
A Performative power in competition policy

We expand on the discussion from Section 6 about the potential role of performative power in
competition policy and antitrust enforcement as a tool complementary to existing machinery.

A.1 Measures of market power in economics

Typical measures of market power in economic theory focus on classical pricing markets of homo-
geneous goods, where a firm’s primary action is choosing a price to sell the good or the quantity of
the good to sell. The scalar nature of these quantities enables them to be easily compared across
different market contexts and firms. In addition, the utility of the firm and the utility of participants are
inversely related: a higher price yields greater utility for the firm and lower utility for all participants.
This simple relationship allows one to directly reason about participant welfare and profit of firms.
However, the situation of a digital economy is more complex [Stigler Committee, 2019; Crémer
et al., 2019]. As a result, classical measures from competition theory that primarily focused on price
effects struggle to accurately characterize these economies. Let us illustrate these challenges using
two textbook definitions of market power.

Lerner index. The Lerner index [Lerner, 1934] quantifies the pricing power of a firm, measuring
by how much the firm can raise the price above marginal costs. Marginal costs reflect the price that
would arise in a perfectly competitive market. A major issue of applying this standard definition of
market power in the context of digital economies is that it is not clear what the competitive reference
state should look like, “We have lost the competitive benchmark,”2 as Jacques Crémer said. Thus,
measures based on profit margin cannot directly be adopted as a proxy for market power in these
settings.

Market share. Measures such as the Herfindahl–Hirschman index (HHI), which is used by the US
federal trade commission3 to measure market competitiveness, is based on market share: the fraction
of participants who participate in a given firm. However, the validity of market share as a proxy for
power relies on a specific model of competition where the elasticity of demand is low. This model is
challenging to justify4 in the context of digital economies where opening an account on a platform is
very simple and usually free of charge. In addition, not all participants with accounts on a digital
platform are equally active and inactive participants should not factor into the market power of a
firm the same way active participants do. Market share is not sufficiently expressive to make this
distinction.

In contrast, performative power is a causal notion of influence that does not require a precise
specification of the market but is still sensitive to the nuances of the market. The definition therefore
could be serve as a useful tool in markets that resist a clean mathematical specification.

A.2 Complex consumer behavior

Participant behavior plays a critical role in digital market places. As outlined by the Stigler Committee
[2019], “the findings from behavioral economics demonstrate an under-recognized market power held
by incumbent digital platforms.” In particular, behavioral aspects of consumers—such as tendencies
for single-homing, vulnerability to addiction, and as well as the impact of framing and nudging
on participant behavior [e.g. Thaler and Sunstein, 2008; Fogg, 2002]—can be exploited by firms
in digital economies, but do not factor into traditional measures of market power. By focusing on
changes in participant features, performative power has the potential to capture the effects of these
behavioral patterns while again sidestepping the challenges of explicitly modeling them.

A.3 From performative power to consumer harm

Performative power focuses on measuring power rather than harm. The relationship to harm depends
on the choice and interpretation of the outcome variable and requires additional substantive arguments.

2Opening statement at the 2019 Antitrust and competition conference – digital platforms, markets, and
democracy

3See https://www.justice.gov/atr/herfindahl-hirschman-index (retrieved January, 2022).
4This critique is similar to the disconnect between the Cournot model and the Bertrand model in classical

economics [Bornier, 1992]. E.g., “concentration is worse than just a noisy barometer of market power” [Syverson,
2019].
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High performative power and the ability of a firm to steer participants naturally bears the potential
for user harm, whenever there exists a misalignment between the utilities of the platform and the
participants. Recent work by Shmueli and Tafti [2020] backs a similar concern with empirical
evidence. However, in general, harm and power are two fundamentally distinct normative concepts.
Performative power does not necessarily imply harm, but it can serve as an indicator of potential
harm that can help flag market situations that merit further investigations by regulators. In fact, the
report of the European Commission on competition policy for the digital era [Crémer et al., 2019]
suggests in several contexts where regulators should be suspicious of power and suggests putting
burden of proof on the firm rather than the regulators.

In specific contexts, we can establish an exact correspondence between performative power and
harm. By carefully choosing the parameters in the definition, performative power can be instantiated
to more closely capture manifested harm to a particular (sub-)population of participants we wish
to investigate. We implement this principle in Section 4 where we establish a connection between
performative power and the utility of users. More generally, this connection can be achieved if the
attributes z(u) consists of the sensitive features that are impacted by the firm, the distance function is
aligned with the utility function of participants, and the set F reflects actions that are taken by the
firm.

B Additional results and discussions for Section 3 and Section 4

B.1 Formalization of a mixture economy

We formalize the construction of a mixture economy. Let z(u), zC=1

✓ (u) denote the pair of counter-
factual outcomes before and after the deployment of ✓ in a hypothetical monopoly economy where a
single firm holds all the performative power. Let DC=1(✓) be the distribution map associated with
the variables zC=1

✓ (u) for u 2 U . In a uniform mixture economy, we assume that each participant
u 2 U uniformly chooses between the C firms. The counterfactual z✓(u) associated with one firm
changing its predictor to ✓ is equal to z(u) with probability 1� 1/C and zC=1

✓ (u) otherwise.

B.2 Interpretation of performative power in setup in Section 4

In our running example of digital content recommendations where participants correspond to content
creators, the instantiation of performative power in Section 4 measures how much the content of each
channel changes with changes in the recommendation algorithm. As a different example, suppose
that firm is a hiring platform such as HireVue that uses video data from interviews to a compute a
performance prediction for an applicant for a job. In this case, the participants would correspond
to applicants, and the data vector would correspond to the applicant’s voice patterns and interview
responses.

When instantiating the definition of performative power, the choice of distance metric enables us
to define how to weight specific feature changes. In our content recommendation example, if we
are interested in the burden on content creators, we choose the distance metric to be aligned with
the cost function c of producing a piece of content. However, if we are interested in measuring the
impact of changes in content on viewers, a distance metric that reflects harm to viewers might be
more appropriate. We keep this distance metric abstract in our analysis.

B.3 Example: Monopoly power in heterogeneous setting

Different participants are typically impacted differently by a classifier, depending on their relative
position to the decision boundary, as visualized in Figure 1(a). As a result of this heterogeneity, the
upper bound in Lemma 1 is not necessarily tight, because the firm can not extract the full utility from
all participants simultaneously.

Let us investigate the effect of heterogeneity in a concrete 1-dimensional setting where distX(x, x0) =
c(x, x0) = |x� x0|. Consider a set of actions F that corresponds to the set of all threshold functions.
Suppose that the posterior p(x) = P[Y = 1 | X = x] satisfies the following regularity assumptions:
p(x) is strictly increasing in x with limx!�1 p(x) = 0, and limx!1 p(x) = 1. Now, let ✓SL be the
supervised learning threshold, which is the unique value where p(✓SL) = 0.5. We can then obtain the
following bound on the performative power P with respect to any F assuming the firm’s classifier is
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X��(u) := {x : c(xorig(u), x)  ��}

(b) participant expenditor constraint

Figure 1: Illustrations for 2-dimensional strategic classification example

✓SL in the current economy (see Proposition 5):

0.5�� P
Dorig

⇥
x 2 [✓SL, ✓SL + 0.5��]

⇤
 P  �� . (5)

This bound illustrates how performative power in strategic classification depends on the fraction of
participants that fall in between the old and the new threshold. As long as the density in this region is
non-zero, a platform that offers �� > 0 utility will also have strictly positive performative power,
providing a lower bound on P.
Proposition 5. Suppose that dist(x, x0) = c(x, x0) = |x� x0|. Let us consider a set of actions F
that corresponds to the set of all threshold functions. Suppose that the posterior p(x) = P[Y =
1 | X = x] satisfies the following regularity assumptions: p(x) is strictly increasing in x with
limx!�1 p(x) = 0, and limx!1 p(x) = 1. Now, let ✓SL be the supervised learning threshold,
which is the unique value where p(✓SL) = 0.5. If the firm’s classifier is ✓SL in the current economy,
then performative power P with F can be bounded as:

0.5� P
Dorig

⇥
x 2 [✓SL, ✓SL + 0.5��]

⇤
 P  2�� . (6)

B.4 Optimization strategies, performative power, and user harm

The fact that a monopoly firm has nonzero performative power has consequences for the optimization
strategies that it would use, as we discussed in Section 3. To make this explicit, let’s contrast the
solutions of ex-ante and ex-post optimization in a simple one-dimensional setting.
Example 1 (1-dimensional setting). Consider a 1-dimensional feature vector x 2 R and suppose
that the posterior p(x) = P[Y = 1 | X = x] is strictly increasing in x with limx!�1 p(x) = 0,
and limx!1 p(x) = 1. Now consider a set of actions F that corresponds to the set of all threshold
functions and set dist(x, x0) = c(x, x0) = |x � x0|. Let ✓SL be the supervised learning threshold
from ex-ante optimization, which is the unique value where p(✓SL) = 0.5. Then, the ex-post threshold
lies at ✓PO = ✓SL +��.

In Example 1 ex-post optimization leads to a higher acceptance threshold than ex-ante optimization.
Thus, for any setting where the participants utility is decreasing in the threshold (e.g., the class of
utility functions that Milli et al. [2019] call outcome monotonic), this implies that ex-post optimization
creates stronger negative externalities for participants than ex-ante optimization. Furthermore, the
effect grows with the performative power of the firm. In the extreme case of the monopoly setting
with no outside options, ex-post optimization can leave certain participants with a net utility of 0 and
thus can transfer the entire utility from these participants to the firm.

C Proofs

C.1 Auxiliary results

The proofs for Section 3 leverage the following lemma, which bounds the diameter of ⇥ with respect
to Wasserstein distance in distribution map.
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Lemma 2. Let P be the performative power with respect to ⇥. For any ✓, ✓0 2 ⇥, it holds that
W(D(✓),D(✓0))  2P.

Proof. Let ✓curr be the current classifier weights. We use the fact that for any weights ✓00 2 ⇥, it
holds that W(D(✓curr),D(✓00))  1

|U |
P

u2U E[dist(z(u), z✓00(u))] where the expectation is over
randomness in the potential outcomes. This follows from the definition of Wasserstein distance—in
particular that we can instantiate the mass-moving function by mapping each participant to themselves.
Thus, we see that:

W(D(✓),D(✓0))  W(D(✓),D(✓curr)) +W(D(✓curr),D(✓0))

 1

|U |
X

u2U
E[dist(z(u), z✓(u))] +

1

|U |
X

u2U
E[dist(z(u), z✓0(u))]

 2 sup
✓002⇥

1

|U |
X

u2U
E[dist(z(u), z✓00(u))]

 2P,

where the last line uses the definition of performative power that bounds the effect of any ✓ in the
action set ⇥ on the participant data z.

C.2 Proof of Proposition 1

Let � be the previous deployment inducing the distribution on which the supervised learning threshold
✓SL is computed. Let ✓⇤ be an optimizer of min✓2⇥ R(✓PO, ✓), where we recall the definition of the
decoupled performative risk as R(�, ✓) := Ez⇠D(�) `(✓; z). Then, we see that for any �:

PR(✓SL)� PR(✓PO)

=
�
R(✓SL, ✓SL)� R(�, ✓SL)

�
+R(�, ✓SL)� R(✓PO, ✓PO)


�
R(✓SL, ✓SL)� R(�, ✓SL)

�
+R(�, ✓⇤)� R(✓PO, ✓

⇤)

 LzW(D(✓SL),D(�)) + LzW(D(�),D(✓PO))

 4LzP .

The first inequality follows because ✓⇤ minimizes risk on the distribution D(✓PO), while ✓SL mini-
mizes risk on D(�). The second inequality follows from the dual of the Wasserstein distance where
Lz is the Lipschitz constant of the loss function in the data argument z. The last inequality follows
from Lemma 2.

Now, suppose that ` is �-strongly convex. Then we have that:

R(✓, ✓PO)� R(✓, ✓SL) �
�

2
k✓PO � ✓SLk2

Again applying Lemma 2,
PR(✓SL) = R(✓SL, ✓SL)

 R(✓, ✓SL) + LzW(D(�),D(✓SL))

 R(�, ✓SL) + 2LzP

 R(�, ✓PO)�
�

2
k✓PO � ✓SLk2 + 2LzP

 R(✓PO, ✓PO) + Lz · W(D(�),D(✓PO))�
�

2
k✓PO � ✓SLk2 + 2LzP

 PR(✓PO) + 4LzP � �

2
k✓PO � ✓SLk2.

Using that PR(✓PO)  PR(✓SL), we find that
�

2
k✓PO � ✓SLk2  4LzP .

Rearranging gives

k✓PO � ✓SLk 

s
8LzP

�
.

17



C.3 Proof of Proposition 2

Let’s focus on firm i, fixing classifiers selected by the other firms. Let’s take PR and R to be defined
with respect to D(·) = D(✓1, . . . , ✓i�1, ·, ✓i+1, . . . , ✓C). Let ✓⇤ = argmin✓ R(✓i, ✓). We see that:

PR(✓i)  PR(✓⇤)

 R(✓i, ✓
⇤) + LzW(D(✓i),D(✓⇤))

 min
✓

R(✓i, ✓) + Lz

 
1

|U|
X

u2U
E[dist(z(u), z✓⇤(u))]

!

 min
✓

R(✓i, ✓) + LzPi.

Rewriting this, we see that:

E
z⇠D

[`i(✓
i; z)]  min

✓
E

z⇠D
[`i(✓; z)] + LzPi.

If, in addition, `i is �-strongly convex, then we know that:

LzPi � E
z⇠D

[`i(✓
i; z)]�min

✓
E

z⇠D
[`(✓; z)] � �

2
k✓i �min

✓
E

z⇠D
[`i(✓; z)]k2.

Rearranging, we obtain that
����✓

i �min
✓

E
z⇠D

[`(✓; z)]

����
2



s
2LzPi

�
.

C.4 Proof of Corollary 1

Let P be the performative power associated with the variables zC=1

✓ . We first claim that the per-
formative power of any firm in the mixture model is at most P/C. This follows from the fact that
for a given firm the potential outcome z✓(u) is equal to z(u) with probability 1� 1/C and equal to
zC=1

✓ (u) with probability 1/C.

Let’s focus on platform i, fixing classifiers selected by the other platforms. Let’s take PR and R to be
with respect to D(·) = DC(✓⇤, · · · , ✓⇤, ·, ✓⇤, . . . , ✓⇤). Now, we can apply Proposition 2 to see that

PR(✓⇤) = E
z⇠DC=1(✓⇤)

[`(✓⇤; z)]  min
✓

E
z⇠DC=1(✓⇤)

[`(✓; z)] +
LzP

C
.

Thus, in the limit as C ! 1, it holds that

E
z⇠DC=1(✓⇤)

[`(✓⇤; z)] ! min
✓

E
z⇠DC=1(✓⇤)

[`(✓; z)]

as desired.

C.5 Proof of Lemma 1

Fix a classifier f and a unit u. By Assumption 1, we know that x(u) and xf (u) are both in X��(u).
The claim follows from

dist(xorig(u), xf (u))  sup
x02X��(u)

dist(xorig(u), x
0).

C.6 Proof of Proposition 3

The first coordinate being immutable corresponds to c(x, x0) = 1 for x[1] 6= x0[1]. The proof is by
construction of a classifier f⇤ : Rm ! {0, 1}. For each individual u we define the set

X̃ (u) := arg sup
x02X��(u)

dist(x(u), x0).

Now let f⇤ be such that

f⇤(x) =

⇢
1 x 2 X̃ (u) with u = x[1]
0 x /2 X̃ (u) with u = x[1]
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where we used that the first coordinate of the feature vector x uniquely identifies the individual. The
effect of f⇤ on a population U corresponds to

1

|U|
X

u2U
dist(x(u), xf⇤(u)) =

1

|U|
X

u2U
sup

x02X��(u)
dist(x(u), x0) (7)

Thus for any F that contains f⇤ the performative power is maximized.

C.7 Proof of Corollary 2

Applying Lemma 1, it suffices to show that the diameter of the set X��(u) can be upper bounded by
2L�� for any u 2 U . We see that for any x, x0 2 X��(u), using that c is a metric, it holds that:

dist(x, x0)  L · c(x, x0)

 L · (c(xorig(u), x) + c(xorig(u), x
0))

 2L��.

C.8 Proof of Proposition 5

The upper bound follows from Corollary 4. For the lower bound, we take f to be the threshold
classifier given by ✓SL + ��. We see that for xorig(u) 2 [✓SL, ✓SL + ��], it holds that xf (u) =
✓SL +�� and x(u) = xorig(u). This means that the performative power is at least:

P =
1

|U|
X

u2U
E[dist(x(u), xf (u))]

=
1

|U|
X

u2U
E[|x(u)� xf (u)|]

� 1

|U|
X

u2U
I[xorig(u) 2 [✓SL, ✓SL +��]]E[|✓SL +�� � xorig(u)|]

� 1

|U|
X

u2U
I[xorig(u) 2 [✓SL, ✓SL +

1

2
��]] · 1

2
��

� 1

2
�� P

Dorig
[x 2 [✓SL, ✓SL +

1

2
��]],

as desired.

C.9 Proof of Proposition 4

To prove this proposition, we show the following two intermediate results which are proven in the
next two sections.

The proof relies on the following proposition that we will prove in the next section.
Proposition 6. Consider the 1-dimensional setup specified in Section 4.3, and suppose that the
economy is at a symmetric state where both firms choose classifier ✓. For any F , consider one of the
firms, let F denote their action set and let ✓min be the minimum threshold classifier in F . Then, the
performative power of the firm is upper bounded by:

P  Lmin(c(✓min, ✓), �) + �Lpreach([✓min, ✓]).

where preach([✓min, ✓]) := PDorig [x 2 [⇠(✓min), ⇠(✓)]] with ⇠(✓0) being the unique value such that
⇠(✓0) < ✓0 and c(⇠(✓0), ✓0) = 1.
Proposition 7. Consider the 1-dimensional setup described in Section 4.3. Then, a symmetric
solution [✓⇤, ✓⇤] is an equilibrium if and only if ✓⇤ satisfies

E(x,y)⇠Dorig [y = 1 | x � ⇠(✓⇤)] = 1

2
, (8)

where ⇠(✓⇤) is the unique value such that c(⇠(✓⇤), ✓⇤) = � and ⇠(✓⇤) < ✓⇤. Both firms earn zero
utility at this equilibrium. Moreover, the set F+(✓⇤) of actions that a firm can take at equilibrium that
achieve nonnegative utility is exactly equal to [✓⇤,1), assuming the other firm chooses the classifier
✓⇤.
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We now prove Proposition 4 from these intermediate results. We apply Proposition 6 to see that the
performative power is upper bounded by

B := Lmin(c(✓min, ✓
⇤), �) + L�preach([✓min, ✓

⇤])
where (✓⇤, ✓⇤) is a symmetric state. Using Proposition 2, we see that F(✓⇤) = [✓⇤,1). This means
that ✓min = ✓⇤, and so ⇠(✓min) = ⇠(✓⇤). Thus, B = 0 which demonstrates that the performative
power is upper bounded by 0, and is thus equal to 0.

C.10 Proof of Proposition 6

Consider a classifier f 2 F(✓) with threshold ✓0, and suppose that a firm changes their classifier to f .
It suffices to show that:

1

|U|
X

u2U
E[dist(x(u), xf (u))]  Lmin(c(✓min, ✓), �) + L�preach([✓min, ✓]).

For technical convenience, we reformulate this in terms of the cost function c. Based on the definition
of L, it suffices to show that:

1

|U|
X

u2U
E[c(x(u), xf (u))]  min(c(✓min, ✓), �) + �preach([✓min, ✓]).

Case 1: ✓0 > ✓. Participants either are indifferent between ✓ and ✓0 or prefer ✓ to ✓0. Due to the tie
breaking rule, the firm will thus lose all of its participants. Thus, all participants will switch to the
other firm and adapt their features to that firm which has threshold ✓. This is the same behavior as
these participants had in the current state, so xf (u) = x(u) for all participants u. This means that

1

|U|
X

u2U
E[c(x(u), xf (u))] = 0

as desired.

Case 2: ✓0 < ✓. Participants either are indifferent between ✓ and ✓0 or prefer ✓0 to ✓. Due to the tie
breaking rule, the firm will thus gain all of the participants. We break into several cases:8

>>>>>>><

>>>>>>>:

xf (u) = x(u) = xorig(u) if xorig(u) < ⇠(✓0)
xf (u) = ✓0, x(u) = xorig(u) if xorig(u) 2 [⇠(✓0),min(✓0, ⇠(✓)))]
xf (u) = x(u) = xorig(u) if xorig(u) 2 (✓0, ⇠(✓))
xf (u) = ✓0, x(u) = ✓ if xorig(u) 2 (⇠(✓), ✓0)
xf (u) = xorig(u), x(u) = ✓ if xorig(u) 2 [max(✓0, ⇠(✓)), ✓]
xf (u) = x(u) = xorig(u) if xorig(u) � ✓.

The only cases that contribute to 1

|U|
P

u2U E[c(x(u), xf (u))] are the second, fourth, and fifth cases.
Thus, we can upper bound 1

|U|
P

u2U E[c(x(u), xf (u))] by:
1

|U|
X

u2U|xorig(u)2[⇠(✓0),min(✓0,⇠(✓))]

E[c(x(u), xf (u))]

| {z }
(A)

+
1

|U|
X

u2U|xorig(u)2(⇠(✓),✓0)

E[c(x(u), xf (u))]

| {z }
(B)

+
1

|U|
X

u2U|xorig(u)2[max(✓0,⇠(✓)),✓]

E[c(x(u), xf (u))]

| {z }
(C)

For (A), we see that

(A) =
1

|U|
X

u2U|xorig(u)2[⇠(✓0),min(✓0,⇠(✓)))

E[c(xorig(u), ✓
0)]

 1

|U|
X

u2U|xorig(u)2[⇠(✓0),min(✓0,⇠(✓)))

E[c(⇠(✓0), ✓0)]

= � · PDorig [x 2 [⇠(✓0),min(✓0, ⇠(✓))))]

 � · PDorig [x 2 [⇠(✓0), ⇠(✓))].
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For (B), we see that:

(B) =
1

|U|
X

u2U|xorig(u)2(⇠(✓),✓0)

E[c(✓, ✓0)]

= c(✓, ✓0) · PDorig [x 2 (⇠(✓), ✓0)]

= min(c(✓, ✓0), �) · PDorig [x 2 (⇠(✓), ✓0)].

For (C), we see that:

(C) =
1

|U|
X

u2U|xorig(u)2[max(✓0,⇠(✓)),✓]

E[c(xorig(u), ✓)]

 1

|U|
X

u2U|xorig(u)2[max(✓0,⇠(✓)),✓]

E[min (c(✓0, ✓), c(⇠(✓), ✓))]

=
1

|U|
X

u2U|xorig(u)2[max(✓0,⇠(✓)),✓]

E[min (c(✓0, ✓), �)]

= min(c(✓0, ✓), �) · PDorig [x 2 [max(✓0, ⇠(✓)), ✓]]

Putting this all together, we obtain that:

1

|U|
X

u2U
E[c(x(u), xf (u))]  �preach([✓

0, ✓]) + min(c(✓0, ✓), �)

for preach([✓0, ✓]) := PDorig [x 2 [⇠(✓0), ⇠(✓)]] as desired. Since �preach([✓0, ✓]) + min(c(✓0, ✓), �) is
decreasing in ✓0, this expression is maximized when ✓0 = ✓min. Thus we obtain an upper bound of

� · preach([✓min, ✓]) + min(c(✓min, ✓), �) .

C.11 Proof of Proposition 7

The proof proceeds in two steps. First, we establish that [✓⇤, ✓⇤] is an equilibrium; next, we show that
[✓, ✓] is not in equilibrium for ✓ 6= ✓⇤.

Establishing that [✓⇤, ✓⇤] is an equilibrium and F+(✓⇤) = [✓⇤,1). First, we claim that [✓⇤, ✓⇤]
is an equilibrium. At [✓⇤, ✓⇤], each participant chooses the first firm with 1/2 probability. The
expected utility earned by a firm is:

1

2

Z 1

⇠(✓)
porig(x)(p(x)� (1� p(x))dx =

Z 1

⇠(✓)
porig(x)(p(x)� 0.5)dx

=

Z 1

⇠(✓)
porig(x)p(x)dx� 0.5

Z 1

⇠(✓)
porig(x)dx

=

Z 1

⇠(✓)
porig(x)dx

 R1
⇠(✓) porig(x)p(x)dx
R1
⇠(✓) porig(x)dx

� 1

2

!

=

 Z 1

⇠(✓)
porig(x)dx

!✓
E

(x,y)⇠Dorig
[y = 1 | x � ⇠(✓)]� 1

2

◆

= 0 .

If the firm chooses ✓ > ✓⇤, then since the cost function is strictly monotonic in its second argument,
participants either are indifferent between ✓ and ✓⇤ or prefer ✓ to ✓⇤. Due to the tie breaking rule, the
firm will thus lose all of its participants and incur 0 utility. Thus the firm has no incentive to switch to
✓.
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If the firm chooses ✓ < ✓⇤, then it will gain all of the participants. The firm’s utility will be:
Z 1

⇠(✓)
porig(x)(p(x)� (1� p(x))dx

=

Z ⇠(✓⇤
)

⇠(✓)
porig(x)(p(x)� (1� p(x))dx+

Z 1

⇠(✓⇤)

porig(x)(p(x)� (1� p(x))dx

= 2

Z ⇠(✓⇤
)

⇠(✓)
porig(x)(p(x)� 0.5)dx.

It is not difficult to see that at ✓⇤, it must hold that p(⇠(✓⇤))  0.5. Since the posterior is strictly
increasing, this means that p(⇠(✓)) < p(⇠(✓⇤)) = 0.5, so the above expression is negative. This
means that the firm will not switch to ⇠(✓).

Moreover, this establishes that F(✓⇤) = [✓⇤,1).

[✓, ✓] is not in equilibrium if ⇠(✓⇤) does not satisfy (8). If ✓ < ✓⇤, then the firm earns utility
1

2

✓Z 1

⇠✓
porig(x)(p(x)� (1� p(x))

◆
dx ,

which we already showed above was negative. Thus, the firm has incentive to change their threshold
to above ✓ so that it loses the full participant base and gets 0 utility.

If ✓ > ✓⇤, then the firm earns utility

U =
1

2

 Z 1

⇠(✓)
porig(x)(p(x)� (1� p(x))

!
dx ,

which is strictly positive. Fix ✏ > 0, and suppose that the firm changes to a threshold ✓0 such that
c(✓0, ✓) = ✏. Then it would gain all of the participants and earn utility:

Z 1

⇠(✓0)

porig(x)(p(x)� (1� p(x))dx =

Z ⇠✓

⇠(✓0)

porig(x)(p(x)� (1� p(x))dx

+

Z 1

⇠(✓)
porig(x)(p(x)� (1� p(x))dx

=

Z ⇠(✓)

⇠(✓0)

porig(x)(p(x)� (1� p(x))dx+ 2U.

We claim that this expression approaches 2U as ✏ ! 0. To see this, note that c(⇠(✓0), ✓) ! � and
so ⇠(✓0) ! ⇠(✓) as ✏ ! 0. This implies that

R ⇠(✓)
⇠(✓0)

porig(x)(p(x) � (1 � p(x))dx ! 0 as desired.
Thus, the expression approaches 2U > U as desired. This means that there exists ✏ such that the firm
changing to ✓0 results in a strict improvement in utility.

C.12 Proof of Theorem 1

Recall the definition of the action set S. We prove Theorem 1 by constructing a sswap 2 S and
relating the effect of a change in the score function from scurr to sswap to the causal effect of position.

For u 2 U let itop(u) and i2(u) denote the index of the content item shown to user u under scurr in the
first and second display slot, respectively. Now, let the score function sswap be such that the content
displayed in the first two display slots is swapped relative to scurr, simultaneously for all users u 2 U :

s̃(u)[i] =

8
<

:

scurr(u)[i2(u)] i = itop(u)
scurr(u)[itop(u)] i = i2(u)
scurr(u)[i] otherwise.

(9)

It holds that sswap 2 S , since |scurr(u)[itop(u)]� scurr(u)[i2(u)]|  � for all u 2 U . We lower bound
performative power as

P = sup
s2S

1

|U|
X

u2U
E [kz(u)� zs(u)k1] �

1

|U|
X

u2U
E
⇥
kz(u)� zsswap(u)k1

⇤
(10)
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To bound the difference between the counterfactual variable z(u) and zswap(u), we decompose sswap

into a series of unilateral swapped score functions, one for each viewer. The score function su
swap

associated with viewer u swaps the scores of content that currently appears in the first two display
slots for viewer u and keeps the scores of the other viewers unchanged.

Assumption 2 implies that zsswap(u) = zsuswap
(u), since there are no peer effects; zsswap(u) is

independent of sswap(u0) for u0 6= u. Thus, we can aggregate the unilateral effects across all viewers
u 2 U to obtain the effect of sswap as:

P � 1

|U|
X

u2U
E
⇥
kz(u)� zsswap(u)k1

⇤
=

1

|U|
X

u2U
E
h
kz(u)� zsuswap

(u)k1
i

(11)

Reasoning about unilateral effects allows us to relate the summands in (11) to the causal effect of
position. In particular, focus on coordinate itop(u) in the norm, and let Y0(u) = z(u)[itop(u)] and
Y1(u) = zsuswap

(u)[itop(u)]. Then, we have

P � 1

|U|
X

u2U
E |z(u)[itop(u)]� zsuswap

(u)[itop(u)]| =
1

|U|
X

u2U
E |Y0(u)� Y1(u)| = �.

where the causal effect of position � is defined as in Definition 2.
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