
A Details in A2

A.1 Unify Magnitude of Perturbations

Perturbations generated by different operations in O? have different magnitudes and thus require
different magnitudes of step size for different >?. For example, FGSM generates perturbations
with elements belonging to {�1, 0, 1}, while the perturbation generated by FGM is usually in the
magnitude of 10�3. Obviously, they cannot use the same step size. To have a uniform effect of the
step size block, we normalize the magnitude of other generated perturbations to be the same as FGSM
(i.e., X>? = X>? ·

kXFGSM k

kX>? k
). In this way, we find that other attack methods such as FGM can achieve

good results with the same step size as FGSM.

A.2 Temperature Parameter in Softmax

Since there is an order of magnitude difference in step size operations, the larger step size with the
same score will dominate the output. For example, 0.7 · 10�2

[ + 0.3 · [ ⇡ 0.3[. The output of the
step size block is dominated by the operation [, despite the greater weight of 10�2

· [. To alleviate
the problem, we use the temperature parameter g in softmax to sharpen the distribution:

W
(:)
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(:)
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2Os

exp (4
>
0/g)

(12)

where >s is an operation in Os, and 4>B is its attention score. Through experiments, we set g = 0.1 to
distinguish the preference for the step size in most cases.

A.3 Overhead of A2

Let the number of steps be  , the number of operations be |O|, the image size be , ⇥ � and
the embedding size be ⇢ . The number of the attacker’s parameter is O ( · ⇢ · (, ⇥ � + |O|)).
Specifically, the number of parameters for the attacker is 7873280, which is 17% of the model’s
parameters (i.e., 46160474). In each batch, there is only 1 forward calculation of all cells with 1
backpropagation. In comparison, the model requires  forward calculations with backpropagation.
Therefore, the additional computational overhead from the attacker is not significant in terms of the
number of parameters and computations.

Moreover, PGD and A2 are close in terms of clock time. For WRN-34, PGD takes
19.75/147.09/287.76 seconds to generate 1/10/20 step attacks respectively. It demonstrates that
more inner steps lead to a linear increase in time. Meanwhile, A2 takes 157.61/302.51 seconds to
generate the 10/20 step attack respectively. The main overhead remains in the forward computation
and backward propagation of the defense model. For WRN-34, the training time of AWP-A2 is 970
s/epoch while the training time of AWP is 920 s/epoch.

In summary, the additional overhead of A2 is not significant.

A.4 Why No Mixture in O?

Like most NAS methods in AutoML, the discrete selection in the perturbation block is more inter-
pretable and robust (e.g., L1-Norm for feature selection and single path in NAS) than the mixture
over possible solutions. Moreover, the mixture will incur more computational overhead and 7 times
memory overhead due to 7 operations in O? . Figure 3 shows an example of the generated attack on
CIFAR-10, which can be migratable.

B Addition Experiments

B.1 Why use FGSM-based PGD in RQ1.

There are multiple single-step attack methods in O? for stacking as PGD, e.g., FGM-based PGD
and FGSM-based PGD. The experimental results of the attack effect of PGD based on these attack
methods demonstrate that FGSM-based PGD outperforms the stacking of other operations. Thus, we
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Figure 3: Example of generated attack on CIFAR-10.

choose FGSM-based PGD with a random start X (0) ⇠ *=8 5 >A<(�n , n) as a baseline for comparison
with the automated attacker.

B.2 Number of samples " in MC Approximation.

" is an important hyperparameter that dictates the quality of MC approximation and the training
overhead. We test the cases with " 2 {1, 2, 5} and achieve similar performance. Thus, we set " to 1
and achieve good results with a significantly lower overhead.

B.3 Generality of A2 in White-Box Attacks

Table 5: Comparison of attack effects on CIFAR-10 (%, the lower the better) of PGD-based and
CW1-based attacks. The architecture of all defense models is WideResNet, except for MART whose
architecture is ResNet-18.

MART TRADES-AWP MART-AWP RST-AWP

Natural 83.07 85.36 85.60 88.25

PGD20 53.76 59.64 59.52 64.14
PGD20-A2 53.24 59.34 59.25 63.97

CW1 49.97 57.07 56.44 61.82
CW1-A2 49.82 56.98 55.81 61.30

In this part, we investigate whether A2 is general to white-box attacks. As a more powerful attack
method, CW1-based attacks [Carlini and Wagner, 2017] stably outperform PGD-based attacks. For
comparison with CW1, we propose a variant of A2 that uses CW1 loss to generate perturbations and
denote it as CW1-A2. The results in Table 5 show that A2 is general and can improve the attack effect
of PGD and CW1 by combining attack methods and tuning the step size. Moreover, the additional
overhead of A2 is 5% to 10%, which is a rather acceptable trade-off.

B.4 Robustness Against Transferable Black-Box Attacks

We investigate the robustness of A2 against transferable black-box attacks. Table 6 provides test
robustness on CIFAR-10 using ResNet-18. We adopt three transferable black-box attack methods:
MI (momentum = 1) [Dong et al., 2018], DI [Xie et al., 2019], and TI [Dong et al., 2019]. The
transferable attacks are generated by an ensemble of the above methods on three surrogate pre-trained
models 2: IncV3 (InceptionV3), VGG19, and DN201 (DenseNet201). Table 6 shows that AT boosts
the robustness against transferable black-box attacks, and A2 can further improve the adversarial
robustness.
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Table 6: Test robustness (%, the higher the better) on CIFAR-10 using ResNet-18 against transferable
black-box attacks.

MI+DI+TI

IncV3 VGG19 DN201 PGD20

ResNet-18 16.12 7.37 5.35 0.02
ResNet-18-AT 61.98 60.81 59.63 52.79
ResNet-18-AT-A2 62.79 61.85 60.28 52.96
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Figure 4: Distribution of attacks selected by perturbation blocks of A2.

B.5 A Closer Look at Selected Attacks

We analyze the selected attacks from the perspective of perturbation blocks with different steps and
datasets.

The first and final perturbation blocks of 10-step A2 in CIFAR-10 are chosen for analysis. Figure 4
shows the distribution of selected attacks of different perturbation blocks.

• Perturbation Block 1: A2 tends to choose FGM, FGSM, and partially random methods as
initialization in the first step. The momentum-based attack methods are quickly discarded
as the gradient of the previous step is absent. FGSM is chosen more frequently due to its
stronger attack on both foreground and background.

• Perturbation Block 10: The optimization of the victim model leads to changes in the
distribution of selected attacks in the last block. In the early stage of training, the victim
model is vulnerable. A2 retains the diversity and plays the role of friendly attackers like
FAT [Zhang et al., 2020]. At the end of training, A2 prefers the momentum-based attacks
(i.e., FGSMM and FGMM).

From the perspective of datasets, SVHN and CIFAR-10 prefer different attack methods. As shown in
Figure 4(c), SVHN discards FGSMM, which is most frequently used in CIFAR-10, and pays more
attention to FGMM. Moreover, SVHN rarely uses Identity compared with CIFAR-10 as its higher
robustness accuracy requires more powerful perturbations.

In summary, A2’s preference for selecting attacks in blocks varies according to the block step, dataset,
and victim model.

2https://github.com/huyvnphan/PyTorch_CIFAR10
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