1

2(1− l/L)

(
1

L
‖zi − zj‖2 +

1

l
‖xi − xj‖22 −

2l

L
(zj − zi)

"(xi − xj)

)
,

(74)

where zi = ∇f(xi) and ui = f(xi). The problem above is a convex Quadratically Constrained585

Quadratic Problem and can be numerically solved with CVXPY for instance. However, when such586

an option is chosen the n(n − 1) constraints must be computed at each iterations which induces a587

large overhead. Instead, we reformulate this problem as a standard linear conic problem of the form588

Ax− b ∈ K, with K a fixed cone to be compiled only once.589

From QCQP to SOCP First we show how to reformulate a (convex) QCQP without equality590

constraints into an SOCP. The standard formulation of a QCQP is591

inf
x

1

2
x"Q0x+ c"0 x

s. t.
1

2
x"Qix+ c"i x+ ri ≤ 0, i = 1, · · · , p .

(75)

Introducing the slack variables (t0, t1, · · · , tp) = 1
2 (x

"Q0x, x"Q1x, · · · , x"Qpx), we re-write the592

problem as593

inf
x,t

t0 + c"0 x

s. t. ti + c"i x+ ri = 0, i = 1, · · · , p

ti ≥
1

2
x"Qix, i = 0, · · · , p .

(76)

Decomposing Qi as Qi = F"
i Fi with Fi having p rows, the constraint ti = 1

2x
"Qix becomes594

(1, ti, Fix) ∈ Qd+2
r , where Qd+2

r is the rotated (d+ 2)-dimensional Lorentz cone defined as595
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Qd+2
r = {(x1, x2, · · · , xd+2) s.t. 2x1x2 ≥

d∑

k=1

x2
i+2} . (77)

We obtain a MOSEK-friendly formulation of the QCQP as596

inf
x,t

t0 + c"0 x

s. t. ti + c"i x+ ri = 0, i = 1, · · · , p
(1, ti, Fix) ∈ Qd+2

r , i = 0, · · · , p ,

(78)

which has the form Ax − b ∈ K where K is a fixed product of Lorentz cone whose number and597

dimensions solely depend on n and d in the case of SSNB. Hence we can compile K only once for598

fixed (n, d), which allows us to considerably reduce the overhead.599

Decomposition of Qij In the SSNB model the symmetric positive matrices Qij ∈ S+
n(d+1)(R) are600

defined up to a common scaling parameter as601






qkl = 1 if k = l ∈ {di, · · · (d+ 1)i} ∪ {dj, · · · (d+ 1)j}
qkl = −1 if l = k + dj, k ∈ {di, · · · (d+ 1)i}
qkl = −1 if k = l + dj, l ∈ {di, · · · (d+ 1)i} .

(79)

The matrix Qij is factorized as F"
ij Fij with Fij ∈ Rd×n(d+1) defined as602

{
fkl = 1 if l = k + di, k ∈ {1, · · · , d}
fkl = −1 if l = k + dj, k ∈ {1, · · · , d} . (80)

B.3 Models parameters603

ICNN We used a 3-layers ICNN with softplus activations. The number of hidden neurons was604

chosen in {64, 128, 256}, the soft convexity penalty for the potential g and the matching mo-605

ment/variance penalty were both chosen in {0, 0.001, 0.01, 0.1}. As recommended by the authors,606

the batch size was set to 60, the number of epochs was set to 60, the number of inner iterations607

to approximate the conjugate was set to 25 and the learning rate is initially set to 1e-4 and is then608

divided by 2 every 2-epochs.609

To compute the semi-dual, we regularized the potential f by adding δ
2‖x‖

2 with δ = 1e-3. The610

numerical optimization was done with SciPy with a stopping condition set to 0.001 ; for a lower611

stopping criterion, the minimization would not converge.612

Sinkhorn The temperature ε was chosen in {0.5, 0.1, 0.05, 0.01, 0.005}. We stopped the training613

when the optimality conditions are almost met614
{
〈 |φε(.) + ε log(

∫
y e

ψε(y)−c(.,y)
ε dν̂(y))|, µ̂〉 ≤ 1e-5

〈 |ψε(.) + ε log(
∫
x e

φε(y)−c(x,.)
ε dµ̂(x))|, ν̂〉 ≤ 1e-5 .

(81)

The resulting Sinkhorn Brenier potential f̂ε is regularized with δ
2‖x‖

2, δ = 0.001. When the semi-615

dual is computed on a point yi, the stopping criterion is given by616

‖∇f̂ε(zt)− yi‖ ≤ 1e-5 , (82)

where zt is the current point of the optimization at time step t.617

SSNB The strong convexity parameter l is chosen in {0.2, 0.5, 0.7, 0.9} and the smoothness pa-618

rameter L is chosen in {0.2, 0.5, 0.7, 0.9, 1.2} with l < L. The number of iterations in the alternate619

minimization is set to 10. The conjugate is computed with a first order scheme with learning rate 1
2L620

and is stopped with the same criterion as above.621
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Figure 4: Empirical Semi-Dual against Quadratic Error on the Quadratic and Log-Sum-Exp experi-
ments for the Sinkhorn model, n = 10000 and d = 8.

B.4 Additional Experiment Sinkhorn622

We run 10 times the Quadratic and Log-Sum-Exp experiments with the Sinkhorn model but on623

n = 10000 points for the training of the model, the semi-dual and the computation of the error. The624

results are reported on Figure B.4. Just as for SSNB, the semi-dual can accurately rank the potentials625

according to their error eµ(fi) =
∫
‖∇fi(x)− T0(x)‖22dµ(x) where T0 is the ground truth OT map.626
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