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Abstract

The Mixture-of-Experts (MoE) layer, a sparsely-activated model controlled by a
router, has achieved great success in deep learning. However, the understanding of
such architecture remains elusive. In this paper, we formally study how the MoE
layer improves the performance of neural network learning and why the mixture
model will not collapse into a single model. Our empirical results suggest that
the cluster structure of the underlying problem and the non-linearity of the expert
are pivotal to the success of MoE. This motivates us to consider a challenging
classification problem with intrinsic cluster structures. Theoretically, we proved
that this problem is hard to solve by a single expert such as a two-layer convolutional
neural network (CNN). Yet with the MoE layer with each expert being a two-layer
CNN, the problem can be solved successfully. In particular, our theory shows
that the router can learn the cluster-center features, which helps divide the input
complex problem into simpler classification sub-problems that individual experts
can conquer. To our knowledge, this is the first theoretical result toward formally
understanding the mechanism of the MoE layer for deep learning.

1 Introduction

The Mixture-of-Expert (MoE) structure (Jacobs et al., 1991; Jordan and Jacobs, 1994) is a classic
design that substantially scales up the model capacity and only introduces small computation overhead.
In recent years, the MoE layer (Eigen et al., 2013; Shazeer et al., 2017), which is an extension of the
MoE model to deep neural networks, has achieved remarkable success in deep learning. Generally
speaking, an MoE layer contains many experts that share the same network architecture and are
trained by the same algorithm, with a gating (or routing) function that routes individual inputs to a
few experts among all the candidates. Through the sparse gating function, the router in the MoE layer
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can route each input to the top-K(K ≥ 2) best experts (Shazeer et al., 2017), or the single (K = 1)
best expert (Fedus et al., 2021). This routing scheme only costs the computation of K experts for a
new input, which enjoys fast inference time.

Despite the great empirical success of the MoE layer, the theoretical understanding of such architecture
is still elusive. In practice, all experts have the same structure, initialized from the same weight
distribution (Fedus et al., 2021) and are trained with the same optimization configuration. The
router is also initialized to dispatch the data uniformly. It is unclear why the experts can diverge to
different functions that are specialized to make predictions for different inputs, and why the router can
automatically learn to dispatch data, especially when they are all trained using simple local search
algorithms such as gradient descent. Therefore, we aim to answer the following questions:

Why do the experts in MoE diversify instead of collapsing into a single model? And how can the
router learn to dispatch the data to the right expert?

In this paper, in order to answer the above question, we consider the natural “mixture of classification”
data distribution with cluster structure and theoretically study the behavior and benefit of the MoE
layer. We focus on the simplest setting of the mixture of linear classification, where the data
distribution has multiple clusters, and each cluster uses separate (linear) feature vectors to represent
the labels. In detail, we consider the data generated as a combination of feature patches, cluster
patches, and noise patches (See Definition 3.1 for more details). We study training an MoE layer based
on the data generated from the “mixture of classification” distribution using gradient descent, where
each expert is chosen to be a two-layer CNN. The main contributions of this paper are summarized as
follows:

• We first prove a negative result (Theorem 4.1) that any single expert, such as two-layer CNNs
with arbitrary activation function, cannot achieve a test accuracy of more than 87.5% on our data
distribution.

• Empirically, we found that the mixture of linear experts performs better than the single expert but
is still significantly worse than the mixture of non-linear experts. Figure 1 provides such a result
in a special case of our data distribution with four clusters. Although a mixture of linear models
can represent the labeling function of this data distribution with 100% accuracy, it fails to learn so
after training. We can see that the underlying cluster structure cannot be recovered by the mixture
of linear experts, and neither the router nor the experts are diversified enough after training. In
contrast, the mixture of non-linear experts can correctly recover the cluster structure and diversify.

• Motivated by the negative result and the experiment on the toy data, we study a sparsely-gated
MoE model with two-layer CNNs trained by gradient descent. We prove that this MoE model can
achieve nearly 100% test accuracy efficiently (Theorem 4.2).

• Along with the result on the test accuracy, we formally prove that each expert of the sparsely-
gated MoE model will be specialized to a specific portion of the data (i.e., at least one cluster),
which is determined by the initialization of the weights. In the meantime, the router can learn the
cluster-center features and route the input data to the right experts.

• Finally, we also conduct extensive experiments on both synthetic and real datasets to corroborate
our theory.

Notation. We use lower case letters, lower case bold face letters, and upper case bold face letters to
denote scalars, vectors, and matrices respectively. We denote a union of disjoint sets (Ai : i ∈ I)
by ti∈IAi. For a vector x, we use ‖x‖2 to denote its Euclidean norm. For a matrix W, we use
‖W‖F to denote its Frobenius norm. Given two sequences {xn} and {yn}, we denote xn = O(yn)
if |xn| ≤ C1|yn| for some absolute positive constant C1, xn = Ω(yn) if |xn| ≥ C2|yn| for some
absolute positive constant C2, and xn = Θ(yn) if C3|yn| ≤ |xn| ≤ C4|yn| for some absolute
constants C3, C4 > 0. We also use Õ(·) to hide logarithmic factors of d in O(·). Additionally, we
denote xn = poly(yn) if xn = O(yDn ) for some positive constant D, and xn = polylog(yn) if
xn = poly(log(yn)). We also denote by xn = o(yn) if limn→∞ xn/yn = 0. Finally we use [N ] to
denote the index set {1, . . . , N}.

2 Related Work

Mixture of Experts Model. The mixture of experts model (Jacobs et al., 1991; Jordan and Jacobs,
1994) has long been studied in the machine learning community. These MoE models are based
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Figure 1: Visualization of the training of MoE with nonlinear expert and linear expert. Different colors
denote router’s dispatch to different experts. The lines denote the decision boundary of the MoE model. The
data points are visualized on 2d space via t-SNE (Van der Maaten and Hinton, 2008). The MoE architecture
follows section 3 where nonlinear experts use activation function σ(z) = z3. For this visualization, we let the
expert number M = 4 and cluster number K = 4. We generate n = 1, 600 data points from the distribution
illustrated in Section 3 with α ∈ (0.5, 2), β ∈ (1, 2), γ ∈ (1, 2), and σp = 1. More details of the visualization
are discussed in Appendix A.

on various base expert models such as support vector machine (Collobert et al., 2002) , Gaussian
processes (Tresp, 2001), or hidden Markov models (Jordan et al., 1997). In order to increase the
model capacity to deal with the complex vision and speech data, Eigen et al. (2013) extended the
MoE structure to the deep neural networks, and proposed a deep MoE model composed of multiple
layers of routers and experts. Shazeer et al. (2017) simplified the MoE layer by making the output of
the gating function sparse for each example, which greatly improves the training stability and reduces
the computational cost. Since then, the MoE layer with different base neural network structures
(Shazeer et al., 2017; Dauphin et al., 2017; Vaswani et al., 2017) has been proposed and achieved
tremendous successes in a variety of language tasks. Very recently, Fedus et al. (2021) improved the
performance of the MoE layer by routing one example to only a single expert instead of K experts,
which further reduces the routing computation while preserving the model quality.

Mixture of Linear Regressions/Classifications. In this paper, we consider a “mixture of clas-
sification” model. This type of models can be dated back to (De Veaux, 1989; Jordan and Ja-
cobs, 1994; Faria and Soromenho, 2010) and has been applied to many tasks including object
recognition (Quattoni et al., 2004) human action recognition (Wang and Mori, 2009), and machine
translation (Liang et al., 2006). In order to learn the unknown parameters for mixture of linear
regressions/classification model, (Anandkumar et al., 2012; Hsu et al., 2012; Chaganty and Liang,
2013; Anandkumar et al., 2014; Li and Liang, 2018) studies the method of moments and tensor
factorization. Another line of work studies specific algorithms such as Expectation-Maximization
(EM) algorithm (Khalili and Chen, 2007; Yi et al., 2014; Balakrishnan et al., 2017; Wang et al., 2015).

Theoretical Understanding of Deep Learning. In recent years, great efforts have been made to
establish the theoretical foundation of deep learning. A series of studies have proved the convergence
(Jacot et al., 2018; Li and Liang, 2018; Du et al., 2019; Allen-Zhu et al., 2019b; Zou et al., 2018) and
generalization (Allen-Zhu et al., 2019a; Arora et al., 2019a,b; Cao and Gu, 2019) guarantees in the
so-called “neural tangent kernel” (NTK) regime, where the parameters stay close to the initialization,
and the neural network function is approximately linear in its parameters. A recent line of works
(Allen-Zhu and Li, 2019; Bai and Lee, 2019; Allen-Zhu and Li, 2020a,b,c; Li et al., 2020; Cao et al.,
2022; Zou et al., 2021; Wen and Li, 2021) studied the learning dynamic of neural networks beyond
the NTK regime. It is worthwhile to mention that our analysis of the MoE model is also beyond the
NTK regime.
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3 Problem Setting and Preliminaries

We consider an MoE layer with each expert being a two-layer CNN trained by gradient descent (GD)
over n independent training examples {(xi, yi)}ni=1 generated from a data distribution D. In this
section, we will first introduce our data model D, and then explain our neural network model and the
details of the training algorithm.

3.1 Data distribution

We consider a binary classification problem over P -patch inputs, where each patch has d dimensions.
In particular, each labeled data is represented by (x, y), where input x = (x(1),x(2), . . . ,x(P )) ∈
(Rd)P is a collection of P patches and y ∈ {±1} is the data label. We consider data generated from
K clusters. Each cluster k ∈ [K] has a label signal vector vk and a cluster-center signal vector ck
with ‖vk‖2 = ‖ck‖2 = 1. For simplicity, we assume that all the signals {vk}k∈[K] ∪ {ck}k∈[K] are
orthogonal with each other.
Definition 3.1. A data pair (x, y) ∈ (Rd)P × {±1} is generated from the distribution D as follows.

• Uniformly draw a pair (k, k′) with k 6= k′ from {1, . . . ,K}.
• Generate the label y ∈ {±1} uniformly, generate a Rademacher random variable ε ∈ {±1}.
• Independently generate random variables α, β, γ from distribution Dα,Dβ ,Dγ . In this paper, we

assume there exists absolute constants C1, C2 such that almost surely 0 < C1 ≤ α, β, γ ≤ C2.
• Generate x as a collection of P patches: x = (x(1),x(2), . . . ,x(P )) ∈ (Rd)P , where

– Feature signal. One and only one patch is given by yαvk.
– Cluster-center signal. One and only one patch is given by βck.
– Feature noise. One and only one patch is given by εγvk′ .
– Random noise. The rest of the P − 3 patches are Gaussian noises that are independently drawn

from N(0, (σ2
p/d) · Id) where σp is an absolute constant.

How to learn this type of data? Since the positions of signals and noises are not specified in
Definition 3.1, it is natural to use the CNNs structure that applies the same function to each patch. We
point out that the strength of the feature noises γ can be as large as the strength of the feature signals
α. As we will see later in Theorem 4.1, this classification problem is hard to learn with a single expert,
such as any two-layer CNNs (any activation function with any number of neurons). However, such
a classification problem has an intrinsic clustering structure that may be utilized to achieve better
performance. Examples can be divided into K clusters ∪k∈[K]Ωk based on the cluster-center signals:
an example (x, y) ∈ Ωk if and only if at least one patch of x aligns with ck. It is not difficult to show
that the binary classification sub-problem over Ωk can be easily solved by an individual expert. We
expect the MoE can learn this data cluster structure from the cluster-center signals.

Significance of our result. Although this data can be learned by existing works on a mixture of
linear classifiers with sophisticated algorithms (Anandkumar et al., 2012; Hsu et al., 2012; Chaganty
and Liang, 2013), the focus of our paper is training a mixture of nonlinear neural networks, a more
practical model used in real applications. When an MoE is trained by variants of gradient descent, we
show that the experts automatically learn to specialize on each cluster, while the router automatically
learns to dispatch the data to the experts according to their specialty. Although from a representation
point of view, it is not hard to see that the concept class can be represented by MoEs, our result is
very significant as we prove that gradient descent from random initialization can find a good MoE
with non-linear experts efficiently. To make our results even more compelling, we empirically show
that MoE with linear experts, despite also being able to represent the concept class, cannot be trained
to find a good classifier efficiently.

3.2 Structure of the MoE layer

An MoE layer consists of a set of M “expert networks” f1, . . . , fM , and a gating network which is
generally set to be linear (Shazeer et al., 2017; Fedus et al., 2021). Denote by fm(x; W) the output of
the m-th expert network with input x and parameter W. Define an M -dimensional vector h(x; Θ) =∑
p∈[P ] Θ

>x(p) as the output of the gating network parameterized by Θ = [θ1, . . . ,θM ] ∈ Rd×M .
The output F of the MoE layer can be written as follows:

F (x; Θ,W) =
∑
m∈Txπm(x; Θ)fm(x; W),
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where Tx ⊆ [M ] is a set of selected indices and πm(x; Θ)’s are route gate values given by

πm(x; Θ) =
exp(hm(x; Θ))∑M

m′=1 exp(hm′(x; Θ))
,∀m ∈ [M ].

Expert Model. In practice, one often uses nonlinear neural networks as experts in the MoE layer. In
fact, we found that the non-linearity of the expert is essential for the success of the MoE layer (see
Section 6). For m-th expert, we consider a convolution neural network as follows:

fm(x; W) =
∑
j∈[J]

∑P
p=1σ

(
〈wm,j ,x

(p)〉
)
, (3.1)

where wm,j ∈ Rd is the weight vector of the j-th filter (i.e., neuron) in the m-th expert, J is the
number of filters (i.e., neurons). We denote Wm = [wm,1, . . . ,wm,J ] ∈ Rd×J as the weight matrix
of the m-th expert and further let W = {Wm}m∈[M ] as the collection of expert weight matrices. For
nonlinear CNN, we consider the cubic activation function σ(z) = z3, which is one of the simplest
nonlinear activation functions (Vecci et al., 1998). We also include the experiment for other activation
functions such as RELU in Appendix Table 7.

Top-1 Routing Model. A simple choice of the selection set Tx is the whole experts set Tx = [M ]
(Jordan and Jacobs, 1994), which is the case for the so-called soft-routing model. However, it will
be time consuming to use soft-routing in deep learning. In this paper, we consider “switch routing”,
which is introduced by Fedus et al. (2021) to make the gating network sparse and save the computation
time. For each input x, instead of using all the experts, we only pick one expert from [M ], i.e.,
|Tx| = 1. In particular, we choose Tx = argmaxm{hm(x; Θ)}.

Figure 2: Illustration of an MoE layer. For each input x, the
router will only select one expert to perform computations. The
choice is based on the output of the gating network (dotted line).
The expert layer returns the output of the selected expert (gray
box) multiplied by the route gate value (softmax of the gating
function output).

Algorithm 1 Gradient descent with ran-
dom initialization
Require: Number of iterations T , expert

learning rate η, router learning rate ηr ,
initialization scale σ0, training set S =
{(xi, yi)}ni=1.

1: Generate each entry of W(0) indepen-
dently from N(0, σ2

0).
2: Initialize each entry of Θ(0) as zero.
3: for t = 0, 2, . . . , T − 1 do
4: Generate each entry of r(t) indepen-

dently from Unif[0,1].
5: Update W(t+1) as in (3.4).
6: Update Θ(t+1) as in (3.5).
7: end for
8: return (Θ(T ),W(T )).

3.3 Training Algorithm

Given the training data S = {(xi, yi)}ni=1, we train F with gradient descent to minimize the following
empirical loss function:

L(Θ,W) =
1

n

∑n
i=1`

(
yiF (xi; Θ,W)

)
, (3.2)

where ` is the logistic loss defined as `(z) = log(1 + exp(−z)). We initialize Θ(0) to be zero and
initialize each entry of W(0) by i.i.d N (0, σ2

0). Zero initialization of the gating network is widely
used in MoE training. As discussed in Shazeer et al. (2017), it can help avoid out-of-memory errors
and initialize the network in a state of approximately equal expert load (see (5.1) for the definition of
expert load).

Instead of directly using the gradient of empirical loss (3.2) to update weights, we add perturba-
tion to the router and use the gradient of the perturbed empirical loss to update the weights. In
particular, the training example xi will be distributed to argmaxm{hm(xi; Θ

(t)) + r
(t)
m,i} instead,

where {r(t)
m,i}m∈[M ],i∈[n] are random noises. Adding noise term is a widely used training strategy
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for sparsely-gated MoE layer (Shazeer et al., 2017; Fedus et al., 2021), which can encourage explo-
ration across the experts and stabilize the MoE training. In this paper, we draw {r(t)

m,i}m∈[M ],i∈[n]

independently from the uniform distribution Unif[0, 1] and denotes its collection as r(t). Therefore,
the perturbed empirical loss at iteration t can be written as

L(t)(Θ(t),W(t)) =
1

n

∑n
i=1`

(
yiπmi,t(xi; Θ

(t))fmi,t(xi; W
(t))
)
, (3.3)

where mi,t = argmaxm{hm(xi; Θ
(t)) + r

(t)
m,i}. Starting from the initialization W(0), the gradient

descent update rule for the experts is

W(t+1)
m = W(t)

m − η · ∇WmL(t)(Θ(t),W(t))/‖∇WmL(t)(Θ(t),W(t))‖F ,∀m ∈ [M ], (3.4)

where η > 0 is the expert learning rate. Starting from the initialization Θ(0), the gradient update rule
for the gating network is

θ(t+1)
m = θ(t)

m − ηr · ∇θm
L(t)(Θ(t),W(t)),∀m ∈ [M ], (3.5)

where ηr > 0 is the router learning rate. In practice, the experts are trained by Adam to make sure
they have similar learning speeds. Here we use a normalized gradient which can be viewed as a
simpler alternative to Adam (Jelassi et al., 2021).

4 Main Results

In this section, we will present our main results. We first provide a negative result for learning with a
single expert.
Theorem 4.1 (Single expert performs poorly). SupposeDα = Dγ in Definition 3.1, then any function
with the form F (x) =

∑P
p=1 f(x(p)) will get large test error P(x,y)∼D

(
yF (x) ≤ 0

)
≥ 1/8.

Theorem 4.1 indicates that if the feature noise has the same strength as the feature signal i.e.,
Dα = Dγ , any two-layer CNNs with the form F (x) =

∑
j∈[J] aj

∑
p∈[P ] σ(w>j x(p) + bj) can’t

perform well on the classification problem defined in Definition 3.1 where σ can be any activation
function. Theorem 4.1 also shows that a simple ensemble of the experts may not improve the
performance because the ensemble of the two-layer CNNs is still in the form of the function defined
in Theorem 4.1.

As a comparison, the following theorem gives the learning guarantees for training an MoE layer that
follows the structure defined in Section 3.2 with cubic activation function.
Theorem 4.2 (Nonlinear MoE performs well). Suppose the training data size n = Ω(d). Choose
experts number M = Θ(K logK log log d), filter size J = Θ(logM log log d), initialization scale
σ0 ∈ [d−1/3, d−0.01], learning rate η = Õ(σ0), ηr = Θ(M2)η. Then with probability at least
1− o(1), Algorithm 1 is able to output (Θ(T ),W(T )) within T = Õ(η−1) iterations such that the
non-linear MoE defined in Section 3.2 satisfies that

• Training error is zero, i.e., yiF (xi; Θ
(T ),W(T )) > 0,∀i ∈ [n].

• Test error is nearly zero, i.e., P(x,y)∼D
(
yF (x; Θ(T ),W(T )) ≤ 0

)
= o(1).

More importantly, the experts can be divided into a disjoint union of K non-empty sets [M ] =
tk∈[K]Mk and

• (Each expert is good on one cluster) Each expert m ∈ Mk performs good on the cluster Ωk,
P(x,y)∼D(yfm(x; W(T )) ≤ 0|(x, y) ∈ Ωk) = o(1).

• (Router only distributes example to good expert) With probability at least 1− o(1), an example
x ∈ Ωk will be routed to one of the experts inMk.

Theorem 4.2 shows that a non-linear MoE performs well on the classification problem in Definition 3.1.
In addition, the router will learn the cluster structure and divide the problem into K simpler sub-
problems, each of which is associated with one cluster. In particular, each cluster will be classified
accurately by a subset of experts. On the other hand, each expert will perform well on at least one
cluster.

Furthermore, together with Theorem 4.1, Theorem 4.2 suggests that there exist problem instances in
Definition 3.1 (i.e., Dα = Dγ) such that an MoE provably outperforms a single expert.
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5 Overview of Key Techniques

A successful MoE layer needs to ensure that the router can learn the cluster-center features and
divide the complex problem in Definition 3.1 into simpler linear classification sub-problems that
individual experts can conquer. Finding such a gating network is difficult because this problem is
highly non-convex. In the following, we will introduce the main difficulties in analyzing the MoE
layer and the corresponding key techniques to overcome those barriers.

Main Difficulty 1: Discontinuities in Routing. Compared with the traditional soft-routing model,
the sparse routing model saves computation and greatly reduces the inference time. However, this
form of sparsity also causes discontinuities in routing (Shazeer et al., 2017). In fact, even a small
perturbation of the gating network outputs h(x; Θ) + δ may change the router behavior drastically if
the second largest gating network output is close to the largest gating network output.

Key Technique 1: Stability by Smoothing. We point out that the noise term added to the gating
network output ensures a smooth transition between different routing behavior, which makes the
router more stable. This is proved in the following lemma.

Lemma 5.1. Let h, ĥ ∈ RM to be the output of the gating network and {rm}Mm=1 to be the noise
independently drawn from Unif[0,1]. Denote p, p̂ ∈ RM to be the probability that experts get routed,
i.e., pm = P(argmaxm′∈[M ]{hm′ + rm′} = m), p̂m = P(argmaxm′∈[M ]{ĥm′ + rm′} = m). Then
we have that ‖p− p̂‖∞ ≤M2‖h− ĥ‖∞.

Lemma 5.1 implies that when the change of the gating network outputs at iteration t and t′ is small, i.e.,
‖h(x; Θ(t))−h(x; Θ(t′))‖∞, the router behavior will be similar. So adding noise provides a smooth
transition from time t to t′. It is also worth noting that Θ is zero initialized. So h(x; Θ(0)) = 0 and
thus each expert gets routed with the same probability pm = 1/M by symmetric property. Therefore,
at the early of the training when ‖h(x; Θ(t))− h(x; Θ(0))‖∞ is small, router will almost uniformly
pick one expert from [M ], which helps exploration across experts.

Main Difficulty 2: No “Real” Expert. At the beginning of the training, the gating network is zero,
and the experts are randomly initialized. Thus it is hard for the router to learn the right features
because all the experts look the same: they share the same network architecture and are trained by the
same algorithm. The only difference is the initialization. Moreover, if the router makes a mistake at
the beginning of the training, the experts may amplify the mistake because the experts will be trained
based on mistakenly dispatched data.

Key Technique 2: Experts from Exploration. Motivated by the key technique 1, we introduce an
exploration stage to the analysis of MoE layer during which the router almost uniformly picks one ex-
pert from [M ]. This stage starts at t = 0 and ends at T1 = bη−1σ0.5

0 c � T = Õ(η−1) and the gating
network remains nearly unchanged ‖h(x; Θ(t))−h(x; Θ(0))‖∞ = O(σ1.5

0 ). Because the experts are
treated almost equally during exploration stage, we can show that the experts become specialized to
some specific task only based on the initialization. In particular, the experts set [M ] can be divided into
K nonempty disjoint sets [M ] = tkMk, whereMk := {m| argmaxk′∈[K],j∈[J]〈vk′ ,w

(0)
m,j〉 = k}.

For nonlinear MoE with cubic activation function, the following lemma further shows that experts in
different setMk will diverge at the end of the exploration stage.
Lemma 5.2. Under the same condition as in Theorem 4.2, with probability at least 1 − o(1), the
following equations hold for all expert m ∈Mk,

P(x,y)∼D
(
yfm(x; W(T1)

)
≤ 0
∣∣(x, y) ∈ Ωk

)
= o(1),

P(x,y)∼D
(
yfm(x; W(T1)) ≤ 0

∣∣(x, y) ∈ Ωk′
)

= Ω
(
1/K

)
,∀k′ 6= k.

Lemma 5.2 implies that, at the end of the exploration stage, the expert m ∈Mk can achieve nearly
zero test error on the cluster Ωk but high test error on the other clusters Ωk′ , k

′ 6= k.

Main Difficulty 3: Expert Load Imbalance. Given the training data set S = {(xi, yi)}ni=1, the
load of expert m at iterate t is defined as

Load(t)
m =

∑
i∈[n]P(mi,t = m), (5.1)

where P(mi,t = m) is probability that the input xi being routed to expert m at iteration t. Eigen
et al. (2013) first described the load imbalance issues in the training of the MoE layer. The gating
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network may converge to a state where it always produces large Load(t)
m for the same few experts.

This imbalance in expert load is self-reinforcing, as the favored experts are trained more rapidly
and thus are selected even more frequently by the router (Shazeer et al., 2017; Fedus et al., 2021).
Expert load imbalance issue not only causes memory and performance problems in practice, but also
impedes the theoretical analysis of the expert training.

Key Technique 3: Normalized Gradient Descent. Lemma 5.2 shows that the experts will diverge
into tk∈[K]Mk. Normalized gradient descent can help different experts in the same Mk being
trained at the same speed regardless of the imbalance load caused by the router. Because the self-
reinforcing circle no longer exists, the load imbalance issue will get mitigated. In particular, the router
will treat different experts in the sameMk almost equally and dispatch almost the same amount of
data to them during the early stage of training (See Section E.2 in Appendix for detail), which is
enough for the router to learn the cluster-center features. However, we can’t guarantee load balance
for an arbitrary long training period if we only use normalized gradient descent. That’s the reason
Theorem 4.2 requires early stopping. This load imbalance issue can be further avoided by adding
load balancing loss (Eigen et al., 2013; Shazeer et al., 2017; Fedus et al., 2021), or using advanced
MoE layer structure such as BASE Layers (Lewis et al., 2021; Dua et al., 2021) and Hash Layers
(Roller et al., 2021).

Road Map: Here we provide the road map of the proof of Theorem 4.2 and the full proof is presented
in Appendix E. The training process can be decomposed into several stages. The first stage is
called Exploration stage. During this stage, the experts will diverge into K professional groups
tKk=1Mk = [M ]. In particular, we will show thatMk is not empty for all k ∈ [K]. Besides, for all
m ∈Mk, fm is a good classifier over Ωk. The second stage is called router learning stage. During
this stage, the router will learn to dispatch x ∈ Ωk to one of the experts inMk. Finally, we will give
the generalization analysis for the MoEs from the previous two stages.

6 Experiments

In this section, we conduct experiments to validate our theory. The code and data for our experiments
can be found on Github 1.

Setting 1:α ∈ (0.5, 2), β ∈ (1, 2), γ ∈ (0.5, 3), σp = 1

Test accuracy (%) Dispatch Entropy

Single (linear) 68.71 NA
Single (nonlinear) 79.48 NA

MoE (linear) 92.99± 2.11 1.300± 0.044
MoE (nonlinear) 99.46± 0.55 0.098± 0.087

Setting 2: α ∈ (0.5, 2), β ∈ (1, 2), γ ∈ (0.5, 3), σp = 2

Test accuracy (%) Dispatch Entropy

Single (linear) 60.59 NA
Single (nonlinear) 72.29 NA

MoE (linear) 88.48± 1.96 1.294± 0.036
MoE (nonlinear) 98.09± 1.27 0.171± 0.103

Table 1: Comparison between MoE (linear) and MoE (nonlinear)
in our setting. We report results of top-1 gating with noise for both
linear and nonlinear models. Over ten random experiments, we report
the average value ± standard deviation for both test accuracy and
dispatch entropy.
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Figure 3: Illustration of router dis-
patch entropy. We demonstrate the
change of entropy of MoE during train-
ing on the synthetic data. MoE (linear)-
1 and MoE (nonlinear)-1 refer to Set-
ting 1 in Table 1. MoE (linear)-2 and
MoE (nonlinear)-2 refer to Setting 2 in
Table 1.

6.1 Synthetic-data Experiments

Datasets. We generate 16, 000 training examples and 16, 000 test examples from the data distribution
defined in Definition 3.1 with cluster number K = 4 , patch number P = 4 and dimension d = 50.
We randomly shuffle the order of the patches of x after we generate data (x, y). We consider two

1https://github.com/uclaml/MoE
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Table 2: Comparison between MoE and single model on CIFAR-10 and CIFAR-10-Rotate datasets. We report
the average test accuracy over 10 random experiments ± the standard deviation.

CIFAR-10 (%) CIFAR-10-Rotate (%)

CNN Single 80.68± 0.45 76.78± 1.79
MoE 80.31± 0.62 79.60± 1.25

MobileNetV2 Single 92.45± 0.25 85.76± 2.91
MoE 92.23± 0.72 89.85± 2.54

ResNet18 Single 95.51± 0.31 88.23± 0.96
MoE 95.32± 0.68 92.60± 2.01

parameter settings: 1. α ∼ Uniform(0.5, 2), β ∼ Uniform(1, 2), γ ∼ Uniform(0.5, 3) and σp = 1; 2.
α ∼ Uniform(0.5, 2), β ∼ Uniform(1, 2), γ ∼ Uniform(0.5, 3) and σp = 2. Note that Theorem 4.1
shows that when α and γ follow the same distribution, neither single linear expert or single nonlinear
expert can give good performance. Here we consider a more general and difficult setting when α and
γ are from different distributions.

Models. We consider the performances of single linear CNN, single nonlinear CNN, linear MoE, and
nonlinear MoE. The single nonlinear CNN architecture follows (3.1) with cubic activation function,
while single linear CNN follows (3.1) with identity activation function. For both linear and nonlinear
MoEs, we consider a mixture of 8 experts with each expert being a single linear CNN or a single
nonlinear CNN. Finally, we train single models with gradient descent and train the MoEs with
Algorithm 1. We run 10 random experiments and report the average accuracy with standard deviation.

Evaluation. To evaluate how well the router learned the underlying cluster structure of the data, we
define the entropy of the router’s dispatch as follows. Denote by nk,m the number of data in cluster K
that are dispatched to expertm. The total number of data dispatched to expertm is nm =

∑K
k=1 nk,m

and the total number of data is n =
∑K
k=1

∑M
m=1 nk,m. The dispatch entropy is then defined as

entropy = −
∑M
m=1,nm 6=0

nm

n

∑K
k=1

nk,m

nm
· log

(nk,m

nm

)
. (6.1)

When each expert receives the data from at most one cluster, the dispatch entropy will be zero. And a
uniform dispatch will result in the maximum dispatch entropy.

As shown in Table 1, the linear MoE does not perform as well as the nonlinear MoE in Setting 1,
with around 6% less test accuracy and much higher variance. With stronger random noise (Setting 2),
the difference between the nonlinear MoE and linear MoE becomes even more significant. We also
observe that the final dispatch entropy of nonlinear MoE is nearly zero while that of the linear MoE is
large. In Figure 3, we further demonstrate the change of dispatch entropy during the training process.
The dispatch entropy of nonlinear MoE significantly decreases, while that of linear MoE remains
large. Such a phenomenon indicates that the nonlinear MoE can successfully learn the underlying
cluster structure of the data while the linear MoE fails to do so.

6.2 Real-data Experiments

We further conduct experiments on real image datasets and demonstrate the importance of the
clustering data structure to the MoE layer in deep neural networks.

Datasets. We consider the CIFAR-10 dataset (Krizhevsky, 2009) and the 10-class classification task.
Furthermore, we create a CIFAR-10-Rotate dataset that has a strong underlying cluster structure
that is independent of its labeling function. Specifically, we rotate the images by 30 degrees and
merge the rotated dataset with the original one. The task is to predict if the image is rotated, which
is a binary classification problem. We deem that some of the classes in CIFAR-10 form underlying
clusters in CIFAR-10-Rotate. In Appendix A, we explain in detail how we generate CIFAR-10-Rotate
and present some specific examples.

Models. For the MoE, we consider a mixture of 4 experts with a linear gating network. For the
expert/single model architectures, we consider a CNN with 2 convolutional layers (architecture details
are illustrated in Appendix A.) For a more thorough evaluation, we also consider expert/single models
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with architecture including MobileNetV2 (Sandler et al., 2018) and ResNet18 (He et al., 2016). The
training process of MoE also follows Algorithm 1.

The experiment results are shown in Table 2, where we compare single and mixture models of different
architectures over CIFAR-10 and CIFAR-10-Rotate datasets. We observe that the improvement of
MoEs over single models differs largely on the different datasets. On CIFAR-10, the performance
of MoEs is very close to the single models. However, on the CIFAR-10-Rotate dataset, we can
observe a significant performance improvement from single models to MoEs. Such results indicate
the advantage of MoE over single models depends on the task and the cluster structure of the data.

Visualization. In Figure 4, we visualize the latent embedding learned by MoEs (ResNet18) for the
10-class classification task in CIFAR-10 as well as the binary classification task in CIFAR-10-Rotate.
We visualize the data with the same label y to see if cluster structures exist within each class. For
CIFAR-10, we choose y = 1 ("car"), and plot the latent embedding of the data using t-SNE on the
left sub-figure, which does not show an salient cluster structure. For CIFAR-10-Rotate, we choose
y = 1 ("rotated") and visualize the data using t-SNE in the middle sub-figure. Here, we can observe
a clear clustering structure even though the class signal is not provided during training. We take a
step further to investigate what is in each cluster in the right sub-figure. We can observe that most of
the examples in the “frog” class fall into one cluster, while examples of “ship” class mostly fall into
the other cluster.

y=1 (car) y=1 (rotated) (frog, ship)

Figure 4: Visualization of the latent embedding on CIFAR-10 and CIFAR-10-Rotate with chosen label y. The
left sub-figure denotes the visualization of CIFAR-10 when label y is chosen to be 1 (car). The central sub-figure
represents the visualization of CIFAR-10-Rotate when label y is chosen to be 1 (rotated). On the right sub-figure,
red denotes that the data is from the ship class, and blue denotes that the data is from the frog class.

7 Conclusion and Future Work

In this work, we formally study the mechanism of the Mixture of Experts (MoE) layer for deep
learning. To our knowledge, we provide the first theoretical result toward understanding how the MoE
layer works in deep learning. Our empirical evidence reveals that the cluster structure of the data plays
an important role in the success of the MoE layer. Motivated by these empirical observations, we
study a data distribution with cluster structure and show that Mixture-of-Experts provably improves
the test accuracy of a single expert of two-layer CNNs.

There are several important future directions. First, our current results are for CNNs. It is interesting
to extend our results to other neural network architectures, such as transformers. Second, our data
distribution is motivated by the classification problem of image data. We plan to extend our analysis
to other types of data (e.g., natural language data).
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A Experiment Details

A.1 Visualization

In the visualization of Figure 1, MoE (linear) and MoE (nonlinear) are trained according to Algo-
rithm 1 by normalized gradient descent with learning rate 0.001 and gradient descent with learning
rate 0.1. According to Definition 3.1, we set K = 4, P = 4 and d = 50 and choose α ∈ (0.5, 2),
β ∈ (1, 2), γ ∈ (1, 2) and σp = 1, and generate 3, 200 data examples. We consider mixture of
M = 4 experts for both MoE (linear) and MoE (nonlinear). For each expert, we set the number of
neurons/filters J = 16. We train MoEs on 1, 600 data examples and visualize classification result
and decision boundary on the remaining 1, 600 examples. The data examples are visualized via
t-SNE (Van der Maaten and Hinton, 2008). When visualizing the data points and decision boundary
on the 2d space, we increase the magnitude of random noise patch by 3 so that the positive/negative
examples and decision boundaries can be better viewed.

A.2 Synthetic-data Experiments

Synthetic-data experiment setup. For the experiments on synthetic data, we generate the data
according to Definition 3.1 with K = 4, P = 4 and d = 50. We consider four parameter settings:

• α ∼ Uniform(0.5, 2), β ∼ Uniform(1, 2), γ ∼ Uniform(0.5, 3) and σp = 1;

• α ∼ Uniform(0.5, 2), β ∼ Uniform(1, 2), γ ∼ Uniform(0.5, 3) and σp = 2;

• α ∼ Uniform(0.5, 2), β ∼ Uniform(1, 2), γ ∼ Uniform(0.5, 2) and σp = 1;

• α ∼ Uniform(0.5, 2), β ∼ Uniform(1, 2), γ ∼ Uniform(0.5, 2) and σp = 2.

We consider mixture of M = 8 experts for all MoEs and J = 16 neurons/filters for all experts. For
single models, we consider J = 128 neurons/filters. We train MoEs using Algorithm 1. Specifically,
we train the experts by normalized gradient descent with learning rate 0.001 and the gating network
by gradient descent with learning rate 0.1. We train single linear/nonlinear models by Adam (Kingma
and Ba, 2014) to achieve the best performance, with learning rate 0.01 and weight decay 5e-4 for
single nonlinear model and learning rate 0.003 and weight decay 5e− 4 for single linear model.

Synthetic-data experiment results. In Table 3, we present the empirical results of single linear
CNN, single nonlinear CNN, linear MoE, and nonlinear MoE under settings 3 and 4, where α and γ
follow the same distribution as we assumed in theoretical analysis. Furthermore, we report the total
number of filters for both single CNNs and a mixture of CNNs, where the filter size (equal to 50)
is the same for all single models and experts. For linear and nonlinear MoE, there are 16 filters for
each of the 8 experts, and therefore 128 filters in total. Note that in the synthetic-data experiment
in the main paper, we let the number of filters of single models be the same as MoEs (128). Here,
we additionally report the performances of single models with 512 filters, and see if increasing the
model size of single models can beat MoE. From Table 3, we observe that: 1. single models perform
poorly in all settings; 2. linear MoEs do not perform as well as nonlinear MoEs. Specifically, the
final dispatch entropy of nonlinear MoEs is nearly zero while the dispatch entropy of linear MoEs is
consistently larger under settings 1-4. This indicates that nonlinear MoEs successfully uncover the
underlying cluster structure while linear MoEs fail to do so. In addition, we can see that even larger
single models cannot beat linear MoEs or nonlinear MoEs. This is consistent with Theorem 4.1,
where a single model fails under such data distribution regardless of its model size. Notably, by
comparing the results in Table 1 and Table 3, we can see that a single nonlinear model suffers from
overfitting as we increase the number of filters.

Router dispatch examples. We demonstrate specific examples of router dispatch for MoE (nonlin-
ear) and MoE (linear). The examples of initial and final router dispatch for MoE (nonlinear) are
shown in Table 4 and Table 5. Under the dispatch for nonlinear MoE, each expert is given either
no data or data that comes from one cluster only. The entropy of such dispatch is thus 0. The test
accuracy of MoE trained under such a dispatch is either 100% or very close to 100%, as the expert
can be easily trained on the data from one cluster only. An example of the final dispatch for MoE
(linear) is shown in Table 6, where clusters are not well separated and an expert gets data from
different clusters. The test accuracy under such dispatch is lower (90.61%).
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Table 3: Comparison between MoE (linear) and MoE (nonlinear) in our setting. We report results of top-1
gating with noise for both linear and nonlinear models. Over ten random experiments, we report the average
value ± standard deviation for both test accuracy and dispatch entropy.

Setting 1:α ∈ (0.5, 2), β ∈ (1, 2), γ ∈ (0.5, 3), σp = 1

Test accuracy (%) Dispatch Entropy Number of Filters

Single (linear) 68.71 NA 128
Single (linear) 67.63 NA 512

Single (nonlinear) 79.48 NA 128
Single (nonlinear) 78.18 NA 512

MoE (linear) 92.99± 2.11 1.300± 0.044 128 (16*8)
MoE (nonlinear) 99.46± 0.55 0.098± 0.087 128 (16*8)

Setting 2: α ∈ (0.5, 2), β ∈ (1, 2), γ ∈ (0.5, 3), σp = 2

Test accuracy (%) Dispatch Entropy Number of Filters

Single (linear) 60.59 NA 128
Single (linear) 63.04 NA 512

Single (nonlinear) 72.29 NA 128
Single (nonlinear) 52.09 NA 512

MoE (linear) 88.48± 1.96 1.294± 0.036 128 (16*8)
MoE (nonlinear) 98.09± 1.27 0.171± 0.103 128 (16*8)

Setting 3:α ∈ (0.5, 2), β ∈ (1, 2), γ ∈ (0.5, 2), σp = 1

Test accuracy (%) Dispatch Entropy Number of Filters

Single (linear) 74.81 NA 128
Single (linear) 74.54 NA 512

Single (nonlinear) 72.69 NA 128
Single (nonlinear) 67.78 NA 512

MoE (linear) 95.93± 1.34 1.160± 0.100 128 (16*8)
MoE (nonlinear) 99.99± 0.02 0.008± 0.011 128 (16*8)

Setting 4: α ∈ (0.5, 2), β ∈ (1, 2), γ ∈ (0.5, 2), σp = 2

Test accuracy (%) Dispatch Entropy Number of Filters

Single (linear) 74.63 NA 128
Single (linear) 72.98 NA 512

Single (nonlinear) 68.60 NA 128
Single (nonlinear) 61.65 NA 512

MoE (linear) 93.30± 1.48 1.160± 0.155 128 (16*8)
MoE (nonlinear) 98.92± 1.18 0.089± 0.120 128 (16*8)

Table 4: Dispatch details of MoE (nonlinear) with test accuracy 100%.

Expert number 1 2 3 4 5 6 7 8

Initial dispatch 1921 2032 1963 1969 2075 1980 2027 2033
Final dispatch 0 3979 4009 0 0 3971 0 4041

Cluster 1 0 0 0 0 0 3971 0 0
Cluster 2 0 0 4009 0 0 0 0 0
Cluster 3 0 0 0 0 0 0 0 4041
Cluster 4 0 3979 0 0 0 0 0 0
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Table 5: Dispatch details of MoE (nonlinear) with test accuracy 99.95%.

Expert number 1 2 3 4 5 6 7 8

Initial dispatch 1978 2028 2018 1968 2000 2046 2000 1962
Final dispatch 3987 4 3975 6 0 1308 4009 2711

Cluster 1 0 0 3971 0 0 0 0 0
Cluster 2 0 0 0 0 0 4 4005 0
Cluster 3 8 4 4 6 0 1304 4 2711
Cluster 4 3979 0 0 0 0 0 0 0

Table 6: Dispatch details of MoE (linear) with test accuracy 90.61%.

Expert number 1 2 3 4 5 6 7 8

Initial dispatch 1969 2037 1983 2007 1949 1905 2053 2097
Final dispatch 136 2708 6969 5311 27 87 4 758

Cluster 1 0 630 1629 1298 27 87 4 296
Cluster 2 136 1107 1884 651 0 0 0 231
Cluster 3 0 594 1976 1471 0 0 0 0
Cluster 4 0 377 1480 1891 0 0 0 231

MoE during training. We further provide figures that illustrate the feature learning and center
learning process of each expert Wm = [wm,1, . . . ,wm,J ] and the router Θ = [θ1, . . . ,θM ], with J
as the number of filters/neurons and M as the number of experts. We observe the feature learning
process (change of maxj〈wm,j ,vk〉) and center learning process (change of maxj〈wm,j , ck〉) of
each expert wm for each feature signal vk and center signal ck. Similarly, for the weight of the router
θm, we observe the the feature learning process (change of 〈θm,vk〉) and center learning process
(change of 〈θm, ck〉) for each feature signal vk and center signal ck. In Figure 5, we demonstrate the
training process of MoE (nonlinear), and in Figure 6, we demonstrate the training process of MoE
(linear). Each colored line denotes a value of k. The data is the same as setting 1 in Table 1, with
α ∈ (0.5, 2), β ∈ (1, 2), γ ∈ (0.5, 3) and σp = 1. We can observe that, in the top left sub-figure of
Figure 5 for MoE (nonlinear), feature learning (maxj〈wm,j ,vk〉) exhibit a property that each expert
picks up one feature signal quickly. Similarly, as shown in the bottom right sub-figure, the router
picks up the corresponding center signal. Meanwhile, the nonlinear experts almost do not learn center
signals and the magnitude of the inner products between router weight and feature signals remain
small. However, for MoE (linear), as shown in the top two sub-figures of Figure 6, an expert does not
learn a specific feature signal, but instead learns multiple feature and center signals. Moreover, as
demonstrated in the bottom sub-figures of Figure 6, the magnitude of the inner products between
router weight and feature signals can be even larger than the inner products between router weight
and center signals.

Verification of Theorem 4.1. In Table 7, we provide the performances of single models with different
activation functions under setting 3, where α, γ ∈ (1, 2) follow the same distribution. In Table 8, we
further report the performances of single models with different activation functions under setting 1
and setting 2. Empirically, even when α and γ do not share the same distribution, single models still
fail. Note that, for Tables 7 and 8, the numbers of filters for single models are 128.

Load balancing loss. In Table 9, we present the results of linear MoE with load balancing loss and
directly compare it with nonlinear MoE without load balancing loss. Load balancing loss guarantees
that the experts receive similar amount of data and prevents MoE from activating only one or few
experts. However, on the data distribution that we study, load balancing loss is not the key to the
success of MoE: the single experts cannot perform well on the entire data distribution and must
diverge to learn different labeling functions with respect to each cluster.

Initialization and Expert Divergence. In Table 10, we consider nonlinear MoE with load balancing
loss and the same initialization for all the experts. The synthetic data used in this experiments is
the same as setting 1 in Table 3. Recall that the data distribution we study cannot be learned by any
single model: experts must diverge to learn different labeling functions. We observe from Table 10
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Inner product between expert weight and feature signal Inner product between expert weight and center signal

Inner product between router weight and feature signal Inner product between router weight and center signal

Figure 5: Mixture of nonlinear experts. Upper: visualization of the feature learning (maxj〈wm,j ,vk〉)
and center learning (maxj〈wm,j , ck〉) of each expert wm for each feature vk and cluster signal ck. Lower:
visualization of the feature learning (〈θm,vk〉) and center learning (〈θm, ck〉) of the router weight θm for each
feature signal vk and cluster signal ck.

Table 7: Verification of Theorem 4.1 (single expert performs poorly). Test accuracy of single linear/nonlinear
models with different activation functions. Data is generated according to Definition 3.1 with α, γ ∈ (1, 2),
β ∈ (1, 2) and σp = 1.

Activation Optimal Accuracy (%) Test Accuracy (%)

Linear 87.50% 74.81%
Cubic 87.50% 72.69%
Relu 87.50% 73.45%
Celu 87.50% 76.91%
Gelu 87.50% 74.01%
Tanh 87.50% 74.76%
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Inner product between expert weight and feature signal Inner product between expert weight and center signal

Inner product between router weight and feature signal Inner product between router weight and center signal

Figure 6: Mixture of linear experts. Upper: visualization of the feature learning (maxj〈wm,j ,vk〉) and center
learning (maxj〈wm,j , ck〉) of each expert wm for each feature vk and cluster signal ck. Lower: visualization
of the feature learning (〈θm,vk〉) and center learning (〈θm, ck〉) of the router weight θm for each feature signal
vk and cluster signal ck.

Table 8: Single expert performs poorly (setting 1&2). Test accuracy of single linear/nonlinear models with
different activation functions. Data is generated according to Definition 3.1 with α ∈ (0.5, 2), β ∈ (1, 2),
γ ∈ (0.5, 3), σp = 1 for setting 1. And we have α ∈ (0.5, 2), β ∈ (1, 2), γ ∈ (0.5, 3), σp = 1 for setting 2.

Activation Setting 1 Setting 2

Linear 68.71% 60.59%
Cubic 79.48% 72.29%
Relu 72.28% 80.12%
Celu 81.75% 78.99%
Gelu 79.04% 82.01%
Tanh 81.72% 81.03%
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Table 9: Load balancing loss. We report the results for linear MoE with load balancing loss and compare them
with our previous results on nonlinear MoE without load balancing loss. Over ten random experiments, we
report the average test accuracy (%) ± standard deviation. Setting 1-4 follows the data distribution introduced
above.

Linear MoE with Load Balancing Nonlinear MoE without Load Balancing

Setting 1 93.81± 1.02 99.46± 0.55
Setting 2 89.20± 2.20 98.09± 1.27
Setting 3 95.12± 0.58 99.99± 0.02
Setting 4 92.50± 1.55 98.92± 1.18

Table 10: Nonlinear MoE with the same initialization and load balancing loss. The synthetic data is from
setting 1. We report the average value ± standard deviation over 10 runs for both test accuracy and dispatch
entropy.

Number of experts M = 8 Number of experts M = 32

Load Balancing Coeff Accuracy (%) Dispatch Entropy Accuracy (%) Dispatch Entropy

0.1 72.18± 1.16 1.358± 0.010 70.88± 0.60 1.381± 0.002
0.03 79.97± 1.61 1.237± 0.041 77.02± 0.51 1.252± 0.010
0.01 78.59± 2.19 1.252± 0.048 79.15± 0.87 1.221± 0.014

that, with the same initialization, nonlinear MoEs exhibit performances that are very similar to a
single nonlinear expert.

Load Balancing Loss and Normalized Gradient Descent. In Table 11, we report the average test
accuracy for nonlinear MoE with regard to using load balancing loss and/or normalized gradient
descent. The synthetic data is the same as in setting 1 and we choose number of experts M = 32.
All the experts are randomly initialized. We observe that using normalized gradient descent or load
balancing loss (or both) can lead to successful learning of the data distribution. However, without
using normalized gradient or load balancing loss will result in failure of learning the data distribution.

A.3 Experiments on Image Data

Datasets. We consider CIFAR-10 (Krizhevsky, 2009) with the 10-class classification task, which
contains 50, 000 training examples and 10, 000 testing examples. For CIFAR-10-Rotate, we design a
binary classification task by copying and rotating all images by 30 degree and let the model predict
if an image is rotated. In Figure 7, we demonstrate the positive and negative examples of CIFAR-
10-Rotate. Specifically, we crop the rotated images to (24, 24), and resize to (32, 32) for model
architectures that are designed on image size (32, 32). And we further apply random Gaussian noise
to all images to avoid the models taking advantage of image resolutions.

Models. For the simple CNN model, we consider CNN with 2 convolutional layers, both with kernel
size 3 and ReLU activation followed by max pooling with size 2 and a fully connected layer. The
number of filters of each convolutional layer is respectively 64, 128.

CIFAR-10 Setup. For real-data experiments on CIFAR-10, we apply the commonly used transforms
on CIFAR-10 before each forward pass: random horizontal flips and random crops (padding the

Table 11: Ablation study of normalized gradient descent and load balancing loss. We report the average test
accuracy ± standard deviation over 10 runs for nonlinear MoE. We consider the following four configurations:
1. normalized GD with load balancing; 2. GD with load balancing; 3. normalized GD without load balancing; 4
GD without load balancing.

Number of experts M = 32

Normalized GD GD

With Load Balancing 99.01± 0.97 98.64± 0.34
Without Load Balancing 99.47± 0.48 79.53± 1.41
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Rotation Crop Resize Gaussian Blur

Figure 7: Examples of the CIFAR-10-Rotate dataset. Both the original image and the rotated image are
processed in the same way, where we crop the image to (24, 24), resize to (32, 32) and apply random Gaussian
blur.

Table 12: The test accuracy of the single classifier vs. MoE classifier.

Single MoE

Accuracy 74.13% 76.22%

images on all sides with 4 pixels and randomly cropping to (32, 32)). And as conventionally, we
normalize the data by channel. We train the single CNN model by SGD with learning rate 0.01,
momentum 0.9 and weight decay 5e-4. And we train single MobileNetV2 and single ResNet18 by
SGD with learning rate 0.1, momentum 0.9 and weight decay 5e-4 to achieve the best performances.
We train MoEs according to Algorithm 1. Specifically, for MoE (ResNet18) and MoE (MobileNetV2),
we use normalized gradient descent with learning rate 0.1 and SGD with learning rate 1e-4, both with
momentum 0.9 and weight decay of 5e-4. For MoE (CNN), we use normalized gradient descent with
learning rate 0.01 and SGD with learning rate 1e-4, both with momentum 0.9 and weight decay of
5e-4. We consider top-1 gating with noise and load balancing loss for MoE, where the multiplicative
coefficient of load balancing loss is set at 1e-3. All models are trained for 200 epochs to achieve
convergence.

CIFAR-10-Rotate Setup. For experiments on CIFAR10-Rotate, the data is normalized by channel
as the same as in CIFAR-10 before each forward pass. We train the single CNN, single MobileNetV2
and single ResNet18 by SGD with learning rate 0.01, momentum 0.9 and weight decay 5e-4 to
achieve the best performances. And we train MoEs by Algorithm 1 with normalized gradient descent
learning rate 0.01 on the experts and with SGD of learning rate 1e-4 on the gating networks, both with
momentum 0.9 and weight decay of 5e-4. We consider top-1 gating with noise and load balancing
loss for MoE, where the multiplicative coefficient for load balancing loss is set at 1e-3. All models
are trained for 50 epochs to achieve convergence.

A.4 Experiments on Language Data

Here we provide a simple example of how MoE would work for multilingual tasks. We gather
multilingual sentiment analysis data from the source of English (Sentiment140 (Go et al., 2009))
which is randomly sub-sampled to 200, 000 examples, Russian (RuReviews (Smetanin and Komarov,
2019)) which contains 90, 000 examples, and French (Blard, 2020) which contains 200, 000 examples.
We randomly split the dataset into 80% training data and 20% test data. We use a pre-trained BERT
multilingual base model (Devlin et al., 2018) to generate text embedding for each text. For the single
model, we train an 1-layer neural network with cubic activation. For MoE, we let M = 4 with each
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Figure 8: The distribution of text embedding of the multilingual sentiment analysis dataset. The embedding is
generated by the pre-trained BERT multilingual base model and visualized on 2d space using t-SNE. Each color
denotes a linguistic source, including English, French, and Russian.

Table 13: The final router dispatch details with regard to the linguistic source of the test data.

Expert 1 Expert 2 Expert 3 Expert 4

English 1, 374 3, 745 2, 999 31,882
French 23,470 3, 335 13,182 13
Russian 833 9,405 7, 723 39

expert sharing the same architecture as the single model. In Figure 8, we show the visualization of
the text embeddings in the 2d space via t-SNE, where each color denotes a linguistic source. Here, ·
represents a positive example and × represents a negative example. We can observe that data from
different linguistic sources naturally form different clusters.

In Table 12, we demonstrate the test accuracy of the single classifier and MoE on the multilingual
sentiment analysis dataset, where we can observe an performance improvement of MoE over single
model. And in Table 13, we show the final router dispatch details of MoE to each expert with regard
to the language of the text. Notably, MoE learned to distribute examples largely according to the
language.

B Proof of Theorem 4.1

Because we are using CNNs as experts, different ordering of the patches won’t affect the value of
F (x). So for (x, y) drawn from D in Definition 3.1, we can assume that the first patch x(1) is feature
signal, the second patch x(2) is cluster-center signal, the third patch x(3) is feature noise. The other
patches x(p), p ≥ 4 are random noises. Therefore, we can rewrite x = [αyvk, βck, γεvk′ , ξ], where
ξ = [ξ4, . . . , ξP ] is a Gaussian matrix of size Rd×(P−3).

Proof of Theorem 4.1. Conditioned on the event that y = −ε, points ([αyvk, βck,−γyvk′ , ξ], y),(
[−αyvk, βck, γyvk′ , ξ],−y

)
,
(
[γyvk′ , βck′ ,−αyvk, ξ], y

)
,
(
[−γyvk′ , βck′ , αyvk, ξ],−y

)
fol-

low the same distribution because γ and α follow the same distribution, and y and −y follow
the same distribution. Therefore, we have

4P
(
yF (x) ≤ 0|ε = −y

)
= E

[
1(yF ([αyvk, βck,−γyvk′ , ξ]) ≤ 0)︸ ︷︷ ︸

I1

+1(−yF ([−αyvk, βck, γyvk′ , ξ]) ≤ 0)︸ ︷︷ ︸
I2

+ 1(yF ([γyvk′ , βck′ ,−αyvk, ξ]) ≤ 0)︸ ︷︷ ︸
I3

+1(−yF ([−γyvk′ , βck′ , αyvk, ξ]) ≤ 0)

]
︸ ︷︷ ︸

I4

.
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It is easy to verify the following fact(
yF ([αyvk, βck,−γyvk′ , ξ])

)
+
(
− yF ([−αyvk, βck, γyvk′ , ξ])

)
+
(
yF ([γyvk′ , βck′ ,−αyvk, ξ])

)
+
(
− yF ([−γyvk′ , βck′ , αyvk, ξ])

)
=

(
yf(αyvk) + yf(βck) + yf(−γyvk′) +

P∑
p=4

yf(ξp)

)

+

(
− yf(−αyvk)− yf(βck)− yf(γyvk′)−

P∑
p=4

yf(ξp)

)

+

(
yf(γyvk′) + yf(βck′) + yf(−αyvk) +

P∑
p=4

yf(ξp)

)

+

(
− yf(−γyvk′)− yf(βck′)− yf(αyvk)−

P∑
p=4

yf(ξp)

)
= 0.

By pigeonhole principle, at least one of I1, I2, I3, I4 is non-zero. This further implies that
4P
(
yF (x) ≤ 0|ε = −y

)
≥ 1. Applying P(ε = −y) = 1/2, we have that

P
(
yF (x) ≤ 0

)
≥ P

(
yF (x) ≤ 0)|ε = −y

)
P(ε = −y) ≥ 1/8,

which completes the proof.

C Smoothed Router

In this section, we will show that the noise term provides a smooth transition between different routing
behavior. All the results in this section is independent from our NN structure and its initialization.
We first present a general version of Lemma 5.1 with its proof.

Lemma C.1 (Extension of Lemma 5.1). Let h, ĥ ∈ RM to be the output of the gating network and
{rm}Mm=1 to be the noise independently drawn fromDr. Denote p, p̂ ∈ RM to be the probability that
experts get routed, i.e., pm = P(argmaxm′∈[M ]{hm′ + rm′} = m), p̂m = P(argmaxm′∈[M ]{ĥm′ +
rm′} = m). Suppose the probability density function of Dr is bounded by κ, Then we have that
‖p− p̂‖∞ ≤ (κM2) · ‖h− ĥ‖∞.

Proof. Given random variable {rm}Mm=1, let us first consider the event that argmaxm{hm + rm} 6=
argmaxm{ĥm + rm}. Let m1 = argmaxm{hm + rm} and m2 = argmaxm{ĥm + rm}, then we
have that

hm1 + rm1 ≥ hm2 + rm2 , ĥm2 + rm2 ≥ ĥm1 + rm1 ,

which implies that

ĥm2 − ĥm1 ≥ rm1 − rm2 ≥ hm2 − hm1 . (C.1)

Define C(m1,m2) = (ĥm2
− ĥm1

+ hm2
− hm1

)/2, then (C.1) implies that

|rm1 − rm2 − C(m1,m2)| ≤ |ĥm2 − ĥm1 − hm2 + hm1 |/2 ≤ ‖ĥ− h‖∞. (C.2)
Therefore, we have that,
P(argmax

m
{hm + rm} 6= argmax

m
{ĥm + rm})

≤ P(∃m1 6= m2 ∈ [M ], s.t. |rm1 − rm2 − C(m1,m2)| ≤ ‖ĥ− h‖∞)

≤
∑

m1<m2

P
(
|rm1

− rm2
− C(m1,m2)| ≤ ‖ĥ− h‖∞

)
=

∑
m1<m2

E
[
P
(
rm2

+ C(m1,m2)− ‖ĥ− h‖∞ ≤ rm1
≤ rm2

+ C(m1,m2) + ‖ĥ− h‖∞
)∣∣∣rm2

]
≤ (κM2) · ‖ĥ− h‖∞,
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where the first inequality is by (C.2), the second inequality is by union bound and the last inequality
is due to the fact that the probability density function of rm1 is bounded by κ. Then we have that for
i ∈ [M ],

|pi − p̂i| ≤
∣∣∣∣E[1 ( argmax

m
{ĥm + rm} = i

)
− 1

(
argmax

m
{hm + rm} = i

)]∣∣∣∣
≤ E

∣∣∣∣1 ( argmax
m
{ĥm + rm} = i

)
− 1

(
argmax

m
{hm + rm} = i

)∣∣∣∣
≤ P

(
argmax

m
{ĥm + rm} 6= argmax

m
{hm + rm}

)
≤ (κM2) · ‖ĥ− h‖∞,

which completes the proof.

Remark C.2. A widely used choice of Dr in Lemma C.1 is uniform noise Unif[a, b], in which
case the density function can be upper bounded by 1/(b− a). Another widely used choice of Dr is
Gaussian noise N (0, σ2

r), in which case the density function can be upper bounded by 1/(σr
√

2π).
Increase the range of uniform noise or increase the variance of the Gaussian noise will result in a
smaller density function upper bound and a smoother behavior of routing. In our paper, we consider
unif[0,1] for simplicity, in which case the the density function can be upper bounded by 1 (κ = 1).

The following Lemma shows that when two gate network outputs are close, the router will distribute
the examples to those corresponding experts with nearly the same probability.
Lemma C.3. Let h ∈ RM be the output of the gating network and {rm}Mm=1 be the noise in-
dependently drawn from Unif[0,1]. Denote the probability that experts get routed by p, i.e.,
pm = P(argmaxm′{hm′ + rm′} = m). Then we have that

|pm − pm′ | ≤M2|hm − hm′ |.

Proof. Construct ĥ as copy of h and permute its m,m′-th element. Denote the corresponding
probability vector as p̂. Then it is obviously that |pm−pm′ | = ‖p−p̂‖∞ and |hm−hm′ | = ‖ĥ−h‖∞.
Applying Lemma 5.1 completes the proof.

The following lemma shows that the router won’t route examples to the experts with small gating
network outputs, which saves computation and improves the performance.
Lemma C.4. Suppose the noise {rm}Mm=1 are independently drawn from Unif[0,1] and hm(x; Θ) ≤
maxm′ hm′(x; Θ)− 1, example x will not get routed to expert m.

Proof. Because hm(x; Θ) ≤ maxm′ hm′(x; Θ)−1 implies that for any Uniform noise {rm′}m′∈[M ]

we have that

hm(x; Θ) + rm ≤ max
m′

hm′(x; Θ) ≤ max
m′
{hm′(x; Θ) + rm′},

where the first inequality is by rm ≤ 1, the second inequality is by rm′ ≥ 0,∀m′ ∈ [M ].

D Initialization of the Model

Before we look into the detailed proof of Theorem 4.2, let us first discuss some basic properties of
the data distribution and our MoE model. For simplicity of notation, we simplify (xi, yi) ∈ Ωk as
i ∈ Ωk.

Training Data Set Property. Because we are using CNNs as experts, different ordering of the
patches won’t affect the value of F (x). So for (x, y) drawn from D in Definition 3.1, we can assume
that the first patch x(1) is feature signal, the second patch x(2) is cluster-center signal, the third
patch x(3) is feature noise. The other patches x(p), p ≥ 4 are random noises. Therefore, we can
rewrite x = [αyvk, βck, γεvk′ , ξ], where ξ = [ξ4, . . . , ξP ] is a Gaussian matrix of size Rd×(P−3).
According to the type of the feature noise, we further divide Ωk into Ωk = ∪Ωk,k′ based on the
feature noise, i.e. x ∈ Ωk,k′ if x = [αyvk, βck, γεvk′ , ξ]. To better characterize the router training,
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we need to break down Ωk,k′ into Ω+
k,k′ and Ω−k,k′ . Denote by Ω+

k,k′ the set that {yi = εi|i ∈ Ωk,k′},
by Ω−k,k′ the set that {yi = −εi|i ∈ Ωk,k′}.
Lemma D.1. With probability at least 1− δ, the following properties hold for all k ∈ [K],∑

i∈Ωk

yiβ
3
i = Õ(

√
n),

∑
i∈Ωk

α3
i = E[α3] · n/K + Õ(

√
n),

∑
i∈Ωk

yiεiγ
3
i = Õ(

√
n), (D.1)

∑
i∈Ω+

k,k′

yiαi = Õ(
√
n),

∑
i∈Ω−

k,k′

yiαi = Õ(
√
n),

∑
i∈Ω+

k,k′

εiγi = Õ(
√
n), (D.2)

∑
i∈Ω−

k,k′

εiγi = Õ(
√
n),

∑
i∈Ωk

βi = E[β] · n/K + Õ(
√
n). (D.3)

Proof. Fix k ∈ [K], by Hoeffding’s inequality we have that with probability at least 1− δ/8K,∑
i∈Ωk

yiβ
3
i =

n∑
i=1

yiβ
3
i 1
(
(xi, yi) ∈ Ωk

)
= Õ(

√
n),

where the last equality is by the fact that the expectation of yβ3 1
(
(x, y) ∈ Ωk

)
is zero. Fix k ∈ [K],

by Hoeffding’s inequality we have that with probability at least 1− δ/8K,∑
i∈Ωk

α3
i =

n∑
i=1

α3
i 1
(
(xi, yi) ∈ Ωk

)
=
nE[α3]

K
+ Õ(

√
n),

where the last equality is by the fact that the expectation of α3 1
(
(x, y) ∈ Ωk

)
is E[α3]/K. Fix

k ∈ [K], by Hoeffding’s inequality we have that with probability at least 1− δ/8K,∑
i∈Ωk

yiεiγ
3
i =

n∑
i=1

yiεiγ
3
i 1
(
(xi, yi) ∈ Ωk

)
= Õ(

√
n),

where the last equality is by the fact that the expectation of yεγ3 1
(
(x, y) ∈ Ωk

)
is zero. Now we

have proved the bounds in (D.1). We can get other bounds in (D.2) and (D.3) similarly. Applying
union bound over [K] completes the proof.

Lemma D.2. Suppose that d = Ω(log(4nP/δ)), with probability at least 1 − δ, the following
inequalities hold for all i ∈ [n], k ∈ [K], p ≥ 4,

• ‖ξi,p‖2 = O(1),

• 〈vk, ξi,p〉 ≤ Õ(d−1/2), 〈ck, ξi,p〉 ≤ Õ(d−1/2), 〈ξi,p, ξi′,p′〉 ≤ Õ(d−1/2), ∀(i′, p′) 6=
(i, p).

Proof of Lemma D.2. By Bernstein’s inequality, with probability at least 1− δ/(2nP ) we have∣∣‖ξi,p‖22 − σ2
p

∣∣ ≤ O(σ2
p

√
d−1 log(4nP/δ)).

Therefore, as long as d = Ω(log(4nP/δ)), we have ‖ξi,p‖22 ≤ 2. Moreover, clearly 〈ξi,p, ξi′,p′〉 has
mean zero, ∀(i, p) 6= (i′, p′). Then by Bernstein’s inequality, with probability at least 1− δ/(6n2P 2)
we have

|〈ξi,p, ξi′,p′〉| ≤ 2σ2
p

√
d−1 log(12n2P 2/δ).

Similarly, 〈vk, ξi,p〉 and 〈ck, ξi,p〉 have mean zero. Then by Bernstein’s inequality, with probability
at least 1− δ/(3nPK) we have

|〈ξi,p,vk〉| ≤ 2σp
√
d−1 log(6nPK/δ), |〈ξi,p, ck〉| ≤ 2σp

√
d−1 log(6nPK/δ).

Applying a union bound completes the proof.
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MoE Initialization Property.

We divide the experts into K sets based on the initialization.

Definition D.3. Fix expert m ∈ [M ], denote (k∗m, j
∗
m) = argmaxj,k〈vk,w

(0)
m,j〉. Fix cluster k ∈

[K], denote the profession experts set asMk = {m|k∗m = k}.
Lemma D.4. For M ≥ Θ(K log(K/δ)), J ≥ Θ(log(M/δ)), the following inequalities hold with
probability at least 1− δ.

• max(j,k)6=(j∗m,k
∗
m)〈w

(0)
m,j ,vk〉 ≤

(
1− δ/

(
3MJ2K2)

)
〈w(0)

m,j∗m
,vk∗m〉 for all m ∈ [M ]

• 〈w(0)
m,j∗m

,vk∗m〉 ≥ 0.01σ0 for all m ∈ [M ].

• |Mk| ≥ 1 for all k ∈ [K].

Proof. Recall that wm,j ∼ N (0, σ2
0Id). Notice that signals v1, . . . ,vK are orthogonal. Given fixed

m ∈ [M ], we have that {〈w(0)
m,j ,vk〉|j ∈ [J ], k ∈ [K]} are independent and individually draw from

N (0, σ2
0) we have that

P(〈w(0)
m,j ,vk〉 < 0.01σ0) < 0.9.

Therefore, we have that

P(max
j,k
〈w(0)

m,j ,vk〉 < 0.01σ0) < 0.9KJ .

Therefore, as long as J ≥ Θ(K−1 log(M/δ)), fix m ∈ [M ] we can guarantee that with probability
at least 1− δ/(3M),

max
j,k
〈w(0)

m,j ,vk〉 > 0.01σ0.

Take G = δ/(3MJ2K2), by Lemma F.1 we have that with probability at least 1− δ/(3M),

max
(j,k)6=(j∗m,k

∗
m)
〈w(0)

m,j ,vk〉 ≤ (1−G)〈w(0)
m,j∗m

,vk∗m〉.

By the symmetric property, we have that for all k ∈ [K],m ∈ [M ],

P(k = k∗m) = K−1.

Therefore, the probability that |Mk| at least include one element is as follows,

P(|Mk| ≥ 1) ≥ 1− (1−K−1)M .

By union bound we get that

P(|Mk| ≥ 1,∀k) ≥ 1−K(1−K−1)M ≥ 1−K exp(−M/K) ≥ 1− δ/3,
where the last inequality is by condition M ≥ K log(3K/δ). Therefore, with probability at least
1− δ/3, |Mk| ≥ 1,∀k.

Applying Union bound, we have that with probability at least 1− δ,

max
(j,k)6=(j∗m,k

∗
m)
〈w(0)

m,j ,vk〉 ≤
(
1− δ/

(
3MJ2K2)

)
〈w(0)

m,j∗m
,vk∗m〉,

〈w(0)
m,j∗m

,vk∗m〉 ≥ 0.01σ0,∀m ∈ [M ],

|Mk| ≥ 1,∀k ∈ [K].

Lemma D.5. Suppose the conclusions in Lemma D.2 hold, then with probability at least 1 − δ
we have that |〈w(0)

m,j ,v〉| ≤ Õ(σ0) for all v ∈ {vk}k∈[K] ∪ {ck}k∈[K] ∪ {ξi,p}i∈[n],p∈[P−3],m ∈
[M ], j ∈ [J ].

Proof. Fix v ∈ {vk}k∈[K] ∪ {ck}k∈[K] ∪ {ξi,p}i∈[n],p∈[P−3],m ∈ [M ], j ∈ [J ], we have that
〈w(0)

m,j ,v〉 ∼ N (0, σ2
0‖v‖22) and ‖v‖2 = O(1). Therefore, with probability at least 1− δ/(nPMJ)

we have that |〈w(0)
m,j ,v〉| ≤ Õ(σ0). Applying union bound completes the proof.
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E Proof of Theorem 4.2

In this section we always assume that the conditions in Theorem 4.2 holds. It is easy to show that
all the conclusions in this section D hold with probability at least 1 − O(1/ log d). The results in
this section hold when all the conclusions in Section D hold. For simplicity of notation, we simplify
(xi, yi) ∈ Ωk,k′ as i ∈ Ωk,k′ , and `′(yiπmi,t(xi; Θ

(t))fmi,t(xi; W
(t))) as `′i,t.

Recall that at iteration t, data xi is routed to the expert mi,t. Here mi,t should be interpreted as a
random variable. The gradient of MoE model at iteration t can thus be computed as follows

∇θm
L(t) =

1

n

∑
i,p

1(mi,t = m)`′i,tπmi,t
(xi; Θ

(t))(1− πmi,t
(xi; Θ

(t)))yifmi,t
(xi; W

(t))x
(p)
i

− 1

n

∑
i,p

1(mi,t 6= m)`′i,tπmi,t
(xi; Θ

(t))πm(xi; Θ
(t))yifmi,t

(xi; W
(t))x

(p)
i

=
1

n

∑
i,p

1(mi,t = m)`′i,tπmi,t
(xi; Θ

(t))yifmi,t
(xi; W

(t))x
(p)
i

− 1

n

∑
i,p

`′i,tπmi,t
(xi; Θ

(t))πm(xi; Θ
(t))yifmi,t

(xi; W
(t))x

(p)
i , (E.1)

∇wm,j
L(t) =

1

n

∑
i,p

1(mi,t = m)`′i,tπm(xi; Θ
(t))yiσ

′(〈w(t)
m,j ,x

(p)
i 〉)x

(p)
i . (E.2)

Following lemma shows implicit regularity in the gating network training.

Lemma E.1. For all t ≥ 0, we have that
∑M
m=1∇θmL(t) = 0 and thus

∑
m θ

(t)
m =

∑
m θ

(0)
m . In

particular, when Θ is zero initialized, then
∑
m θ

(t)
m = 0

Proof. We first write out the gradient of θm for all m ∈ [M ],

∇θmL(t) =
1

n

∑
i∈[n],p∈[P ]

1(mi,t = m)`′i,tπmi,t
(xi; Θ

(t))yifmi,t
(xi; W

(t))x
(p)
i

− 1

n

∑
i∈[n],p∈[P ]

`′i,tπmi,t
(xi; Θ

(t))πm(xi; Θ
(t))yifmi,t

(xi; W
(t))x

(p)
i .

Take summation from m = 1 to m = M , then we have

M∑
m=1

∇θm
L(t) =

1

n

∑
i∈[n],p∈[P ]

`′i,tπmi,t
(xi; Θ

(t))yifmi,t
(xi; W

(t))x
(p)
i

− 1

n

∑
i∈[n],p∈[P ]

`′i,tπmi,t(xi; Θ
(t))yifmi,t(xi,W

(t))x
(p)
i

= 0.

Notice that the gradient at iteration t in (E.1) and (E.2) is depend on the random variable mi,t, the
following lemma shows that it can be approximated by its expectation.

Lemma E.2. With probability at least 1 − 1/d, for all the vector v ∈ {vk}k∈[K] ∪ {ck}k∈[K],
m ∈ [M ], j ∈ [J ], we have the following equations hold |〈∇θm

L(t),v〉 − E[〈∇θm
L(t),v〉]| =

Õ(n−1/2(σ0+ηt)3), |〈∇wm,jL(t),v〉−E[〈∇wm,jL(t),v〉]| = Õ(n−1/2(σ0+ηt)2), for all t ≤ d100.
Here E[〈∇wm,j

L(t),v〉] and E[〈∇θm
L(t),v〉] can be computed as follows,
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E[〈∇θmL(t),v〉] =
1

n

∑
i,p

P(mi,t = m)`′i,tπm(xi; Θ
(t))yifm(xi; W

(t))〈x(p)
i ,v〉

− 1

n

∑
i,p,m′

P(mi,t = m′)`′i,tπm′(xi; Θ
(t))πm(xi; Θ

(t))yifm′(xi; W
(t))〈x(p)

i ,v〉

E[〈∇wm,j
L(t),v〉] =

1

n

∑
i,p

P(mi,t = m)`′i,tπm(xi; Θ
(t))yiσ

′(〈w(t)
m,j ,x

(p)
i 〉)〈x

(p)
i ,v〉.

Proof. Because we are using normalized gradient descent, ‖w(t)
m,j −w

(0)
m,j‖2 ≤ O(ηt) and thus by

Lemma D.5 we have |〈w(t)
m,j ,x

(p)
i 〉| ≤ Õ(σ0 + ηt). Therefore,

〈∇wm,j
L(t),v〉 =

1

n

∑
i

∑
p

1(mi,t = m)`′i,tπm(xi; Θ
(t))yiσ

′(〈w(t)
m,j ,x

(p)
i 〉)〈x

(p)
i ,v〉︸ ︷︷ ︸

Ai

,

where Ai are independent random variables with |Ai| ≤ Õ
(
(σ0 + ηt)2

)
. Applying Hoeffding’s

inequality gives that with probability at least 1− 1/(4d101MJK) we have that |〈∇wm,jL(t),v〉 −
E[〈∇wm,j

L(t),v〉]| = Õ(n−1/2(σ0 + ηt)2). Applying union bound gives that with probability at
least 1 − 1/(2d), |〈∇wm,j

L(t),v〉 − E[〈∇wm,j
L(t),v〉]| = Õ(n−1/2(σ0 + ηt)2),∀m ∈ [M ], j ∈

[J ], t ≤ d100. Similarly, we can prove |〈∇θm
L(t),v〉 − E[〈∇θm

L(t),v〉]| = Õ(n−1/2(σ0 + ηt)3).

E.1 Exploration Stage

Denote T1 = bη−1σ0.5
0 c. The first stage ends when t = T1. During the first stage training, we can

prove that the neural network parameter maintains the following property.

Lemma E.3. For all t ≤ T1, we have the following properties hold,

• 〈w(t)
m,j ,vk〉 = O(σ0.5

0 ), 〈w(t)
m,j , ck〉 = O(σ0.5

0 ), 〈w(t)
m,j , ξi,p〉 = Õ(σ0.5

0 ),

• fm(xi; W
(t)) = Õ(σ1.5

0 ),

• |`′i,t − 1/2| ≤ Õ(σ1.5
0 ),

• ‖θ(t)
m ‖2 ≤ Õ(σ1.5

0 ),

• ‖h(xi; Θ
(t))‖∞ = Õ(σ1.5

0 ), πm(xi; Θ
(t)) = M−1 + Õ(σ1.5

0 ),

for all m ∈ [M ], k ∈ [k], i ∈ [n], p ≥ 4.

Proof. The first property is obvious since ‖w(t)
m,j −w

(0)
m,j‖2 ≤ O(ηT1) = O(σ0.5

0 ) and thus

|fm(xi; W
(t))| ≤

∑
p∈[P ]

∑
j∈[J]

|σ(〈w(t)
m,j ,x

(p)
i 〉)| = Õ(σ1.5

0 ).

Then we show that the loss derivative is close to 1/2 during this stage.

Let s = yiπmi,t
(xi; Θ

(t))fmi,t
(xi,W

(t)), then we have that |s| = Õ(σ1.5
0 ) and∣∣∣∣`′i,t − 1

2

∣∣∣∣ =

∣∣∣∣ 1

es + 1
− 1/2

∣∣∣∣ (i)

≤ |s| = Õ(σ1.5
0 ),

where (i) can be proved by considering |s| ≤ 1 and |s| > 1.
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Now we prove the fourth bullet in Lemma E.3. Because |fm| = Õ(σ1.5
0 ), we can upper bound the

gradient of the gating network by

‖∇θm
L(t)‖2 =

∥∥∥∥ 1

n

∑
i,p

1(mi,t = m)`′i,tπmi,t
(xi; Θ

(t))yifmi,t
(xi; W

(t))x
(p)
i

− 1

n

∑
i,p

`′i,tπmi,t
(xi; Θ

(t))πm(xi; Θ
(t))yifmi,t

(xi; W
(t))x

(p)
i

∥∥∥∥
2

.

= Õ(σ1.5
0 ),

where the last inequality is due to |`′i,t| ≤ 1, πm, πmi,t
∈ [0, 1] and ‖x(p)

i ‖2 = O(1). This further
implies that

‖θ(t)
m ‖2 = ‖θ(t)

m − θ(0)
m ‖2 ≤ Õ(σ1.5

0 tηr) = Õ(σ1.5
0 ),

where the last inequality is by ηr = Θ(M2)η. The proof of ‖h(xi; Θ
(t))‖∞ ≤ O(σ1.5

0 ) and
πm(xi; Θ

(t)) = M−1 +O(σ1.5
0 ) are straight forward given ‖θ(t)

m ‖2 = Õ(σ1.5
0 ).

We will first investigate the property of the router.

Lemma E.4. maxm∈[M ] |P(mi,t = m)− 1/M | = Õ(σ1.5
0 ) for all t ≤ T1, i ∈ [n] and m ∈ [M ].

Proof. By Lemma E.3 we have that ‖h(xi; Θ
(t))‖∞ ≤ Õ(σ1.5

0 ). Lemma 5.1 further implies that

max
m∈[M ]

|P(mi,t = m)− 1/M | = Õ(σ1.5
0 ).

Lemma E.5. We have following gradient update rules hold for the experts,

〈∇wm,j
L(t),vk〉 = −E[α3] + Õ(d−0.005)

2KM2
σ′(〈w(t)

m,j ,vk〉) + Õ(σ2.5
0 ),

〈∇wm,j
L(t), ck〉 = Õ(d−0.005)σ′(〈w(t)

m,j , ck〉) + Õ(σ2.5
0 ),

〈∇wm,jL(t), ξi,p〉 = Õ(d−0.005)σ′(〈w(t)
m,j , ξi,p〉) + Õ(σ2.5

0 )

for all t ≤ T1, j ∈ [J ], k ∈ [K],m ∈ [M ], p ≥ 4. Besides, we have the following gradient norm
upper bound holds

‖∇wm,j
L(t)‖2 ≤

∑
k∈[K]

E[α3] + Õ(d−0.005)

2KM2
σ′(〈w(t)

m,j ,vk〉) +
∑
k∈[K]

Õ(d−0.005)σ′(〈w(t)
m,j , ck〉)

+
∑

i∈[n],p≥4

Õ(d−0.005)σ′(〈w(t)
m,j , ξi,p〉) + Õ(σ2.5

0 )

for all t ≤ T1, j ∈ [J ],m ∈ [M ].

Proof. The experts gradient can be computed as follows,

∇wm,j
L(t) =

1

n

∑
i∈[n],p∈[P ]

1(mi,t = m)`′i,tfm(xi; W
(t))πm(xi; Θ

(t))yiσ
′(〈w(t)

m,j ,x
(p)
i 〉)x

(p)
i .
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We first compute the inner product 〈∇wm,jL(t), ck〉. By Lemma E.2, we have that |〈∇wm,jL(t), ck〉−
E[〈∇wm,jL(t), ck〉]| = Õ(n−1/2σ0) ≤ Õ(σ2.5

0 ).

E[〈∇wm,j
L(t), ck〉] = − 1

n

∑
i∈Ωk

P(mi,t = m)`′i,tπm(xi; Θ
(t))σ′(〈w(t)

m,j , ck〉)yiβ
3
i ‖ck‖22

− 1

n

∑
i∈[n],p≥4

P(mi,t = m)`′i,tπm(xi; Θ
(t))σ′(〈w(t)

m,j , ξi,p〉)yi〈ck, ξi,p〉

=

[
− 1

2nM

∑
i∈Ωk

yiβ
3
i P(mi,t = m) + Õ(σ1.5

0 )

]
σ′(〈w(t)

m,j , ck〉) + Õ(σ2.5
0 )

= Õ(n−1/2 + σ1.5
0 )σ′(〈w(t)

m,j , ck〉) + Õ(σ2.5
0 )

= Õ(d−0.005)σ′(〈w(t)
m,j , ck〉) + Õ(σ2.5

0 )

where the second equality is due to Lemma E.3 and D.2, the third equality is due to Lemma E.4, the
last equality is by the choice of n and σ0. Next we compute the inner product 〈∇wm,jL,vk〉. By
Lemma E.2, we have that |〈∇wm,jL(t),vk〉 − E[〈∇wm,jL(t),vk〉]| = Õ(n−1/2σ0) ≤ Õ(σ2.5

0 ).

E[〈∇wm,j
L(t),vk〉] = − 1

n

∑
i∈Ωk

P(mi,t = m)`′i,tπm(xi; Θ
(t))σ′(〈w(t)

m,j ,vk〉)α
3
i ‖vk‖22

− 1

n

∑
k′ 6=k

∑
i∈Ωk′,k

P(mi,t = m)`′i,tπm(xi;θ
(t))σ′(〈w(t)

m,j ,vk〉)γ
3
i yiεi‖vk‖22

− 1

n

∑
i∈[n],p≥4

P(mi,t = m)`′i,tπm(xi; Θ
(t))σ′(〈w(t)

m,j , ξi,p〉)yi〈vk, ξi,p〉

=

[
− 1

2nM

∑
i∈Ωk

P(mi,t = m)α3
i −

1

2nM

∑
i∈Ωk′,k

P(mi,t = m)γ3
i yiεi +O(σ1.5

0 )

]
·

σ′(〈w(t)
m,j , ck〉) + Õ(σ2.5

0 )

=
(
E[α3] + Õ(n−1/2 + σ1.5

0 )
)
σ′(〈w(t)

m,j ,vk〉) + Õ(σ2.5
0 )

=

(
E[α3]

2KM2
+ Õ(d−0.005)

)
σ′(〈w(t)

m,j ,vk〉) + Õ(σ2.5
0 )

where the second equality is due to Lemma E.3 and D.2, the third equality is due to Lemma E.4, the
last equality is by the choice of n and σ0. Finally we compute the inner product 〈∇wm,jL, ξi,p〉 as
follows

〈∇wm,j
L(t), ξi,p〉 = − 1

n
1(mi,t = m)`′i,tπm(xi;θ

(t))σ′(〈w(t)
m,j , ξi,p〉)‖ξi,p‖

2
2 + Õ(σ0d

−1/2)

= Õ

(
‖ξi,p‖22
n

)
σ′(〈w(t)

m,j , ξi,p〉) + Õ(σ0d
−1/2)

= Õ(d−0.005)σ′(〈w(t)
m,j , ξi,p〉) + Õ(σ2.5

0 ),

where the first equality is due to Lemma D.2, second equality is due to |`′i,t| ≤ 1, πm ∈ [0, 1] and the
third equality is due to Lemma D.2 and our choice of n, σ0. Based on previous results, let B be the
projection matrix on the linear space spanned by {vk}k∈[K] ∪ {ck}k∈[K]. We can verify that

‖∇wm,jL(t)‖2 ≤ ‖B∇wm,jL(t)‖2 + ‖(I −B)∇wm,jL(t)‖2

≤
∑
k∈[K]

E[α3] + Õ(d−0.005)

2KM2
σ′(〈w(t)

m,j ,vk〉) +
∑
k∈[K]

Õ(d−0.005)σ′(〈w(t)
m,j , ck〉)

+
∑

i∈[n],p≥4

Õ(d−0.005)σ′(〈w(t)
m,j , ξi,p〉) + Õ(σ2.5

0 ).
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Because we use normalized gradient descent, all the experts get trained at the same speed. Following
lemma shows that expert m will focus on the signal vk∗m .

Lemma E.6. For all m ∈ [M ] and t ≤ T1, we have following inequalities hold,

〈w(t)
m,j∗m

,vk∗m〉 = O(σ0.5
0 ),

〈w(t)
m,j ,vk〉 = Õ(σ0),∀(j, k) 6= (j∗m, k

∗
m),

〈w(t)
m,j , ck〉 = Õ(σ0),∀j ∈ [J ], k ∈ [K],

〈w(t)
m,j , ξi,p〉 = Õ(σ0),∀j ∈ [J ], i ∈ [n], p ≥ 4.

Proof. For t ≤ T1, the update rule of every expert could be written as,

〈w(t+1)
m,j ,vk〉 = 〈w(t)

m,j ,vk〉+
η

‖∇WmL(t)‖F

[
3E[α3] + Õ(d−0.005)

2KM2
〈w(t)

m,j ,vk〉
2 + Õ(σ2.5

0 )

]
,

〈w(t+1)
m,j , ξi,p〉 = 〈w(t)

m,j , ξi,p〉+
η

‖∇Wm
L(t)‖F

[
Õ(d−0.005)〈w(t)

m,j , ξi,p〉
2 + Õ(σ2.5

0 )
]
,

〈w(t+1)
m,j , ck〉 = 〈w(t)

m,j , ck〉+
η

‖∇WmL(t)‖F
[
Õ(d−0.005)〈w(t)

m,j , ck〉
2 + Õ(σ2.5

0 )
]
. (E.3)

For t ≤ T1, we have that 〈w(t)
m,j ,vk∗m〉 ≤ O(σ0.5

0 ). By comparing the update rule of 〈w(t)
m,j ,vk∗m〉

and other inner product presented in (E.3) , We can prove that 〈w(t)
m,j ,vk∗m〉 will grow to σ0.5

0 while
other inner product still remain nearly unchanged.

Comparison with 〈w(t)
m,j ,vk〉. Consider k 6= k∗m. We want to get an upper bound of 〈w(t)

m,j ,vk〉, so

without loss of generality we can assume 〈w(t)
m,j ,vk〉 = Ω(σ0). Since σ0 ≤ d−0.01, we have that

〈w(t)
m,j ,vk〉2 + Õ(σ2.5

0 ) = (1 + Õ(d−0.005))〈w(t)
m,j ,vk〉2. Therefore, we have that

〈w(t+1)
m,j ,vk∗m〉 = 〈w(t)

m,j ,vk∗m〉+
η

‖∇Wm
L(t)‖F

3E[α3] + Õ(d−0.005)

2KM2
〈w(t)

m,j ,vk∗m〉
2, (E.4)

〈w(t+1)
m,j ,vk〉 = 〈w(t)

m,j ,vk〉+
η

‖∇WmL(t)‖F
3E[α3] + Õ(d−0.005)

2KM2
〈w(t)

m,j ,vk〉
2. (E.5)

Applying Lemma F.2 by choosing Ct = (3E[α3] + Õ(d−0.005))/(2KM2‖∇Wm
L(t)‖F ), S =

1 + Õ(d−0.005), G = 1/(3 log(d)M2) and verifying 〈w(0)
m ,vk∗m〉 ≥ S(1 +G−1)〈w(0)

m ,vk〉 (events
in Section D hold), we have that 〈w(t)

m,j ,vk〉 ≤ O(G−1σ0) = Õ(σ0).

Comparison with 〈w(t)
m,j , ck〉.We want to get an upper bound of 〈w(t)

m,j , ck〉, so without loss of

generality we can assume 〈w(t)
m,j ,vk〉 = Ω(σ0). Because σ0 ≤ d−0.01, one can easily show that

〈w(t+1)
m,j ,vk∗m〉 = 〈w(t)

m,j ,vk∗m〉+
η

‖∇Wm
L(t)‖F

3E[α3] + Õ(d−0.005)

2KM2
〈w(t)

m,j ,vk∗m〉
2,

〈w(t+1)
m,j , ck〉 ≤ 〈w(t)

m,j , ck〉+
η

‖∇WmL(t)‖F
Õ(d−0.01)〈w(t)

m,j , ck〉
2.

Again, applying Lemma F.2 by choosing Ct = (3E[α3] + Õ(d−0.005))/(2KM2‖∇Wm
L(t)‖F ),

S = Õ(d−0.01), G = 2 and verifying 〈w(0)
m ,vk∗m〉 ≥ S(1 + G−1)〈w(0)

m , ck〉 (events in Section D
hold), we have that 〈w(t),vk〉 ≤ O(G−1σ0) = Õ(σ0).

Comparison with 〈w(t)
m,j , ξi,p〉. The proof is exact the same as the one with ck.

Denote the iteration T (m) as the first time that ‖∇Wm
L(t)‖F ≥ σ1.8

0 . Then Following lemma gives
an upper bound of T (m) for all m ∈M.
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Lemma E.7. For all m ∈ [M ], we have that T (m) = Õ(η−1σ0.8
0 ) and thus T (m) < 0.01T1. Besides,

for all Tm < t ≤ T1 we have that

〈∇wm,j∗m
L(t),vk∗m〉 ≥ (1− σ0.1

0 )‖∇Wm
L(t)‖F .

Proof. Let projection matrix B = vk∗mv>k∗m ∈ Rd×d, then we can divide the gradient into two
orthogonal part

‖∇wm,j∗m
L(t)‖2 = ‖B∇wm,j∗m

L(t) + (I −B)∇wm,j∗m
L(t)‖2

≤ ‖B∇wm,j∗m
L(t)‖2 + ‖(I −B)∇wm,j∗m

L(t)‖2

Recall that

∇wm,j∗m
L(t) =

1

n

∑
i,p

1(mi,t = m)`′i,tπm(xi; Θ
(t))yiσ

′(〈w(t)
m,j∗m

,x
(p)
i 〉)x

(p)
i ,

So we have that

‖(I −B)∇wm,j∗m
L(t)‖2 =

∥∥∥∥ 1

n

∑
i,p

1(mi,t = m)`′i,tπm(xi; Θ
(t))yiσ

′(〈w(t)
m,j∗m

,x
(p)
i 〉)(I −B)x

(p)
i

∥∥∥∥
2

≤ 1

n

∑
i,p

∥∥∥∥σ′(〈w(t)
m,j∗m

,x
(p)
i 〉)(I −B)x

(p)
i

∥∥∥∥
2

≤ Õ(σ2
0),

where the first inequality is by |`′i,t| ≤ 1, πm ∈ [0, 1] and the second equality is because

1. when x
(p)
i align with vk∗m , (I −B)x

(p)
i = 0.

2. when x
(p)
i doesn’t align with vk∗m , 〈w(t)

m,j∗m
,x

(p)
i 〉 = Õ(σ0).

Therefore, we have that

‖∇wm,j∗m
L(t)‖2 ≤ ‖B∇wm,j∗m

L(t)‖2 + Õ(σ2
0) = 〈∇wm,j∗m

L(t),vk∗m〉+ Õ(σ2
0).

We next compute the gradient of the neuron wm,j , j 6= j∗m,

‖∇wm,jL(t)‖2 =

∥∥∥∥ 1

n

∑
i,p

1(mi,t = m)`′i,tπm(xi; Θ
(t))yiσ

′(〈w(t)
m,j ,x

(p)
i 〉)x

(p)
i

∥∥∥∥
2

= Õ(σ2
0),

(E.6)

where the inequality is by 〈w(t)
m,j ,x

(p)
i 〉 = Õ(σ0),∀j 6= j∗m which is due to Lemma E.6. Now we can

upper bound the gradient norm,

‖∇WmL(t)‖F ≤
∑
j∈[J]

‖∇wm,jL(t)‖2 ≤ ‖∇wm,j∗m
L(t)‖2 + Õ(σ2

0). (E.7)

When ‖∇WmL(t)‖F ≥ σ1.8
0 , it is obviously that

〈∇wm,j∗m
L,vk∗m〉 ≥ ‖∇wm,j∗m

L(t)‖2 − Õ(σ2
0) ≥ ‖∇WmL(t)‖F − Õ(σ2

0) ≥ (1− σ0.1
0 )‖∇WmL(t)‖F ,

where the first inequality is by (E.6) and the second inequality is by (E.7). Now let us give an
upper bound for T (m). During the period t ≤ T (m), ‖∇Wm

L(t)‖F < σ1.8
0 . On the one hand, by

Lemma E.5 we have that

‖∇Wm
L(t)‖2 ≥ −〈∇wm,j

L(t),vk∗m〉 =
3E[α3]− Õ(d−0.005)

2KM2
[〈w(t)

m,j∗m
,vk∗m〉]

2 − Õ(σ2.5
0 )
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which implies that the inner product 〈w(t)
m,j∗m

,vk∗m〉 ≤ Õ(σ0.9
0 ). On the other hand, by Lemma E.6

we have that

〈w(t+1)
m,j∗m

,vk∗m〉 ≥ 〈w
(t)
m,j∗m

,vk∗m〉+
η

‖∇WmL(t)‖F
Θ(

1

KM2
)〈w(t)

m,j∗m
,vk∗m〉

2

≥ 〈w(t)
m,j∗m

,vk∗m〉+ Θ
( η

KM2σ1.8
0

)
〈w(t)

m,j∗m
,vk∗m〉

2

≥ 〈w(t)
m,j∗m

,vk∗m〉+ Θ
( η

KM2σ0.8
0

)
〈w(t)

m,j∗m
,vk∗m〉,

where last inequality is by 〈w(t)
m,j∗m

,vk∗m〉 ≥ 0.1σ0. Therefore, we have that the inner product

〈w(t)
m,j ,vk∗m〉 grows exponentially and will reach Õ(σ0.9

0 ) within Õ(η−1σ0.8
0 ) iterations.

Recall that T1 = bη−1σ0.5
0 c, following Lemma shows that the expert m ∈ [M ] only learns one

feature during the first stage,
Lemma E.8. For all t ≤ T1,m ∈ [M ], we have that

〈w(t)
m,j∗m

,vk∗m〉 = O(σ0.5
0 ),

〈w(t)
m,j ,vk〉 = Õ(σ0),∀(j, k) 6= (j∗m, k

∗
m),

〈w(t)
m,j , ck〉 = Õ(σ0),∀j ∈ [J ], k ∈ [K],

〈w(t)
m,j , ξi,p〉 = Õ(σ0),∀j ∈ [J ], i ∈ [n], p ≥ 4.

Besides 〈w(t)
m,j∗m

,vk∗m〉 ≥ (1− σ0.1
0 )ηt, for all t ≥ T1/2.

Proof. By Lemma E.7, we have T (m) = Õ(η−1σ0.8
0 ) < σ0.2

0 ·T1. Notice that 〈∇wm,j∗m
L(t),vk∗〉 ≥

(1− σ0.1
0 )‖∇Wm

L(t)‖F , for all Tm ≤ t ≤ T1. Therefore, we have that

〈w(t+1)
m,j∗m

,vk∗m〉 ≥ 〈w
(t)
m,j∗m

,vk∗m〉+ (1− σ0.1
0 )η,∀Tm ≤ t ≤ T1,

which implies 〈w(t)
m,j∗m

,vk∗m〉 ≥ (1−O(σ0.1
0 ))ηt,∀t ≥ T1/2. Finally, applying Lemma E.6 completes

the proof.

E.2 Router Learning Stage

Denote T2 = bη−1M−2c, The second stage ends when t = T2. Given x = [αyvk, βck, γεvk′ , ξ],
we denote by x̄ = [0, βck,0, . . . ,0] the one only keeps cluster-center signal and denote by x̂ =
[αyvk,0, γεvk′ ,0] the one that only keeps feature signal and feature noise.

For all T1 ≤ t ≤ T2, we will show that the router only focuses on the cluster-center signals and the
experts only focus on the feature signals, i.e., we will prove that |fm(xi; W

(t))− fm(x̂i; W
(t))| and

‖h(xi; Θ
(t))− h(x̄i,Θ

(t))‖∞ are small. In particular, We claim that for all T1 ≤ t ≤ T2, following
proposition holds.
Proposition E.9. For all T1 ≤ t ≤ T2, following inequalities hold,

|fm(xi; W
(t))− fm(x̂i; W

(t))| ≤ O(d−0.001),∀m ∈ [M ], i ∈ [n], (E.8)

‖h(xi; Θ
(t))− h(x̄i; Θ

(t))‖∞ ≤ O(d−0.001),∀i ∈ [n], (E.9)

P(mi,t = m), πm(xi; Θ
(t)) = Ω(1/M),∀m ∈ [M ], i ∈ Ωk∗m . (E.10)

Proposition E.9 implies that expert will only focus on the label signal and router will only focus
on the cluster-center signal. We will prove Proposition E.9 by induction. Before we move into the
detailed proof of Proposition E.9, we will first prove some important lemmas.
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Lemma E.10. For all T1 ≤ t ≤ T2, the neural network parameter maintains following property.

• |fm(xi; W
(t))| = O(1),∀m ∈ [M ],

• πmi,t
(xi; Θ

(t)) = Ω(1/M), ∀i ∈ [n].

Proof. Because we use normalized gradient descent, the first bullet would be quite straight forward.

|fm(xi,W
(t))| =

∑
j∈[J]

∑
p∈[P ]

σ(〈w(t)
m,j ,x

(p)
i 〉)

(i)
= O(1),

where (i) is by ‖w(t)
m,j −w

(0)
m,j‖2 = O(ηT2) = O(M−2) and x

(p)
i = O(1).

Now we prove the second bullet. By Lemma C.4, we have that hmi,t(x; Θ) ≥ maxm hm(x; Θ)− 1,
which implies that

πmi,t
(xi; Θ

(t)) =
exp(hmi,t

(xi; Θ
(t)))∑

m exp(hm(x; Θ(t)))
≥

exp(hmi,t
(xi; Θ

(t)))

M maxm exp(hm(x; Θ(t)))
≥ 1

eM
.

Lemma E.11. Denote δΘ = maxi ‖h(x̄i; Θ) − h(xi; Θ)‖∞ and let the random variable m̄i,t be
expert that get routed if we use the gating network output h(x̄i; Θ

(t)) instead. Then we have following
inequalities,

|πm(xi; Θ)− πm(x̄i; Θ)| = O(δΘ),∀m ∈ [M ], i ∈ [n], . (E.11)

|P(mi,t = m)− P(m̄i,t = m)| = O(M2δΘ),∀m ∈ [M ], i ∈ [n]. (E.12)

Proof. By definition of δΘ, we have that ‖h(xi; Θ
(t)) − h(x̄i; Θ

(t))‖∞ ≤ δΘ. Then applying
Lemma 5.1 gives |P(mi,t = m) − P(m̄k,t = m)| = Õ(δΘ),∀m ∈ [M ], i ∈ [n], which completes
the proof for (E.12).

Next we prove (E.11), which needs more effort. For all i ∈ [n], we have

πm(xi; Θ) =
πm(x̄i; Θ) exp(hm(xi; Θ)− hm(x̄i; Θ))∑
m′ πm′(x̄i; Θ) exp(hm′(xi; Θ)− hm′(x̄i; Θ))

.

Let δm′ = exp(hm′(xi; Θ)− hm′(x̄i; Θ)) = 1 +O(δΘ). Then for sufficiently small δΘ, we have
that δm′ ≥ 0.5 . Then we can further compute

|πm(xi; Θ
(t))− πm(x̄i; Θ)| = πm(x̄i; Θ)

∣∣∣∣ δm∑
m′ πm′(x̄i; Θ)δm′

− 1

∣∣∣∣
= πm(x̄i; Θ)

|
∑
m′ πm′(x̄i; Θ)(δm′ − δm)|∑

m′ πm′(x̄i; Θ)δm′

≤ πm(x̄i; Θ)

∑
m′ πm′(x̄i; Θ)|δm′ − δm|∑

m′ πm′(x̄i; Θ)δm′

≤ O(δΘ),

where the last inequality is by |δm′ − δm| ≤ O(δΘ), πm(x̄i; Θ) ≤ 1 and
∑
m′ πm′(x̄i; Θ)δm′ ≥

[
∑
m′ πm′(x̄i; Θ)]/2 = 0.5.

Following Lemma implies that the pattern learned by experts during the first stage won’t change in
the second stage.
Lemma E.12. Suppose (E.8), (E.9), (E.10) hold for all t ∈ [T1, T ] ⊆ [T1, T2 − 1], then we have
following inequalities hold for all t ∈ [T1, T + 1],

〈w(t)
m,j∗m

,vk∗m〉 ≥ (1−O(σ0.1
0 ))ηt,

〈w(t)
m,j ,vk〉 = Õ(σ0),∀(j, k) 6= (j∗m, k

∗
m),

〈w(t)
m,j , ck〉 = Õ(σ0),∀j ∈ [J ], k ∈ [K],

〈w(t)
m,j , ξi,p〉 = Õ(σ0),∀j ∈ [J ], k ∈ [K], i ∈ [n], p ≥ 4.
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Proof. Most of the proof exactly follows the proof in the first stage, so we only list some key steps
here. Recall that

∇wm,j
L(t) =

1

n

∑
i,p

1(mi,t = m)`′i,tπm(xi; Θ
(t))yiσ

′(〈w(t)
m,j ,x

(p)
i 〉)x

(p)
i .

In the proof of Lemma E.5, we do Taylor expansion at the zero point. Now we will do Taylor
expansion at fm(x̂i; W) and π(x̄i; Θ) as follows,

|πm(xi; Θ
(t))fm(xi; W

(t))− πm(x̄i; Θ
(t))fm(x̂i; W

(t))|
≤ |πm(x̄i; Θ

(t))[fm(xi; W
(t))− fm(x̂i; W

(t))]|+ |[πm(xi; Θ
(t))− πm(x̄i; Θ

(t))]fm(xi; W
(t))|

≤ |fm(xi; W
(t))− fm(x̂i; W

(t))|+O(|πm(xi; Θ
(t))− πm(x̄i; Θ

(t))|)
≤ O(d−0.001),

where the first inequality is by triangle inequality, the second inequality is by πm(x̄i; Θ
(t)) ≤ 1 and

|fm(xi; W
(t))| = O(1) in Lemma E.10, the third inequality is by (E.8), (E.9) and (E.11).

Then follow the proof of Lemma E.5, we have that

E[〈∇wm,jL(t),vk∗m〉] = − 1

n

∑
i∈Ωk∗m

P(mi,t = m)`′i,tπm(xi; Θ
(t))σ′(〈w(t)

m,j ,vk∗m〉)α
3
i ‖vk∗m‖

2
2

− 1

n

∑
i∈Ωk′,k∗m

P(mi,t = m)`′i,tπm(xi; Θ
(t))σ′(〈w(t)

m,j ,vk∗m〉)γ
3
i yiεi‖vk∗m‖

2
2

− 1

n

∑
i,p

P(mi,t = m)`′i,tπm(xi; Θ
(t))σ′(〈w(t)

m,j , ξi,p〉)yi〈vk∗m , ξi,p〉

=

[
− Θ̃

( 1

n

) ∑
i∈Ωk∗m

P(mi,t = m)α3
i − Θ̃

( 1

n

) ∑
i∈Ωk′,k∗m

P(mi,t = m)γ3
i yiεi

+O(d−0.001)

]
· σ′(〈w(t)

m,j ,vk∗m〉) + Õ(d−1/2)

(i)
= −Θ̃(1)σ′(〈w(t)

m,j ,vk∗m〉),

where (i) is due to (E.10): P(mi,t = m) ≥ Θ(1/M), ∀i ∈ Ωk∗m ,m ∈ [M ]. Again follow Lemma E.5
and Lemma E.6, we further have that

〈∇wm,jL(t),vk〉 = −Θ̃(1)[〈w(t)
m,j ,vk〉]

2,

〈∇wm,j
L(t), ck〉 = Õ(1)[〈w(t)

m,j , ck〉]
2,

〈∇wm,jL(t), ξi,p〉 = Õ(1)[〈w(t)
m,j , ξi,p〉]

2.

Thus for all T1 ≤ t ≤ T , the update rule of every expert could be written as,

〈w(t+1)
m,j ,vk∗m〉 = 〈w(t)

m,j ,vk∗m〉+ Θ̃(1)
η

‖∇WmL(t)‖F
〈w(t)

m,j ,vk∗m〉
2

〈w(t+1)
m,j ,vk〉 = 〈w(t)

m,j ,vk〉+ Õ(1)
η

‖∇Wm
L(t)‖F

〈w(t)
m,j ,vk〉

2

〈w(t+1), ξi,p〉 = 〈w(t), ξi,p〉+ Õ(1)
η

‖∇WmL(t)‖F
〈w(t), ξi,p〉2

〈w(t+1)
m,j , ck〉 = 〈w(t)

m,j , ck〉+ Õ(1)
η

‖∇Wm
L(t)‖F

〈w(t)
m,j , ck〉

2.
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By the first stage of training we have that 〈w(T1)
m,j ,vk∗m〉 = Θ(σ0.5

0 ), while others remains Õ(σ0).
Then we can use Lemma F.2, by choosing S = Θ̃(1) and G = 2, then we have that

〈w(t)
m,j ,vk∗m〉 = O(1).

〈w(t)
m,j ,vk〉 = Õ(σ0),∀k 6= k∗m.

〈w(t)
m,j , ck〉 = Õ(σ0).

〈w(t), ξi,p〉 = Õ(σ0).

Then following Lemma E.7 and E.8, we can prove that for all T1 ≤ t ≤ T + 1, m ∈ [M ],

〈w(t)
m,j∗m

,vk∗m〉 ≥ (1−O(σ0.1
0 ))ηt,

〈w(t)
m,j ,vk〉 = Õ(σ0),∀(j, k) 6= (j∗m, k

∗
m),

〈w(t)
m,j , ck〉 = Õ(σ0),∀j ∈ [J ], k ∈ [K],

〈w(t)
m,j , ξi,p〉 = Õ(σ0),∀j ∈ [J ], i ∈ [n], p ≥ 4.

By the result of expert training we have following results

Lemma E.13. Suppose (E.8), (E.9), (E.10) hold for all t ∈ [T1, T ] ⊆ [T1, T2− 1], then we have that
|fm(xi; W

(t))− fm(x̂i; W
(t))| = Õ(σ3

0) for all m ∈ [M ] and i ∈ [n], t ∈ [T1, T + 1]. Besides,

yifm(x̂i; W
(t)) =

∑
j∈[J]

[
α3
iσ(〈w(t)

m,j ,vk〉) + γ3
i σ(〈w(t)

m,j ,vk′〉)
]
,∀i ∈ Ω+

k,k′ ,m ∈ [M ],

yifm(x̂i; W
(t)) =

∑
j∈[J]

[
α3
iσ(〈w(t)

m,j ,vk〉)− γ
3
i σ(〈w(t)

m,j ,vk′〉)
]
,∀i ∈ Ω−k,k′ ,m ∈ [M ].

Proof. For all i ∈ Ωk, we have that∣∣fm(xi; W
(t))− fm(x̂i; W

(t))
∣∣ ≤ ∣∣ ∑

j∈[J]

σ(〈w(t)
m,j , ck〉)

∣∣+
∣∣ ∑
j∈[J],p≥4

σ(〈w(t)
m,j , ξi,p〉)

∣∣
≤ O(J) ·max

k,j
σ(〈w(t)

m,j , ck〉) +O(J) ·max
i,j,p
|σ(〈w(t)

m,j , ξi,p〉)|

= Õ(σ3
0),

where the first inequality is by triangle inequality and the last equality is by Lemma E.12.

Next we will show that router only focus on the cluster-center signal rather than the label signal
during the router training.

Lemma E.14. Suppose (E.8), (E.9), (E.10) hold for all t ∈ [T1, T ] ⊆ [T1, T2− 1], then we have that
‖h(x̄i,Θ

(t))− h(xi; Θ
(t))‖∞ = Õ(d−0.005) hold for all i ∈ [n] and t ∈ [T1, T + 1]. Besides, we

have that maxm,k |〈θ(t)
m ,vk〉|,maxm,i,p |〈θ(t)

m , ξi,p〉| = Õ(d−0.005) for all t ∈ [T1, T + 1].

Proof. Recall the definition of δΘ in Lemma E.11, we need to show that δΘ(t) = Õ(d−0.005) for all
t ∈ [T1, T + 1]. We first prove following router parameter update rules,

〈∇θmL(t),vk〉 = O(δΘ(t)K2) + Õ(d−0.005), 〈∇θmL(t), ξi,p〉 = Õ(d−0.005), (E.13)

for all T1 ≤ t ≤ T , m ∈ [M ], k ∈ [K], i ∈ [n] and p ≥ 4.
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Consider the inner product of the router gradient and the feature vector and we have

E[
〈
∇θmL(t),vk

〉
]

=
1

n

∑
i∈Ωk

P(mi,t = m)`′i,tyiπm(xi; Θ
(t))fm(xi; W

(t))yiαi︸ ︷︷ ︸
I1

+
1

n

∑
i∈Ωk′,k

P(mi,t = m)`′i,tyiπm(xi; Θ
(t))fm(xi; W

(t))εiγi︸ ︷︷ ︸
I2

− 1

n

∑
i∈Ωk,m′∈[M ]

P(mi,t = m′)`′i,tyiπm′(xi; Θ
(t))πm(xi; Θ

(t))fm′(xi,W
(t))yiαi︸ ︷︷ ︸

I3

− 1

n

∑
i∈Ωk′,k,m

′∈[M ]

P(mi,t = m′)`′i,tπm′(xi; Θ
(t))yiπm(xi; Θ

(t))fm′(xi,W
(t))εiγi

︸ ︷︷ ︸
I4

+
1

n

∑
i∈[n],p≥4

P(mi,t = m)`′i,tyiπm(xi; Θ
(t))fm(xi; W

(t))〈x(p)
i ,vk〉︸ ︷︷ ︸

I5

− 1

n

∑
i∈[n],p≥4,m′∈[M ]

P(mi,t = m′)`′i,tyiπm′(xi; Θ
(t))πm(xi; Θ

(t))fm′(xi; W
(t))〈x(p)

i ,vk〉︸ ︷︷ ︸
I6

.

(E.14)

Denote yiπm(x̄i; Θ
(t))fm(x̂i; W

(t)),∀i ∈ Ω+
k,k′ by F̄+

k,k′ . We next show that the output of the MoE
multiplied by label: yiπm(xi; Θ

(t))fm(xi; W),∀i ∈ Ω+
k,k′ can be approximated by F̄+

k,k′ .

|πm(xi; Θ
(t))fm(xi; W

(t))− πm(x̄i; Θ
(t))fm(x̂i; W

(t))|
≤ |[πm(xi; Θ

(t))− πm(x̄i; Θ
(t))]fm(xi; W

(t))|+ |πm(x̄i; Θ
(t))[fm(xi; W

(t))− fm(x̂i; W
(t))]|

≤ O(|πm(xi; Θ
(t))− πm(x̄i; Θ

(t))|) + |fm(xi; W
(t))− fm(x̂i; W

(t))|
≤ O(δΘ(t)) + Õ(σ3

0),

where the first inequality is by triangle inequality, the second inequality is by πm(x̄i; Θ
(t)) ≤ 1 and

|fm(xi; W
(t))| = O(1) in Lemma E.10, the third inequality is by (E.11) and Lemma E.13.

Similarly, denote yiπm(x̄i; Θ
(t))fm(x̂i; W

(t)), i ∈ Ω−k,k′ by F̄−k,k′ and we can show that value
yiπm(xi; Θ

(t))fm(xi; W
(t)),∀i ∈ Ω−k,k′ can be approximated by F̄−k,k′ . Now we can bound I1 as

37



follows,

I1 =
∑
k′ 6=k

`′(F̄k,k′+)F̄+
k,k′

n

∑
i∈Ω+

k,k′

[
P(mi,t = m)yiαi +O(δΘ(t))

]
+ Õ(σ3

0)

+
∑
k′ 6=k

`′(F̄k,k′−)F̄−k,k′

n

∑
i∈Ω−

k,k′

[
P(mi,t = m)yiαi +O(δΘ(t))

]
+ Õ(σ3

0)

(i)
=
∑
k′ 6=k

`′(F̄k,k′+)F̄+
k,k′

n

∑
i∈Ω+

k,k′

[
P(m̄i,t = m)yiαi +O(M2δΘ(t))

]
+ Õ(σ3

0)

+
∑
k′ 6=k

`′(F̄k,k′−)F̄−k,k′

n

∑
i∈Ω−

k,k′

[
P(m̄i,t = m)yiαi +O(M2δΘ(t))

]
+ Õ(σ3

0)

(ii)
= O(M2δΘ(t)) + Õ(n−1/2 + σ3

0)

= O(M2δΘ(t)) + Õ(d−0.005)

where (i) is due to (E.12) and (ii) is by
∑
i∈Ω+

k,k′
yiα = Õ(

√
n) and

∑
i∈Ω−

k,k′
yiα = Õ(

√
n) in

Lemma D.1. Similarly we can prove that I2, I3, I4 = O(M2δΘ(t)) + Õ(d−0.005). Since 〈x(p)
i ,vi〉 =

Õ(d−1/2),∀p ≥ 4, πm, πmi,t
≤ 1 and fmi,t

= O(1), we can upper bound I5, I6 by Õ(d−1/2).
Plugging those bounds into the gradient computation (E.14) gives

E[
〈
∇θmL(t),vk

〉
] = O(M2δΘ(t)) + Õ(d−0.005).

We finally consider the alignment between router gradient and noise〈
∇θmL(t), ξi′,p′

〉
=

1

n

∑
i∈[n],p≥4

1(mi,t = m)`′i,tyiπmi,t(xi; Θ
(t))fmi,t(xi; W

(t))〈x(p)
i , ξi′,p′〉

− 1

n

∑
i∈[n],p≥4

`′i,tyiπmi,t
(xi; Θ

(t))πm(xi; Θ
(t))fmi,t

(xi; W
(t))〈x(p)

i , ξi′,p′〉.

(i)
= Õ

(
1

n

)
+ Õ(d−1/2)

(ii)
= Õ(d−1/2),

where the (i) is by considering the cases (i′, p′) = ξi,p and ξi′,p′ 6= ξi,p respectively and (ii) is due to
our choice of n. Now, we have completed the proof of (E.13).

Plugging the gradient estimation (E.13) in to the gradient update rule for the gating network (3.5)
gives

max
m,k
|〈θ(t+1)

m ,vk〉| ≤ max
m,k
|〈θ(t)

m ,vk〉|+O(ηrM
2δΘ(t)) + Õ(ηrd

−0.005) (E.15)

max
m,i,p

|〈θ(t+1)
m , ξi,p〉| ≤ max

m,i,p
|〈θ(t)

m , ξi,p〉|+ Õ(ηrd
−0.005) (E.16)

Combining (E.15) and (E.16), we have that there exist C1 = O(M2) and C2 = Õ(d−0.005) such that
δΘ(t+1) ≤ δΘ(t) + C1ηrδΘ(t) + C2ηr. Therefore, we have that

δΘ(t+1) + C−1
1 C2 ≤ (1 + C1ηr)[δΘ(t) + C−1

1 C2]

≤ exp(C1ηr)[δΘ(t) + C−1
1 C2],

where the last inequality is due to exp(z) ≥ 1 + z for all z ∈ R. Then we further have that

δΘ(t) ≤ exp(C1ηrt)[δΘ(0) + C−1
1 C2] ≤ exp(C1ηrη

−1M−2)[δΘ(0) + C−1
1 C2] = Õ(d−0.005),

where the last equality is by ηr = Θ(M2)η.
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Define ∆Θ := maxk∈[K] maxm,m′∈Mk
max(xi,yi)∈Ωk

|hm(xi; Θ)− hm′(xi; Θ)|, which measures
the bias of the router towards different experts in the sameMk. Following Lemma shows that the
router will treats professional experts equally when ∆θ is small.

Lemma E.15. For all t ≥ 0, we have that following inequality holds,

max
k∈[K]

max
m,m′∈Mk

max
(xi,yi)∈Ωk

|πm′(xi; Θ(t))− πm(xi; Θ
(t))| ≤ 2∆Θ(t) ,

max
k∈[K]

max
m,m′∈Mk

max
(xi,yi)∈Ωk

|P(mi,t = m)− P(mi,t = m′)| = O(M2)∆Θ(t) .

Proof. By Lemma C.3, we directly have that

|P(mi,t = m)− P(mi,t = m′)| ≤ O(M2)|hm(xi; Θ
(t))− hm′(xi; Θ(t))|.

Then, we prove that

|πm′(xi; Θ)− πm(xi; Θ)| ≤ 2|hm(xi; Θ
(t))− hm′(xi; Θ(t))|. (E.17)

When |hm(xi; Θ
(t))− hm′(xi; Θ(t))| ≥ 1, it is obvious that (E.17) is true. When |hm(xi; Θ

(t))−
hm′(xi; Θ

(t))| ≤ 1 we have that

|πm′(xi; Θ)− πm(xi; Θ)| =
∣∣∣∣exp(hm(xi; Θ

(t)))− exp(hm′(xi; Θ
(t)))∑

m′′ exp
(
hm′′(xi; Θ(t))

) ∣∣∣∣
=

∣∣∣∣ exp(hm′(xi; Θ
(t)))∑

m′′ exp
(
hm′′(xi; Θ(t))

) ∣∣∣∣ · | exp(hm(xi; Θ
(t))− hm′(xi; Θ(t)))− 1|

≤ 2|hm(xi; Θ
(t))− hm′(xi; Θ(t))|,

which completes the proof of (E.17).

Notice that the gating network is initialized to be zero, so we have ∆Θ = 0 at initialization. We can
further show that ∆Θ = O

(
1/poly(d)

)
during the training up to time T = Õ(η−1).

Lemma E.16. Suppose (E.8), (E.9), (E.10) hold for all t ∈ [T1, T ] ⊆ [T1, T2− 1], then we have that
∆Θ(t) ≤ Õ(d−0.001) holds for all t ∈ [T1, T + 1].

Proof. One of the key observation is the similarity of the m-th and the m′-th expert in the same
expert classMk. Lemma E.12 implies that maxi∈Ωk

|fm(xi,W
(t))−fm′(xi,W(t))| = Õ(σ0.1

0 ) ≤
Õ(d−0.001).

Another key observe is that, we only need to focus on the k − th cluster-center signal. Lemma E.14
implies that,

∆Θ(t) = max
k∈[K]

max
m,m′∈Mk

max
(xi,yi)∈Ωk

|hm(xi; Θ)− hm′(xi; Θ(t))|

≤ max
k∈[K]

max
m,m′∈Mk

max
(xi,yi)∈Ωk

|hm(x̄i; Θ
(t))− hm′(x̄i; Θ(t))|+ 2δΘ(t)

= max
k∈[K]

max
m,m′∈Mk

|〈θm − θm′ , βick〉|+ 2δΘ(t)

≤ C2 max
k∈[K]

max
m,m′∈Mk

|〈θm − θm′ , ck〉|+ 2δΘ(t) ,
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where the first inequality is by Lemma E.14 and the second inequality is by βi ≤ C2. We now prove
that following gradient difference is small〈
∇θmL(t) −∇θm′L

(t), ck
〉

(i)
=

1

n

∑
i∈[n]

∑
p∈[P ]

P(mi,t = m)`′i,tπm(xi; Θ
(t))yifm(xi; W

(t))〈x(p)
i , ck〉

− 1

n

∑
i∈[n]

∑
p∈[P ]

P(mi,t = m′)`′i,tπm′(xi; Θ
(t))yifm′(xi; W

(t))〈x(p)
i , ck〉

+
1

n

∑
i∈Ωk

∑
p∈[P ]

∑
m′′∈[M ]

[πm′(xi; Θ
(t))− πm(xi; Θ

(t))]P(mi,t = m′′)`′i,tπm′′(xi; Θ
(t))·

yifm′′(xi,W)〈x(p)
i , ck〉+ Õ(d−0.001)

= O
( 1

n

) ∑
i∈Ωk

[P(mi,t = m′)− P(mi,t = m)]|`′i,tπm(xi; Θ)βiyifm(xi; W
(t))|+ Õ(d−0.001)

+O(1) max
i∈Ωk

|πm′(xi; Θ(t))− πm(xi; Θ
(t))|+O(1) max

i∈Ωk

|fm(xi,W
(t))− fm′(xi,W(t))|

= O(1)|P(mi,t = m′)− P(mi,t = m)]|+O(1) max
i∈Ωk

|πm′(xi; Θ(t))− πm(xi; Θ
(t))|

+O(1) max
i∈Ωk

|fm(xi,W
(t))− fm′(xi,W(t))|+ Õ(d−0.001)

(ii)
= O(M2∆Θ(t)) + Õ(d−0.001),

where the (i) is by Lemma E.2 and (ii) is by Lemma E.15. It further implies that ∆Θ(t+1) ≤
O(ηrM

2)∆Θ(t) + Õ(ηrd
−0.001). Following previous proof of δΘ, we have that ∆Θ(T+1) =

Õ(d−0.001).

Together with the key technique 1, we can infer that each expert m ∈Mk will get nearly the same
load as other experts inMk. Since ∆Θ keeps increasing during the training, it cannot be bounded if
we allow the total number of iterations goes to infinity in Algorithm 1. This is the reason that we
require early stopping in Theorem 4.2, which we believe can be waived by adding load balancing
loss (Eigen et al., 2013; Shazeer et al., 2017; Fedus et al., 2021), or advanced MoE layer structure
such as BASE Layers (Lewis et al., 2021; Dua et al., 2021) and Hash Layers (Roller et al., 2021).

Lemma E.17. Suppose (E.8), (E.9), (E.10) hold for all t ∈ [T1, T ] ⊆ [T1, T2−1], then form /∈Mk

and t ∈ [T1, T ] , if 〈θ(t)
m , ck〉 ≥ maxm′〈θ(t)

m′ , ck〉 − 1 we have that

〈∇θm
L(t), ck〉 ≥ Ω

(
η3t3

KM3

)
+ Õ(d−0.005).

Proof. The expectation of the inner product 〈∇θm
L(t), ck〉 can be computed as follows,

E[〈∇θm
L(t), ck〉] =

1

n

∑
i,p

P(mi,t = m)`′i,tπm(xi; Θ
(t))yifm(xi; W

(t))〈x(p)
i , ck〉

− 1

n

∑
i,p,m′

P(mi,t = m′)`′i,tπm′(xi; Θ
(t))πm(xi; Θ

(t))yifm′(xi,W
(t))〈x(p)

i , ck〉

(i)
=

1

n

∑
i∈Ωk

P(mi,t = m)`′i,tπm(xi; Θ
(t))βiyifm(xi; W

(t)) + Õ(d−0.005)

− 1

n

∑
i∈Ωk

∑
m′∈[M ]

P(mi,t = m′)`′i,tπm′(xi; Θ
(t))πm(xi; Θ

(t))βiyifm′(xi,W).

(E.18)

where (i) is due to |〈ξi,p, ck〉| = Õ(d−0.5).
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We can rewrite the inner product (E.18) as follows,

E[
〈
∇θm
L(t), ck

〉
] =

1

n

∑
i∈Ωk

P(mi,t = m)`′i,tπm(xi; Θ
(t))βiyifm(xi; W

(t)) + Õ(d−0.005)

− 1

n

∑
i∈Ωk

∑
m′∈[M ]

P(mi,t = m′)`′i,tπm′(xi; Θ
(t))πm(xi; Θ

(t))βiyifm′(xi,W)

=
1

n

∑
i∈Ωk

P(mi,t = m)`′i,tπm(xi; Θ
(t))yiβifm(xi; W

(t))︸ ︷︷ ︸
I1

+Õ(d−0.005)

− 1

n

∑
i∈Ωk,m′∈Mk

P(mi,t = m′)`′i,tπm′(xi; Θ
(t))πm(xi; Θ

(t))βiyifm′(xi,W
(t))︸ ︷︷ ︸

I2

(E.19)

− 1

n

∑
i∈Ωk,m′ /∈Mk

P(mi,t = m′)`′i,tπm′(xi; Θ
(t))πm(xi; Θ

(t))βiyifm′(xi,W
(t))

︸ ︷︷ ︸
I3

.

(E.20)

To calculate I1, I2, I3, let’s first lower bound I2. We now consider the case that m 6∈ Mk,m
′ ∈Mk.

Because 〈θ(t)
m , ck〉 ≥ maxm′〈θ(t)

m , ck〉 − 1, we can easily prove that πm(xi; Θ
(t)) = Ω(1/M),∀i ∈

Ωk. Then we have that

I2 = − 1

n

∑
i∈Ωk,m′∈Mk

P(mi,t = m′)`′i,tπm′(xi; Θ
(t))πm(xi; Θ

(t))βiyifm′(xi,W
(t))

≥ Ω
( η3t3

nM3

) ∑
i∈Ωk,m′∈Mk

βi

≥ Ω
( η3t3

KM3

)
,

where the first inequality is by πm′(xi; Θ
(t)) = Ω(1/M), P(mi,t = m′) ≥ Θ(1/M), ∀i ∈

Ωk∗m ,m ∈ [M ], yifm′(xi; W(t)) = η3t3(1 − O(σ0.1
0 )) and `′ = −Θ(1) for all i ∈ Ωk,m

′ ∈ Mk

due to Proposition E.9 and Lemma E.12, and the last inequality is by |Mk| ≥ 1 in Lemma D.4 and∑
i∈Ωk

βi = Ω(n/K) in Lemma D.1.

Then we consider the case that m,m′ 6∈ Mk. Applying Taylor expansion of `′i,t = 1/2 +O(Jη3t3)
gives

1

n

∑
i∈Ωk

P(mi,t = m)`′i,tπm(xi; Θ
(t))yiβifm(xi; W

(t))

=
1

2n

∑
i∈Ωk

P(mi,t = m)πm(xi; Θ
(t))yiβifm(xi; W

(t)) +O
(
J2η6t6

)
=

1

2n

∑
k′

∑
i∈Ω+

k,k′

P(mi,t = m)πm(xi; Θ
(t))yiβifm(xi; W

(t)) +O
(
J2η6t6

)
+

1

2n

∑
k′

∑
i∈Ω−

k,k′

P(mi,t = m)πm(xi; Θ
(t))yiβifm(xi; W

(t))

= O(J2η6t6) + Õ(d−0.005). (E.21)

where the last inequality is by the technique we have used before in Lemma E.16. By (E.21), we can
get upper bound |I1|, |I3| by O(J2η6t6) + Õ(d−0.005).
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Plugging the bound of I1, I2, I3 into (E.20) gives,〈
∇θm
L(t), ck

〉
≥ Ω

(
η3t3

KM3

)
+O(J2η6t6) + Õ(d−0.005)

≤ Ω

(
η3t3

KM3

)
+ Õ(d−0.005),

where the last inequality is by t ≤ T2 = bη−1M−2c.

Now we can claim that Proposition E.9 is true and we summarize the results as follow lemma.
Lemma E.18. For all T1 ≤ t ≤ T2, we have Proposition E.9 holds. Besides, we have that
〈θ(T2)
m , ck〉 ≤ maxm′∈[M ]〈θ

(T2)
m′ , ck〉 − Ω(K−1M−9) for all m /∈Mk..

Proof. We will first use induction to prove Proposition E.9. It is worth noting that proposition E.9
is true at the beginning of the second stage t = T1. Suppose (E.8), (E.9), (E.10) hold for all
t ∈ [T1, T ] ⊆ [T1, T2− 1], we next verify that they also hold for t ∈ [T1, T + 1]. Lemma E.13 shows
that (E.8) holds for t ∈ [T1, T + 1]. Lemma E.14 further shows that (E.8) holds for t ∈ [T1, T + 1].
Therefore, we only need to verify whether (E.10) holds for t ∈ [T1, T + 1]. Therefore, for each
pair i ∈ Ωk, m ∈ Mk, we need to estimate the gap between expert m and the expert with
best performance hm(xi; Θ

(t)) − maxm′ hm′(xi; Θ
(t)). By Lemma E.17 and Lemma E.14, we

can induce that hm(xi; Θ
(t)) is small therefore cannot be the largest one. Thus hm(xi; Θ

(t)) −
maxm′ hm′(xi; Θ

(t)) = hm(xi; Θ
(t))−maxm′ hm′(xi; Θ

(t)) ≤ ∆Θ(t) ≤ Õ(d−0.001). Therefore,
by Lemma C.3 we have (E.10) holds. Now we have verified that (E.10) also holds for t ∈ [T1, T + 1],
which completes the induction for Lemma E.9.

Finally, we carefully characterize the value of 〈θ(t)
m , ck〉, for ηrη−1 = Θ(M2) and m /∈ Mk. If

〈θ(t)
m , ck〉 ≥ maxm′〈θ(t)

m′ , ck〉 − 1, by Lemma E.17 we have that

〈θ(t+1)
m , ck〉 ≤ 〈θ(t)

m , ck〉 −Θ

(
ηrη

3t3

KM3

)
+ Õ(ηrd

−0.005) ≤ 0. (E.22)

If there exists t ≤ T2 − 1 such that 〈θ(t+1)
m , ck〉 ≤ maxm′〈θ(t)

m′ , ck〉 − 1, clearly we have that
〈θ(T2)
m , ck〉 ≤ −Ω(K−1M−9) since 〈θ(t)

m , ck〉 will keep decreasing as long as 〈θ(t+1)
m , ck〉 ≥ −1 and

our step size ηr = Θ(M2)η is small enough. If 〈θ(t+1)
m , ck〉 ≥ maxm′〈θ(t)

m′ , ck〉 − 1 holds for all
t ≤ T2 − 1, take telescope sum of (E.22) from t = 0 to t = T2 − 1 gives that

〈θ(T2)
m , ck〉 ≤ 〈θ(0)

m , ck〉 −
T2−1∑
s=0

Θ

(
ηrη

3s3

KM3

)
+ Õ(d−0.005)

(i)
= −

T2−1∑
s=0

Θ

(
ηrη

3s3

KM3

)
+ Õ(d−0.005)

(ii)
= −Θ

(
ηrη

3T 4
2

KM3

)
+ Õ(d−0.005)

≤ −Ω(K−1M−9),

where the (i) is by θ
(0)
m = 0 and (ii) is by

∑n−1
i=0 i

3 = n2(n− 1)2/4 and the last inequality is due to
T2 = bη−1M−2c and ηr = Θ(M2)η. Now we have proved that 〈θ(T2)

m , ck〉 ≤ −Ω(K−1M−9) for
all m /∈Mk. Finally, by Lemma E.1 we have that

max
m′∈[M ]

〈θ(T2)
m′ , ck〉 ≥

1

m

∑
m′∈[M ]

〈θ(T2)
m′ , ck〉 = 0.

Therefore, we have that 〈θ(T2)
m , ck〉 ≤ −Ω(K−1M−9) ≤ maxm′∈[M ]〈θ

(T2)
m′ , ck〉 − Ω(K−1M−9),

which completes the proof.
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E.3 Generalization Results

In this section, we will present the detailed proof of Lemma 5.2 and Theorem 4.2 based on analysis
in the previous stages.

Proof of Lemma 5.2. We consider the m-th expert in the MoE layer, suppose that m ∈Mk. Then if
we draw a new sample (x, y) ∈ Ωk. Without loss of generality, we assume x = [αyvk, βck, γεvk′ , ξ].
By Lemma E.8, we have already get the bound for inner product between weights and feature signal,
cluster-center signal and feature noise. However, we need to recalculate the bound of the inner
product between weights and random noises because we have fresh random noises i.i.d drawn from
N (0, (σ2

p/d) · Id). Notice that we use normalized gradient descent for expert with step size η, so we
have that

‖w(T1)
m,j −w

(0)
m,j‖2 ≤ ηT1 = O(σ0.5

0 ).

Therefore, by triangle inequality we have that ‖w(T1)
m,j ‖2 ≤ ‖w

(0)
m,j‖2+O(σ0.5

0 ) ≤ Õ(σ0

√
d). Because

the inner product 〈w(t)
m,j , ξp〉 follows the distribution N (0, (σ2

p/d) · ‖w(T1)
m,j ‖22), we have that with

probability at least 1− 1/(dPMJ),

|〈w(T1)
m,j , ξp〉| = O(σpd

−1/2‖w(t)
m,j‖2 log(dPMJ)) ≤ Õ(σ0).

Applying Union bound for m ∈ [M ], j ∈ [J ], p ≥ 4 gives that, with probability at least 1− 1/d,

|〈w(T1)
m,j , ξp〉| = Õ(σ0),∀m ∈ [M ], j ∈ [J ], p ≥ 4. (E.23)

Now under the event that (E.23) holds, we have that

yfm(x,W(t)) = y
∑
j∈[J]

∑
p∈[P ]

σ(〈wm,j ,x
(p)〉)

= yσ(〈wm,j∗m
, αyvk〉) + y

∑
(j,p) 6=(j∗m,1)

σ(〈wm,j ,x
(p)〉)

≥ C3
1 (1− σ0.1

0 )3σ1.5
0 − Õ(σ3

0)

≥ Ω(σ1.5
0 ),

where the first inequality is due to (E.3). Because (E.23) holds holds with probability at least 1− 1/d,
so we have prove that

P(x,y)∼D
(
yfm(x; W(T1)

)
≤ 0
∣∣(x, y) ∈ Ωk

)
≤ 1/d.

On the other hand, if we draw a new sample (x, y) ∈ Ωk′ , k
′ 6= k. Then we consider the special set

Ω−k′,k ⊆ Ωk′ where feature noise is vk and the sign of the feature noise ε is not equal to the label y.
Without loss of generality, we assume it as x = [αyvk′ , βck′ ,−γyvk, ξ]. Then under the event that
(E.23) holds, we have that

yfm(x,W(t)) = y
∑
j∈[J]

∑
p∈[P ]

σ(〈wm,j ,x
(p)〉)

= yσ(〈wm,j∗m ,−γyvk〉) + y
∑

(j,p) 6=(j∗m,3)

σ(〈wm,j ,x
(p)〉)

≤ −C3
1 (1− σ0.1

0 )3σ1.5
0 + Õ(σ3

0)

≤ −Ω(σ1.5
0 ),

where the first inequality is due to (E.3). Because (E.23) holds holds with probability at least 1− 1/d,
so we have prove that

P(x,y)∼D
(
yfm(x; W(T1)

)
≤ 0
∣∣(x, y) ∈ Ω−k′,k

)
≥ 1− 1/d.

43



Then we further have that

P(x,y)∼D
(
yfm(x; W(T1)

)
≤ 0
∣∣(x, y) ∈ Ωk′

)
≥ P(x,y)∼D

(
yfm(x; W(T1)

)
≤ 0
∣∣(x, y) ∈ Ω−k′,k

)
· P(x,y)∼D

(
(x, y) ∈ Ω−k′,k

∣∣(x, y) ∈ Ωk′
)

≥ Ω(1/K),

which completes the proof.

Proof of Theorem 4.2. We will give the prove for T = T2, i.e., at the end of the second stage.

Test Error is small. We first prove the following result for the experts. For all expert m ∈Mk, we
have that

P(x,y)∼D
(
yfm(x; W(T )

)
≤ 0
∣∣(x, y) ∈ Ωk

)
= o(1). (E.24)

The proof of is similar to the proof of Lemma 5.2. We consider the m-th expert in the MoE layer,
suppose that m ∈Mk. Then if we draw a new sample (x, y) ∈ Ωk. Without loss of generality, we
assume x = [αyvk, βck, γεvk′ , ξ]. By Lemma E.8, we have already get the bound for inner product
between weights and feature signal, cluster-center signal and feature noise. However, we need to
recalculate the bound of the inner product between weights and random noises because we have fresh
random noises i.i.d drawn from N (0, (σ2

p/d) · Id). Notice that we use normalized gradient descent
with step size η, so we have that

‖w(T )
m,j −w

(0)
m,j‖2 ≤ ηT = Õ(1).

Therefore, by triangle inequality we have that ‖w(T )
m,j‖2 ≤ ‖w

(0)
m,j‖2 + Õ(1) ≤ Õ(σ0

√
d). Because

the inner product 〈w(t)
m,j , ξp〉 follows the distribution N (0, (σ2

p/d) · ‖w(T )
m,j‖22), with probability at

least 1− 1/(dPMJ) we have that ,

|〈w(T )
m,j , ξp〉| = O(σpd

−1/2‖w(t)
m,j‖2 log(dPMJ)) ≤ Õ(σ0).

Applying Union bound for m ∈ [M ], j ∈ [J ], p ≥ 4 gives that, with probability at least 1− 1/d,

|〈w(T )
m,j , ξp〉| = Õ(σ0),∀m ∈ [M ], j ∈ [J ], p ≥ 4. (E.25)

Now, under the event that (E.25) holds, we have that

yfm(x,W(T )) = y
∑
j∈[J]

∑
p∈[P ]

σ(〈w(T )
m,j ,x

(p)〉)

= yσ(〈w(T )
m,j∗m

, αyvk〉) + y
∑

(j,p) 6=(j∗m,1)

σ(〈w(T )
m,j ,x

(p)〉)

≥ C3
1 (1− σ0.1

0 )3M−4 − Õ(σ3
0)

= Ω̃(1),

where the first inequality is by Lemma E.12. Because (E.25) holds with probability at least 1− 1/d,
so we have prove that

P(x,y)∼D
(
yfm(x; W(T )

)
≤ 0
∣∣(x, y) ∈ Ωk

)
≤ 1/d.

We then prove that, with probability at least 1 − o(1), an example x ∈ Ωk will be routed to one
of the experts in Mk. For x = [αyvk, βck, γεvk′ , ξ], we need to check that hm(x; Θ(T )) <

maxm′ hm′(x; Θ(T )),∀m 6∈ Mk. By Lemma E.18, we know that 〈θ(T )
m , ck〉 ≤ maxm′〈θ(T )

m′ , ck〉 −
−Ω(K−1M−9). Further by Lemma E.14, we have that maxm,k |〈θ(T )

m ,vk〉| = O(d−0.001). Again
to calculate test error, we need to give an upper bound 〈θ(T )

m , ξp〉, where ξp is a fresh noise drawn
from N (0, (σ2

p/d) · Id). We can upper bound the gradient of the gating network by
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‖∇θm
L(t)‖2 =

∥∥∥∥ 1

n

∑
i,p

1(mi,t = m)`′i,tπmi,t
(xi; Θ

(t))yifmi,t
(xi; W

(t))x
(p)
i

− 1

n

∑
i,p

`′i,tπmi,t(xi; Θ
(t))πm(xi; Θ

(t))yifmi,t(xi; W
(t))x

(p)
i

∥∥∥∥
2

.

= Õ(1),

where the last inequality is due to |`′i,t| ≤ 1, πm, πmi,t
∈ [0, 1] and ‖x(p)

i ‖2 = O(1). This further
implies that

‖θ(T )
m ‖2 = ‖θ(T )

m − θ(0)
m ‖2 ≤ Õ(tηr) ≤ Õ(η−1ηr) = Õ(1),

where the last inequality is by ηr = Θ(M2)η. Because the inner product 〈θ(T )
m , ξp〉 follows the

distribution N (0, (σ2
p/d) · ‖θ(T )

m ‖22), we have that with probability at least 1− 1/(dPM),

|〈θ(T )
m , ξp〉| = O(σpd

−1/2‖θ(T )
m ‖2 log(dPM)) ≤ Õ(d−1/2).

Applying Union bound for m ∈ [M ], p ≥ 4 gives that, with probability at least 1− 1/d,

|〈θ(T )
m , ξp〉| = Õ(d−1/2),∀m ∈ [M ], p ≥ 4. (E.26)

Now, under the event that (E.26) holds, we have that

hm(x; Θ(T ))−max
m′

hm′(x; Θ(T ))

≤ 〈θ(T )
m , ck〉 −max

m′
〈θ(T )
m′ , ck〉+ 4 max

m,k
|〈θ(T )

m ,vk〉|+ 4P max
m,p
|〈θ(T )

m , ξp〉|

≤ −Ω(K−1M−9) + Õ(d−0.001)

< 0.

Because (E.26) holds holds with probability at least 1− 1/d, so we have prove that with probability
at least 1− 1/d, an example x ∈ Ωk will be routed to one of the experts inMk.

Training Error is zero. The prove for training error is much easier, because we no longer need
to deal with the fresh noises and we no longer need to use high probability bound for those inner
products with fresh noises. That’s the reason we can get exactly zero training error. We first prove the
following result for the experts. For all expert m ∈Mk, we have that

yifm(xi; W
(T )
)
≤ 0,∀i ∈ Ωk.

Without loss of generality, we assume that the feature patch appears in x
(1)
i . By Lemma E.12, we

have that for all i ∈ Ωk

yifm(xi,W
(T )) = yi

∑
j∈[J]

∑
p∈[P ]

σ(〈w(T )
m,j ,x

(p)
i 〉)

= yiσ(〈w(T )
m,j∗m

, αyivk〉) + yi
∑

(j,p)6=(j∗m,1)

σ(〈w(T )
m,j ,x

(p)〉)

≥ C3
1 (1− σ0.1

0 )3M−4 − Õ(σ3
0)

> 0,

where the first inequality is Lemma E.12. We then prove that, and example (xi, yi) ∈ Ω will be
routed to one of the experts inMk. Suppose the m-th expert is not inMk. We only need to check
the value of hm(xi; Θ

(T )) < maxm′ hm′(xi; Θ
(T )), which is straight forward by Lemma E.18 and

Lemma E.14.
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F Auxiliary Lemmas

Lemma F.1. Let {am}Mm=1 are the random variable i.i.d. drawn from N (0, 1). Define the non-
increasing sequence of {am}Mm=1 as a(1) ≥ . . . ≥ a(M). Then we have that

P(a(2) ≥ (1−G)a(1)) ≤ GM2

Proof. Let Ψ be the CDF of N (0, 1) and let ρ be the PDF of N (0, σ2
0). Then we have that,

P(a(2) ≥ (1−G)a(1))

=

∫
a(1)≥...≥a(M)

1(a(2) ≥ (1−G)a(1))M !Πmρ(a(m))da

=

∫
a(1)≥a(2)

1(a(2) ≥ (1−G)a(1))M(M − 1)ρ(a(1))ρ(a(2))Ψ(a(2))M−2da(1)da(2)

≤
∫
a(1)≥a(2)

1(a(2) ≥ (1−G)a(1))M(M − 1)ρ(a(1))
1√
2π
da(1)da(2)

=

∫
a(1)≥0

GM(M − 1)√
2π

a(1)ρ(a(1))da(1)

≤ GM2.

For normalized gradient descent we have following lemma,
Lemma F.2 (Lemma C.19 Allen-Zhu and Li 2020c). Let {xt, yt}t=1,.. be two positive sequences
that satisfy

xt+1 ≥ xt + η · Ctx2
t

yt+1 ≤ yt + Sη · Cty2
t ,

and |xt+1 − xt|2 + |yt+1 − yt|2 ≤ η2. Suppose x0, y0 = o(1), x0 ≥ y0S(1 +G),

η ≤ min{ G2x0

log(A/x0)
,

G2y0

log(1/G)
}.

Then we have for all A > x0, let Tx be the first iteration such that xt ≥ A, then we have yTx
≤

O(y0G
−1).

Proof. We only need to replace O(ηAq−1) in the proof of Lemma C.19 by O(η), because we use
normalized gradient descent, i.e, Ctx2

t ≤ 1. For completeness, we present the whole poof here.

for all g = 0, 1, 2, . . . ,, let Tg be the first iteration such that xt ≥ (1 + δ)gx0, let b be the smallest
integer such that (1 + δ)bx0 ≥ A. For simplicity of notation, we replace xt with A whenever xt ≥ A.
Then by the definition of Tg , we have that∑

t∈[Tg,Tg+1)

ηCt[(1 + δ)gx0]2 ≤ xTg+1
− xTg ≤ δ(1 + δ)gx0 +O(η),

where the last inequality holds because we are using normalized gradient descent, i.e., maxt |xt+1 −
xt| ≤ η. This implies that ∑

t∈[Tg,Tg+1)

ηCt ≤
δ

(1 + δ)g
1

x0
+
O(η)

x2
0

.

Recall that b is the smallest integer such that (1 + δ)bx0 ≥ A, so we can calculate∑
t≥0,xt≤A

ηCt ≤
[ b−1∑
g=0

δ

(1 + δ)g
1

x0

]
+
O(η)

x2
0

b =
1 + δ

x0
+
O(η)b

x2
0

≤ 1 + δ

x0
+
O(η) log(A/x0)

x2
0 log(1 + δ)
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Let Tx be the first iteration t in which xt ≥ A. Then we have that

Tx∑
t=0

ηCt ≤
1 + δ

x0
+
O(η) log(A/x0)

δx2
0

. (F.1)

On the other hand, let A′ = G−1y0 and b’ be the smallest integer such that (1 + δ)b′x0 ≥ A′. For
simplicity of notation, we replace yt with A′ when yt ≥ A′. Then let T ′g be the first iteration such
that yt ≥ (1 + δ)gy0, then we have that∑

t∈[T ′g ,T ′g+1)

ηSCt[(1 + δ)g+1x0](q−1) ≥ yT ′g+1
− yT ′g ≥ δ(1 + δ)gy0 −O(η).

Therefore, we have that ∑
t∈[T ′g ,T ′g+1)

SηCt ≥
δ

(1 + δ)g(1 + δ)2

1

y0
− O(η)

y2
0

.

Recall that b′ is the smallest integer such that (1 + δ)b
′
y0 ≥ A′. wo we have that

∑
t≥0,xt≤A

ηSCt ≥
b′−2∑
g=0

δ

(1 + δ)g(1 + δ)2

1

y0
− O(η)b′

y2
0

Let Ty be the first iteration t in which yt ≥ A′, so we can calculate

Ty∑
t=0

ηSCt ≥
1−O(δ +G)

y0
− O(η) log(A′/y0)

y2
0δ

. (F.2)

Compare (F.1) and (F.2). Choosing δ = G and η ≤ min{ G2x0

log(A/x0) ,
G2y0

log(1/G)}, together with
x0 ≥ y0S(1 +G)
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