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A ADDITIONAL PROOFS

A.1 Proof of Lemma [ (strongly convex case)

Proof. The major part of the proof is adapted from Muzellec et all [P071], Lemma 3.1]. We denote
T = V£ and T an OT map between  and v such that there exists a convex potential f; verifying
V fo = Ty. By definition of the Fenchel-Legendre transform, we have for any convex function f
and point z

fl@)+ [ (Vf(@) =2 V), 2

Integrating this relation over p for the optimal potential fy yields

<ﬁ¢ﬁ4ﬁonww3/f%@mmm. 3

Using the property Tyu(p) =
re-write J f flx)+ f*
have J(f f [*(To(x)) —

v, we obtain that the r.h.s. is equal to Jy. We use this same property to
(To(z)) du(x). Finally, using the Legendre identity stated above, we
f(Vf(z))+ 2" 0f(z)du(x), which leads to

- Q/f (To(x)) — F*(V () — (To(z) — V() Tz du(z). 4

Recalling that 9f*(V f(x)) = x, where f* is a subgradient of f*, we identify in the integrand a
Bregman divergence D+ (Ty(z), V f(x)) where for a convex function h the Bregman divergence
Dy (y,z) = h(y) — h(z) — Oh(x) " (y — x). When f is assumed ~-strongly convex, f* is %-smooth
and Dy« (Ty(x), V f(z)) is upper-bounded by % |T(x) — To(x)|* which yields

J(f) %<—/M () 2 da() )

Conversely, when f is assumed M-smooth, f* is 537-strongly convex and Dy (Ty(z), V f(x)) is
lower-bounded by 577 [|T(x) — To(x)||* which yields

J(f) - rzﬂjﬂw ~ To(@)|? dula) ©)

A.2 Proof of Prop. [

Proof. Define the potential go(z) = |z| + % * and for 0 < A < 1, define the translated potential
g = go(- — A). Let us start by computing the Legendre transform of go. The Legendre transform
of gg is defined for all y as

90(y) = supzy - go() . (7

Since go(x) > |z| for all z, then if y € [—1, 1] then g (y) = 0. If y > 1, since gy is pair and positive,
the maximum is attained on R*. Denoting ¢(z,y) = xy — go(x), we have that ¢(-,y) increases
between [0, y — 1] and decreases between [y — 1, +-o0o[ hence the maximum is attained inz = y — 1

2 2
which yields g§(y) = (y—21) . Conversely, if y < —1 we have g (y) = %
can compute g5 in virtue of the relation g} (y) = g*(y) + \y.

. From this result, we

12



as6  Let us now compute the semi-dual .J(gy). The first term is given by

3 A 3
/ gA(x)dx:/ g(x—)\)dx—i-/ gz — ) dx (8)
-1 -1 A
A 32 3 2
:/ @— ) +()\—x)dx+/ @=N" e N de )
_% 2 A 2
=N (=A% A—)%3
= 6 Lé*[ 2 L%JF[*TL\ (10)
1 _ )3 1 3 1 2 1 y)2
C GG G G- )
6 2
114322
:14_ 5 + A7, (12)
497 The second term is given by
[ 5@V = [ aTanw)ay (13
0 3
— [ aitv-1-Na [Caeri-na o
_% 0
B (u—N)? 2 (u—\)?
=/, d +/A S du (15)
=N (u—A)"3
== e, (2 (16)
1 3 1 _y)3 _ 3
1 2 _ 3
4+3A6 A s

ses  Hence the semi-dual is given by J(gy) = % + 2)\? — A3, Finally, let us compute the error e

0 by %
euon) = / (Vao(x) - Vga(x))? dz + / (Vao(x) — Vga(x))? e + / (Vgo(z) - Vga(x))? da

1
2

(19)
A2 5 9,1
=5+A(2+>\) +/\(§—A) (20)
=4\ 4 5)2. (21)
499 O

s00 A.3 Proof of Prop. 2

501 Proof. We begin with splitting J (fio) — Jo in non-stochastic and stochastic terms
j(fio)_‘]o:‘](fio)_JO—"_j(fio)_J(fio)a (22)

s02  where we denoted .J the empirical semi-dual .J; » Using Lemma [, we get the lower bound

F(i) = o2 srzeulfin) + F(Fa) = () (23)

503 By construction, f;, verifies forall1 <¢ <p

j(fzo) ~Jo < J(fi)—Jo
= J(fi) = Jo+ (i) — I(f:).

13



504

505

507

508

509

511

512

513

514

Picking ¢ = 7; and using Lemma [Il, we obtain
o 1 o
J(fio)_JOS%6#<fi1)+‘](fi1)_<](fi1)' (24)
Equations (23) and (24) give
M -
e#(fio) §76M(fi1) +2M(J(f11) - J(fll)) (25)
+2M(J(fiy) = I (fi,)) - (26)

The Hoeffding lemma gives for all ¢ > 0

2nt?
P((fi, o — ) > t) < eXp(—fi'r;X> . (27)

We place ourselves on the event

A=({fagut =) = ) U ((ff0 = v) 2 1)

N « N (28)
U(<fi0’/~L_:Ll‘> Zt)U(< ioaV_V> Zt)
We want to set P(A) < 4. By triangle inequality, we get the upper-bound
2nt?
P(A) < dexp <_C’2> ) (29)

where C' = max(C;,, C;,) and C; defined as C; = max(]| f;||x,0, || fi|lv,0). Hence setting, ¢ =

C ln(;,r{ %) , we have with probability at least 1 — §

M In(4/9)
O
A.4 Proof of Prop. 3
Proof. Take pu ~ [0,1] and fy = 0 and let us compute the error for g = M é
1
en(9) = / (Mz)? dx 31)
0
M2
=, 32
3 (32)
Conversely, defining h. = 7“32—2 + (e + aar )z with
gl 4M =)
=—|4/1+ —= -1 33
My =5 [ + 3 , (33)
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516

517
518

519

520

521

522

523

the error e, (h.) is given by

1
en(h) :/ (vz + (e + anry))* da (34)
0
42
=3 +y(anry +€) + (anry +€)? (35)
.
= 3 + ye+your,y + €2 + 2ea g,y + aﬁ/fﬁ (36)
2 2 2 2
g g AM=—v) ¥ o gl 4M —~)
=L YL ettt A 2 Tlo —2 /1
3+'ye+2 + 3 2+6+ eaMﬁ+4 + 3y +
(37)
2
M —
= % + ve+ € + 2eans, + % (38)
M 4 —
:J-i-’ye—ﬁ-ez—ve—l-'yc 1—|—u (39)
3 3y
M~ 3¢ 3e (M —~)
i s I | 40
3 [ + e +or\tt 3 (40)
In particular, we obtain ::((hi)) = % X 1 — M Now, let us compute the

e—0
143 [;+«/1+4‘”§7”}

semi-duals J(g) and J(h.). Since fy = 0, we have v = Jy a Dirac mass in 0. Hence we simply

need to compute the Legendre transform of g and /. in 0

JUZ

g°(0) =sup — M~ (1)
=0, (42)
and
hZ(0) =sup — T3~ (e+ anry)x (43)
2
_ (et amg)” (44)
2y
Hence we obtain
1 2
J(g) = / ME 4z 45)
0 2
M
= — 46
5 (46)
and
1 .2 2
T €+«
J(he) = / Y& + (e + apqy)zds + (et oay)” (47)
o 2 2y
v etoan, | (e+an,)’
== : ’ 48
e (48)
€2 + 2ea +a?,
_ n €+ apgy n My M~ (49)
6 2 2y
— 1 ,y2 2 2 2 50
7ﬂ(§+fy(e+aMﬂ)+€ + GOZAL»Y+OZM7,Y). (50)
We recognize between brackets the same expression as e, (h¢) in Equation (52) hence we obtain
M 3¢ 3e 4(M — )
Jhe) =—|1+ — + —4 /1 + ———| . 51
(he) =5 [ Ty tu\ T T ©1
O
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A.5 Proof of Prop. &

Proof. Applying Lemma [, we have for all § > 0 the inequality J(Qs(f)) — Jo < Q—{SeM(Qg(f)).
The right hand side is decomposed in (Qs(f), u) + (Qs(f)*,v). The first term is simply (f, u) +
0{(q, ). For the second-term we use the standard result Qs(f)* = Ms(f) the Moreau-Yosida

transform of f reading M, (f) = inf, f ( ) + q(m_y) . If f* is L-Lipschitz on the support of v, we

have the lower bound M;(f) > f — £°. Hence we recover
2

T = o - LT‘S + 00,1 < 5=en(Qs(f). 52

The term e,,(Qs(f)) is upper-bounded by 2(e,(f) + 25%(g, p)) which gives J(f) — Jo < E“T(f) +
2
d{q, u) + %. Optimizing on 0 leads to

J(f) —Jo < 2\/eﬂ(f) (L; + (q,u)) . (53)
O

A.6 Proof of Prop. B

Proof. Recall that the Fenchel-Legendre of a standard Log-Sum-Exp function LSE(z) =
log(>-1_, €*) is given by

LSE*( Z yilog(yi) + 1(y € Sn) (54)
=1
= —Ent(y) + t(y € S»n), (55)

where S,, is the probability simplex. More generally, defining LSE; (z) = log(3>_;-_, " T%%), using
the fact that f*(- +7) = f*(-) — 7" -, we have

(LSEp)*(y) = —Ent(y) = b y+u(y € Sp) . (56)
At the optimum, for empirical measures /i = % S Oy, U = % > 8y, the empirical Sinkhorn
Kantorovitch potentials (qgs, 1[)5) are linked as

b.() :—alog< Z p2Pei)=llo=u;l? ) 57)

hence the Sinkhorn Brenier potential f. can be written as
fe(x) = eLSEy_(Cex), (58)

where we defined
C ( €:)1<z<n € RnXd

b (2"/)5 Yi)— HylH 10g(”>)1§z§n c R»

2e

(59)

Now recall that

* (efO)r =ef(2)
© Yz, (f(A))*(2) = AyLs f* ().

Hence we can deduce
fi(y) =¢ jnf —Ent(A) - ATb.+1(AES,),

5 A=y

where C' € R™* is the matrix of the samples (y;). In particular if £ is evaluated outside the convex

hull of 7, it is infinite. Since v has continuous density, there almost surely exists (yo, ), r > 0 such

that B(yo,r) C Supp(v) and B(yg,r) N Conv(P) = O where Conv(D) is the convex hull of the
samples ©. In particular, almost surely

(f,v) = +o0. (60)

O
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A.7 Proof of Prop. @

The proof is largely inspired from an article on the online blog of Francis Bach®.

Since the 2-self-concordance is scaling invariant, we shall simply prove that f(x) = LSE;(C.) is
(2,D(C)) self-concordant with b € R, C' € R™*? the matrix whose rows are centers (¢;)1<i<n
and D(C) = max;; ||c; — ¢

Proof. Defining the (non-normalized) distribution { = % S bibe;, we can remark that f is the
normalizing factor of the conditional exponential distribution

h(c|lz) echdg(c) (61)
= ecTz_f(z)dC(c) . (62)
The gradient of f is given by
[ cec =d¢(c)
v =4 - > 63

1@ = it (©3)
=En(c), (64)

and using the results of Pistone and Wynnl [T999], we have for higher order derivatives
VP f(x) = En(@f_(c = Vf(2))), (65)

where for a vector v € RY, ®§:1v is a tensor V}, in RY whose entries are (v, X -+ % vip). In
particular, applying the formula for p = 3 and denoting H = (¢ — Vf(z)) ® (¢ — V f(z))

Vi f(x) = Enl(c = V/(x)) ® H]. (66)

Using the linearity of the expectation, we have
(V2 f(@)[v]u) "ul = [Ex[(c = Vf(2)) v x (Hu) "]l (67)
< Enll(c— V() ol x [(Hu) u]]. (68)

Since V f(z) € Conv(C'), we have in particular that ||c — V f(z)|| < D(C). Furthermore since H
is a positive matrix, we obtain the following upper-bound

[(V2 f(2)[v]u) "u| < D(O)|[v][En[(Hu) "] (69)
< D(O)[v|(V*f(x)u) "u. (70)
O

A.8 Proof of Prop. B

Proof. The Sinkhorn Brenier empirical potentials are of the form f. = ¢ LSE,_ , (C..) where C;

and b, ,, are defined in (89). Using the formulas from the previous proof, we simply have to bound
Hep = (c—Vf(z)) ®(c—Vf(z))

u' Hegu= (u' (¢~ Vf(2))’ (71)

< Jlull3lle = VF()]3 - (72)

Since V f(z) is in the convex hull of £ and ¢ € Supp(Z2), we deduce that || He 4[|op < @, where

|| |lop is the spectral norm. In particular || V2 f(z)]],p < D@ O

€

B MISCELLANEOUS

B.1 DA experiment

We present here the results in the Domain Adaptation experiment where the source terms are (D) and
(W) respectively. The results are displayed on Table B: again, the best accuracy for the downstream
classification task is not correlated with the minimization of the semi-dual, in particular the best OT
maps are not suited for label transfer.

*https://francisbach.com/self-concordant-analysis-for-logistic-regression/
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ICNN Sinkhorn SSNB
acc(fi,)  acc(fi,) | ace(fi,) —ace(fi,) |acc(fi) — acc(fi,) |

D/A 0.5 047 (2/48) | 091  0.78(5/5) | 091  0.84(11/11)
D/IC 054  043(2/48) | 083  074(5/5) | 083  0.75(9/11)
D/W 052  028(11/48) | 096  0.85(4/5 | 099  0.95(8/11)
W/A 048  025(17/48) | 089  0.78(4/5) | 087  0.77(11/11)
W/C 04 02(13/48) | 077 07345 | 078  0.74(10/11)
W/D 062  051(2/48) | 095 0.9 (3/5) 1.0 1.0 (1/11)

Table 5: Potential Selection for Domain-Adaptation. The column acc( f;, ) corresponds to the best
(highest) accuracy and acc( f;, ) corresponds to the accuracy of the potential selected with the Brenier
criterion. On this Table, the potentials are ranked with respect to the accuracy; the closer to one, the
better the classification. In bold, the highest accuracy after being calibrated with the semi-dual.

B.2 SSNB algorithm

For | < L, the SSNB model is defined as

(o W (VW) ), (73)

where F; 1 is the set of [-strongly convex, L-smooth functions. For empirical potentials i =
% Z?zl 0y, and U = % Z;’;l dy,, the authors propose to solve the non-convex problem (I3) in
an alternate fashion: for a fixed f € F; 1, they estimate the transport coupling (P;;) € R™*™ from
(Vf)4(fr) to by solving the associated linear program (or an entropic approximation) and then,
once the coupling is fixed, they estimate f (pointwise on i) by solving

min Piillzi — i3

1 21

. 1 1
subject to u; > u; + z]—r(xz — ;) + SA-1/D) (in — z|I* + 7”«%1 — ;)3 - f(ZJ — ) (i — ag)) ,

(74)

where z; = V f(z;) and uw; = f(x;). The problem above is a convex Quadratically Constrained
Quadratic Problem and can be numerically solved with CVXPY for instance. However, when such
an option is chosen the n(n — 1) constraints must be computed at each iterations which induces a
large overhead. Instead, we reformulate this problem as a standard linear conic problem of the form
Az — b € K, with K a fixed cone to be compiled only once.

From QCQP to SOCP First we show how to reformulate a (convex) QCQP without equality
constraints into an SOCP. The standard formulation of a QCQP is

1
inf §xTQ0:L‘ +cg

1 (75)
S. t. EITQ,;:c+ciTm+ri <0, i=1,---,p.
Introducing the slack variables (to,t1,--- ,tp) = %(mTQOx, ' Q1,2 Qpx), we re-write the
problem as
inf to+cgx
x,t
ssttitelzdr,=0, i=1,---,p (76)

1
tiZimTQixa 2207 yD -

Decomposing Q; as Q; = F,' F; with F; having p rows, the constraint ¢; = 127 Q;x becomes
(1,t;, F;x) € Q%+2, where Q412 is the rotated (d + 2)-dimensional Lorentz cone defined as

18
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QM2 = {(w1, 22, ,Zay2) st 2w129 > ZI?“}' 77
k=1

We obtain a MOSEK-friendly formulation of the QCQP as

inf to+cqx

x,t

s.tti+clad+r, =0, i=1,---,p (78)
(1,ti,Fix) (S QngQ, Z:O7 , D,

which has the form Az — b € K where K is a fixed product of Lorentz cone whose number and
dimensions solely depend on n and d in the case of SSNB. Hence we can compile X only once for
fixed (n, d), which allows us to considerably reduce the overhead.

Decomposition of (;; In the SSNB model the symmetric positive matrices Q);; € S:{(
defined up to a common scaling parameter as

g = 1ifk =1 € {di,- (d+ 1)i} U{dj,--- (d+ 1)j}
G = —Lifl =k + dj, k € {di,--(d+ 1)i} (79)
g = —1ifk =1 +dj,l € {di,-- (d+ 1)i} .

The matrix Q;; is factorized as F}} Fj; with Fy; € R*>"™(4+1) defined as

fu=1ifl=k+di,ke{l, - d}
fu=—-1ifl=k+dj,ke{l,---,d}.

1) (R) are

(80)

B.3 Models parameters

ICNN We used a 3-layers ICNN with softplus activations. The number of hidden neurons was
chosen in {64,128,256}, the soft convexity penalty for the potential g and the matching mo-
ment/variance penalty were both chosen in {0,0.001,0.01,0.1}. As recommended by the authors,
the batch size was set to 60, the number of epochs was set to 60, the number of inner iterations
to approximate the conjugate was set to 25 and the learning rate is initially set to le-4 and is then
divided by 2 every 2-epochs.

To compute the semi-dual, we regularized the potential f by adding ngHZ with 6 = le-3. The
numerical optimization was done with SciPy with a stopping condition set to 0.001 ; for a lower
stopping criterion, the minimization would not converge.

Sinkhorn The temperature ¢ was chosen in {0.5,0.1,0.05,0.01,0.005}. We stopped the training
when the optimality conditions are almost met
Ye()—cl y) . ~
{< [0 (.) +elog(f, e =5 diy))|, 1) < 1e-5

ot 81
([¢e() +elog([,e™ = dp(x))],7) < le-5. oy

The resulting Sinkhorn Brenier potential f. is regularized with ¢)|lz||2, § = 0.001. When the semi-
dual is computed on a point y;, the stopping criterion is given by

IV fe(ze) = yill < 1e-5, (82)
where z; is the current point of the optimization at time step .
SSNB The strong convexity parameter [ is chosen in {0.2,0.5,0.7,0.9} and the smoothness pa-
rameter L is chosen in {0.2,0.5,0.7,0.9, 1.2} with [ < L. The number of iterations in the alternate

minimization is set to 10. The conjugate is computed with a first order scheme with learning rate i
and is stopped with the same criterion as above.
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Figure 4: Empirical Semi-Dual against Quadratic Error on the Quadratic and Log-Sum-Exp experi-
ments for the Sinkhorn model, n = 10000 and d = 8.

B.4 Additional Experiment Sinkhorn

We run 10 times the Quadratic and Log-Sum-Exp experiments with the Sinkhorn model but on
n = 10000 points for the training of the model, the semi-dual and the computation of the error. The
results are reported on Figure B4. Just as for SSNB, the semi-dual can accurately rank the potentials
according to their error e, (f;) = [ ||V fi(z) — To(z)||3dp(z) where Ty is the ground truth OT map.
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