
Redistribution of Weights and Activations for
AdderNet Quantization

Ying Nie1 Kai Han1,2 Haikang Diao3 Chuanjian Liu1 Enhua Wu2,4 Yunhe Wang1∗
1Huawei Noah’s Ark Lab

2State Key Lab of Computer Science, ISCAS & UCAS
3School of Integrated Circuits, Peking University 4University of Macau

{ying.nie, kai.han, yunhe.wang}@huawei.com

Abstract

Adder Neural Network (AdderNet) provides a new way for developing energy-
efficient neural networks by replacing the expensive multiplications in convolution
with cheaper additions (i.e., `1-norm). To achieve higher hardware efficiency, it
is necessary to further study the low-bit quantization of AdderNet. Due to the
limitation that the commutative law in multiplication does not hold in `1-norm, the
well-established quantization methods on convolutional networks cannot be applied
on AdderNets. Thus, the existing AdderNet quantization techniques propose to
use only one shared scale to quantize both the weights and activations simultane-
ously. Admittedly, such an approach can keep the commutative law in the `1-norm
quantization process, while the accuracy drop after low-bit quantization cannot be
ignored. To this end, we first thoroughly analyze the difference on distributions
of weights and activations in AdderNet and then propose a new quantization algo-
rithm by redistributing the weights and the activations. Specifically, the pre-trained
full-precision weights in different kernels are clustered into different groups, then
the intra-group sharing and inter-group independent scales can be adopted. To
further compensate the accuracy drop caused by the distribution difference, we
then develop a lossless range clamp scheme for weights and a simple yet effective
outliers clamp strategy for activations. Thus, the functionality of full-precision
weights and the representation ability of full-precision activations can be fully
preserved. The effectiveness of the proposed quantization method for AdderNet
is well verified on several benchmarks, e.g. , our 4-bit post-training quantized
adder ResNet-18 achieves an 66.5% top-1 accuracy on the ImageNet with com-
parable energy efficiency, which is about 8.5% higher than that of the previous
AdderNet quantization methods. Code will be available at https://gitee.com/
mindspore/models/tree/master/research/cv/AdderQuant.

1 Introduction

Convolutional neural networks (CNNs) have achieved extraordinary performance on many vision
tasks. However, the huge energy consumption of massive multiplications makes it difficult to deploy
CNNs on portable devices like mobile phones and embedded devices. As a result, substantial research
efforts have been devoted to reducing the energy consumption of CNNs [12, 16, 8, 7, 32, 37, 29].

Beyond pioneering model compression approaches, Chen et al. [4] advocate the use of `1-norm
instead of cross-correlation for similarity measure between weights and activations in conventional
convolution operation, thus produces a series of adder neural networks (AdderNets) without massive

∗Corresponding author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://gitee.com/mindspore/models/tree/master/research/cv/AdderQuant
https://gitee.com/mindspore/models/tree/master/research/cv/AdderQuant

×Sx

X

W3

W2

W1

×Sx

×Sx

Quant

×Sw

×Sw

×Sw

De-Quant

or

Quant

×Sx Sw1

Activations (INT4) Weights (INT4)

×Sx Sw2

×Sx Sw3
De-Quant

Scales (FP)

Activations (FP) Weights (FP)

Vanilla Conv

Activations (INT4) Weights (INT4) Scales (FP)

Adder Conv
:Eq. 1

:Eq. 2

(a) The input full-precision activations and weights

(b) Quantization for vanilla conv (c) Quantization for adder conv

-8 7

-7 7

-7 7

-8 7

-8 7

-7 7

-7 7

-8 7

-8 7

-7 7

-7 7

-8 7

W1

W2

W3

X

W1
W2

W2

W1

W3

W3

Bits waste

Over clamp

X

X

...

Figure 1: Comparisons of quantization methods of vanilla convolution and adder convolution
(symmetric 4-bit as an example). The independent scales adopted by vanilla convolution quantization
can properly handle the challenge of large differences in weights and activations. One shared scale
adopted in existing adder convolution quantization methods cannot handle this challenge.

number of multiplications. Compared with multiplication, addition is more energy efficiency, e.g.
full-precision (FP) multiplication takes about 4× energy as full-precision addition [15, 39, 33, 23].
AdderNets have shown impressive performance in large scale image classification [4, 38], object
detection [5], etc. which shed light into the design of low-power hardware for AI applications.

The operation of low-bit addition has much lower energy consumption than the full-precision
addition [15, 39, 33, 23]. To further improve the efficiency of AdderNet, low-bit quantization is a
crucial option. Quantization algorithms have been studied in conventional convolution networks
for a long time and achieved remarkable performance [20, 1, 19, 11, 28, 24, 18, 10, 36, 30]. As the
law of commutation holds in the quantization process of multiplication, the scales of weights and
activations for quantization can be independent of each other (Eq. 6). In practice, weights tend to be
quantized with multiple scales based on the output channels, while activations are quantized with one
scale based on the whole layer (Figure 1 (b)). However, the law of commutation does not hold in the
`1-norm quantization, which restricts the weights and activations in AdderNet to be quantized with
shared scale (Eq. 7, 10). Therefore, existing AdderNet quantization techniques [35, 5] adopt only one
shared scale to quantize both the weights and activations simultaneously. In practice, the shared scale
is calculated based on the activations of the whole layer (Top of Figure 1 (c)) or the weights of the
whole layer (Bottom of Figure 1 (c)). However, given a pre-trained full-precision AdderNet model,
the ranges of weights usually vary widely between output channels, and the ranges of activations
and weights also vary widely, both of which pose a huge challenge for quantization. If the range of
activations is adopted to quantize weights, a large proportion of weights will be clamped, i.e., over
clamp. If the range of weights is adopted to quantize activations, a large proportion of precious bits
will be never used, i.e., bits waste. In both cases, a poor quantized accuracy will be incurred. In
contrast, multiple independent scales adopted in the vanilla convolution can avoid this challenge.

To enhance the accuracy of quantized low-bit AdderNets, we first thoroughly analyze the problems
of the one shared scale paradigm for quantization in existing AdderNet quantization methods. Then,
we develop a novel quantization algorithm for AdderNet. Specifically, we first propose a scheme of
group-shared scales with a negligible increase in computational workload to address the challenge
that the ranges of weights vary widely between output channels. The pre-trained full-precision
weights are divided into multiple groups by a quantization-oriented clustering process. Since the
weights within a group are similar, the intra-group sharing and inter-group independent scales are
thus used in our method. To further improve the performance of quantized adder neural network, we
introduce a lossless range clamp scheme for weights to further reduce the difference on distribution of
activations and weights in AdderNet. In practice, for groups where the range of the weights exceeds
the range of the activations, we clamp the weights to the range of activations and then incorporate

2

the clamped values into the following bias term. Next, for those activations that contain outliers,
a simple yet effective outliers clamp strategy for activations is presented to eliminate the negative
impact of outliers. The extensive experiments conducted on several benchmarks demonstrate the
effectiveness of the proposed quantization method.

2 Preliminaries and Motivation

In this section, we briefly revisit the necessary fundamental of adder neural network and existing
quantization process for conventional CNN and AdderNet, then we describe the motivation.

2.1 Preliminaries

Adder Neural Network (AdderNet). Conventional convolution uses massive multiplications for
computation, while adder convolution utilize addition to replace multiplication for reducing computa-
tional cost. Given the input activations X ∈ RH×W×cin and the weights W ∈ Rd×d×cin×cout , the
traditional convolutional operation is defined as:

Y (m,n, c) = X ⊗W =

d∑
i=1

d∑
j=1

cin∑
k=1

X(m+ i, n+ j, k)×W (i, j, k, c), (1)

where H and W are the height and width of activations, c is the index of output channels, d × d
denotes the kernel size, cin and cout are the number of input and output channels, respectively.

To avoid massive floating number multiplications, Chen et al. [4] advocate the use of `1-norm instead
of cross-correlation for similarity measure between activations and weights in CNN:

Y (m,n, c) = X ⊕W = −
d∑

i=1

d∑
j=1

cin∑
k=1

|X(m+ i, n+ j, k)−W (i, j, k, c)|, (2)

where | · | is the absolute value function. Since Eq. 2 only contains addition operation, the energy costs
of the adder neural network can be effectively reduced [15, 33, 39]. With modified back-propagation
approach and adaptive learning rate strategy, AdderNet achieves satisfactory performance on image
classification [4, 38, 35], object detection [5], etc.

Quantization for CNN. The common uniform quantization for CNN linearly maps full-precision
real numbers into low-bit integer representations, which is preferred by hardware efficiency. We
take the symmetric mode without zero point as an example to describe the procedure of quantization.
Given a full-precision input value v and bit-width b, the quantized value v̄ can be defined as:

v̄ = clamp(bv/se, qn, qp), (3)

where the scale s = 2 ∗max(|v|)/(2b − 1), qn = −2b−1 and qp = 2b−1 − 1. b·e denotes the round
function and clamp(z, r1, r2) indicates that value z is clamped between r1 and r2. Correspondingly,
the de-quantized data can be computed by:

v̂ = v̄ × s. (4)

And the quantization loss can be defined as:

Lquant = |v̂ − v|. (5)

Since the commutative law holds in multiplication, the multiplication operation of weights and
activations in the conventional convolution can be converted as follows:

X ⊗W ≈ X̂ ⊗ Ŵ = (sxX̄)⊗ (swW̄) = (sxsw)× (X̄ ⊗ W̄), (6)

where ⊗ denotes the vanilla convolution operation in Eq. 1. In common settings [24, 19, 20, 1, 6],
the weights adopt independent sw for each output channel, and all activations in a layer share one sx.
From Eq. 6, the data format of vanilla convolution operation is changed from full-precision to low-bit
integer, which can reduce the energy consumption effectively.

Quantization for AdderNet. Due to the fact that the commutative law does not hold in adder
convolution, the independent scales sw and sx cannot be adopted when quantifying weights and
activations in adder convolution as we do in conventional convolution, that is:

X ⊕W ≈ X̂ ⊕ Ŵ = (sxX̄)⊕ (swW̄) 6= (swsx)× (X̄ ⊕ W̄), (7)

3

where⊕ denotes the adder convolution operation in Eq. 2. Therefore, the existing works on AdderNet
quantization [35, 5] all adopt one shared scale s for quantifying weights and activations. Thus, the
quantized and de-quantized weights are defined as:

W̄ = clamp(bW/se, qwn, qwp), Ŵ = sW̄ , (8)

similarly, the quantized and de-quantized activations are defined as:

X̄ = clamp(bX/se, qxn, qxp), X̂ = sX̄, (9)

where s = 2 ∗max(|X|)/(2b − 1) or s = 2 ∗max(|W |)/(2b − 1). Therefore, the quantized adder
convolution can be implemented:

X ⊕W = X̂ ⊕ Ŵ = (sX̄)⊕ (sW̄) = s× (X̄ ⊕ W̄). (10)

2.2 Motivation

[0, 1)

75.3%

[1, 2)

19.9%

[2, 5]

4.8%

[0, 10)

79.2%

[10, 20)

15.3%

[20, 40)

4.8%
[40, 90]

0.7%

(a) Activations (b) Weights

Figure 2: The statistics of the ab-
solute ranges of activations and
weights in the pre-trained full-
precision AdderNet.

Empirically, the values of weights and activations tend to vary
widely in pre-trained full-precision AdderNet. We take the
layer1.1.conv2 in pre-trained adder ResNet-20 [14] as an ex-
ample to visualize the statistics of the absolute ranges of activa-
tions and weights in Figure 2. Obviously, the absolute ranges
of weights vary widely between output channels, and the ab-
solute ranges of activations and weights also vary widely, both
of which pose a huge challenge for the quantization with one
shared scale. After thorough analysis, we conclude that when
weights and activations in AdderNet are quantized with one
shared scale, no matter whether the scale is calculated based
on weights or activations, a large quantization loss (Eq. 5) will
be incurred, resulting in a poor accuracy, especially in the case
of low bits. For example, the Top-1 accuracy loss of 5-bit quantized adder ResNet-18 on the ImageNet
is 3.3%, while the accuracy loss of 4-bit quantized adder ResNet-18 increases to 9.9% [35].
Proposition 1. Denote rx and rw as the ranges of activations and weights in AdderNet, respectively.
If rx is adopted to quantize weights, a large proportion of weights will be clamped. If rw is adopted
to quantize activations, a large proportion of precious bits will be never used. In both cases, large
quantization loss is incurred, resulting in a poor accuracy.

Proof. For the first case where rx is adopted to quantize weights, according to Eq. 8, the detailed
quantization of weights can be formulated as:

W̄ = clamp(bW (2
b − 1)/2rxe,−2b−1, 2b−1 − 1). (11)

Without losing generality, suppose W = 50rx, then bW (2b − 1)/2rxe = 25(2b − 1), if 25(2b − 1) is
clamped between −2b−1 and 2b−1, then the proportion of the clamped value is (25 ∗ (2b − 1) −
2b−1)/(25 ∗ (2b − 1)) = (49 ∗ 2b−1 − 25)/(50 ∗ 2b−1 − 25) ≈ 0.98. Besides, the quantization loss
is |Ŵ −W | ≈ |rx − 50rx| = 49rx, which will result in a significant accuracy degradation.

For the second case where rw is adopted to quantize activations, according to Eq. 9, the detailed
quantization of activations can be formulated as:

X̄ = clamp(bX(2
b − 1)/2rwe,−2b−1, 2b−1 − 1). (12)

Similarly, suppose X = 0.02rw, then bX(2b − 1)/2rwe = b0.01(2b − 1)e, if we clamp b0.01(2b − 1)e
between −2b−1 and 2b−1, the remaining 2b−1 − b0.01(2b − 1)e ≈ 0.98 ∗ 2b−1 bits will be never
used, which is a huge waste for precious bits.

3 Approach

In this section, we will describe the proposed quantization algorithm for AdderNet in detail. Firstly,
we introduce the method of group-shared scales based on clustering. Then, the clamp for weights and
activations are proposed, respectively.

4

-1.4 1.2 1.1

-4.5 0.0 0.6

-0.4 0.8 1.6

0.5 1.2 -0.7

0.8 -0.7 0.6

-0.5 0.37 -1.0

X W3

W2

-1.2 0.5 -0.8

0.52 1.2 1.0

7.3 -5.1 1.3

W1

16.8 12.3 -15.4

11.3 21.0 -19.2

-10.0 18.4 16.2

-1.4 1.2 1.1

-1.6 0.0 0.6

-0.4 0.8 1.6

0.5 1.2 -0.7

0.8 -0.7 0.6

-0.5 0.37 -1.0

-1.2 0.5 -0.8

0.52 1.2 1.0

7.3 -5.1 1.3

1.6 1.6 -1.6

1.6 1.6 -1.6

-1.6 1.6 1.6

+

0

0

-126.2

Bias

(a) Clustering-based Weights Grouping

3 7 -4

3

-5 4 -6

-7 3 -5

.. .. 6

7
7 7 -8

7 7 -8

-8 7 7

×S1

×S1

×S2

De-Quant

+

-8 7 6

-8 0 4

-2 5 7

-7 6 5

-8 0 3

-2 4 7

0

0

-126.2

(c) Range Clamp for Weights

X
W3

W2

W1

X W3

W2

W1X

Bias

Quant

(b) Outliers Clamp for Acts

-1.4 1.2 1.1

-1.6 0.0 0.6

-0.4 0.8 1.6

0.5 1.2 -0.7

0.8 -0.7 0.6

-0.5 0.37 -1.0

X W3

W2

-1.2 0.5 -0.8

0.52 1.2 1.0

7.3 -5.1 1.3

W1

16.8 12.3 -15.4

11.3 21.0 -19.2

-10.0 18.4 16.2

≈

=

(d) Quantization

Figure 3: An illustration of the proposed quantization method for AdderNet (symmetric 4-bit as an
example). The pre-trained full-precision weights are clustered into different groups. Then the clamp
scheme for weights and activations are explored respectively to make efficient use of the precious
bits and eliminate the negative impact of outliers.

3.1 Clustering-based Weights Grouping

To address the challenge that the ranges of weights in pre-trained full-precision AdderNet vary
widely between output channels, we propose a novel quantization method with group-shared scales
as illustrated in Figure 3 (a). Formally,

X ⊕W = concat(o1, ..., og),

where oj = sj × (X̄ ⊕ W̄ [:, :, :, Ij]),
(13)

where j = 1, ..., g is the index of groups, g is the number of pre-defined groups. Ij indicates
a set of indexes of weights belonging to the j-th group, and sj indicates the j-th scale. The set
I is achieved by clustering the weights in the pre-trained full-precision model. Since the scale
s = 2 ∗max(|v|)/(2b − 1), which indicates that s and the maximum of |v| are positively correlated.
Thus, we cluster v based on the maximum of |v|, not all the elements of v. In practice, the absolute
maximum in each output channels of weights are taken as the clustering feature. Formally, the
generated feature vector of weights is denoted as [f1, ..., fcout

]:

fc = max(|W [:, :, :, c]|), (14)

where c = 1, ..., cout is the index of output channels. Next, the feature vector is divided into pre-
defined g clusters I = {I1, I2, ..., Ig}. Any pair of points within each cluster should be as close to
each other as possible:

min
I

g∑
j=1

∑
c∈Ij

|fc − µj |2, (15)

where µj is the mean of points in cluster Ij . The method like k-means [13] can be adopted for
clustering weights with the objective function in Eq. 15. Finally, the intra-group sharing and inter-
group independent scales can be adopted for quantization. In practice, for groups where the range of
the weights is within the range of the activations, the difference between the range of the weights and
the activations is usually small, so the scale calculated based on the range of weights can be adopted
for quantifying both the weights and activations. Conversely, for groups where the range of weights
exceeds the range of activations, the range of weights and activations tends to differ significantly,
making it difficult to quantize both weights and activations with one shared scale, which will be
addressed in the next subsection.

Analysis on Complexities. Compared to quantifying weights and activations with only one scale,
the proposed quantization scheme with group-shared scales can improve the performance of quantized
AdderNet, but it will result in a small increase in Floating Point Operations (FLOPs). After thorough
analysis, we conclude that the increased FLOPs is negligible.

5

Before Clamp After Clamp

Adder activations Adder weights Adder activations Adder weights Adder bias

Figure 4: The distributions of activations and weights in pre-trained full-precision AdderNet.

Proposition 2. Without losing generality, suppose cout = cin = c, then the additional FLOPs ratio
introduced by the group-shared scales is approximately equal to 1/(6c+ 1), which is negligible.

The detailed proof is provided in the supplementary material under the assumption that g = 4,
considering that the magnitude of c is generally in the tens or hundreds for common networks, thus
the additional FLOPs ratio is very small.

3.2 Clamp for Weights and Activations

To address another challenge that the ranges of activations and weights in pre-trained full-precision
AdderNet vary widely, more specifically, the range of weights far exceeds the range of activations
(Left of Figure 4), we present a lossless range clamp scheme for weights (Figure 3 (c)). Besides, a
simple yet effective outliers clamp strategy for activations is also introduced to eliminate the negative
impact of outliers (Figure 3 (b)).

Range Clamp for Weights. A lossless range clamp scheme for weights is first proposed. Formally,
denote Wc as any one output channel weights, i.e., Wc = W [:, :, :, c], c ∈ [1, ..., cout], rx and rw as
the ranges of activations and weights, respectively. In practice, we clamp the full-precision values of
Wc to the range of [−rx, rx], then add the clamped values to the following bias b.
Theorem 1. The proposed range clamp scheme for weights has no any effect on the accuracy, i.e.,
lossless. Formally,

X ⊕Wc = X ⊕ clamp(Wc,−rx, rx) + b,

where b =−
d∑

i=1

d∑
j=1

cin∑
k=1

max(|Wc[i, j, k]| − rx, 0).
(16)

Proof.

X ⊕Wc = −
d∑

i=1

d∑
j=1

cin∑
k=1

|X(m+ i, n+ j, k)−Wc(i, j, k)| , −
d∑

i=1

d∑
j=1

cin∑
k=1

f(X,Wc(i, j, k)), (17)

where f(X,Wc(i, j, k)) can be divided into three cases:

• if Wc(i, j, k) > rx , then f(X,Wc(i, j, k)) = (rx −X(m+ i, n+ j, k)) + (Wc(i, j, k)− rx).

• if −rx ≤Wc(i, j, k) ≤ rx , then f(X,Wc(i, j, k)) = |X(m+ i, n+ j, k)−Wc(i, j, k)|.

• if Wc(i, j, k) < −rx , then f(X,Wc(i, j, k)) = (X(m+ i, n+j, k)+rx)+(−Wc(i, j, k)−rx).

The above three cases can be unified into:

X ⊕Wc = X ⊕ clamp(Wc,−rx, rx)−
d∑

i=1

d∑
j=1

cin∑
k=1

max(|Wc[i, j, k]| − rx, 0). (18)

After the lossless range clamp process for weights, rw is equal to rx. Thus, we can directly adopt rx
to quantize the weights and activations.

Outliers Clamp for Activations. As shown in the left of Figure 4, some activations clearly have
outliers. To avoid the negative impact of these outliers during quantization, we propose a simple yet
effective outliers clamp strategy for activations. Specifically, the absolute activations are denoted as

6

X = {|x0|, ..., |xn−1|}, and the sorted X in ascending order is denoted as X̃, where n is the number of
the values. We select the value rx = X̃[bα ∗ (n−1)e] as the range of activations for the calculation of
scale, where α ∈ (0, 1] is a hyper-parameter controlling the ratio of discarded activations. Similarly,
there is another option, i.e., rx = X̃[n− 1] ∗ α. However, this method can only reduce the negative
impact of outliers, whereas ours can eliminate the negative impact of outliers.

4 Experiments

In this section, we conduct extensive experiments. Thorough ablation studies are also provided.

4.1 Experiments on CIFAR

Re-train FP Networks. Following the pioneering work of AdderNet [4], we first conduct exper-
iments on CIFAR-10 and CIFAR-100 [21]. The CIFAR-10/100 dataset consists of 60,000 color
images in 10/100 classes with 32× 32 size, including 50,000 training and 10,000 validation images.
The training images are padded by 4 pixels and then randomly cropped and flipped. We re-train the
three relevant full-precision networks, including VGG-Small [3], ResNet-20 [14] and ResNet-32 [14],
according to the experimental settings in AdderNet [4]. Specifically, the first and last layers of the
network are kept as conventional convolution, and the other layers are replaced with adder convolu-
tion. We employ learning rate starting at 0.1 and decay the learning rate with cosine learning rate
schedule. SGD with momentum of 0.9 is adopted as our optimization algorithm. The weight decay is
set to 5× 10−4. We train the models for 400 epochs with a batch size of 256. The final results are
provided in in the supplementary material, and are basically consistent with the results in [4]. The
baseline results of CNN and binary neural network (BNN) [41] are cited from [4].

Low-bit Quantization. Following the general setting in quantization [31, 40, 22, 27, 25], we do not
quantize the first and the last layers. The proposed quantization method can be employed in either
post-training quantization (PTQ) or quantization-aware training (QAT). In practice, when the bits is
4, we begin to perform QAT procedure. Unless otherwise specified, the number of groups we use is 4.
The hyper-parameter α controlling the ratio of discarded outliers in activations is empirically set to
0.999 in CIFAR experiments. In the QAT procedure, we keep the same settings as the FP training,
except that the learning rate is changed to 1 × 10−4, and only 50 epochs are used for saving the
training time. The straight-through estimator [2] is adopted for avoiding the zero-gradient problem.

Table 1: Quantization results of AdderNets on CIFAR-10 and CIFAR-100 datasets.

Model Bits CIFAR-10 (%) CIFAR-100 (%)
PTQ QAT PTQ QAT

VGG-Small

8 93.42 (-0.02) - 73.56 (-0.04) -
6 93.48 (+0.04) - 73.62 (+0.02) -
5 93.41 (-0.03) - 73.50 (-0.10) -
4 93.20 (-0.24) 93.46 (+0.02) 73.15 (-0.45) 73.58 (-0.02)

ResNet-20

8 91.40 (-0.02) - 67.58 (-0.01) -
6 91.32 (-0.10) - 67.63 (+0.04) -
5 91.36 (-0.06) - 67.46 (-0.13) -
4 90.72 (-0.70) 91.21 (-0.21) 65.76 (-1.83) 67.35 (-0.24)

ResNet-32

8 92.76 (+0.04) - 70.46 (+0.29) -
6 92.62 (-0.10) - 70.08 (-0.09) -
5 92.59 (-0.13) - 70.09 (-0.08) -
4 91.73 (-0.99) 92.35 (-0.37) 68.24 (-1.93) 69.38 (-0.79)

The quantization results of AdderNets are reported in Table 1. For all networks, there is almost no
accuracy loss in 8-bit quantization compared to the full-precision counterparts. For example, the
accuracy of 8-bit quantized ResNet-32 is even 0.29% higher. For the 6-bit and 5-bit quantization,
the accuracy loss exists, but is still within an acceptable range. For the more challenging 4-bit
quantization, the accuracy loss of PTQ increases significantly. Therefore, QAT procedure is necessary
in this case. After 50 epochs training, the accuracy loss was greatly reduced. For example, in the case
of 4-bit ResNet-20 on CIFAR-100, the accuracy loss is reduced from 1.83% to 0.24%. If equipped
with more refined QAT techniques, such as EWGS [22], KD [27] or simply a longer training epoch,
the accuracy loss can be further reduced, but it is not the focus of this paper.

7

4.2 Experiments on ImageNet

Re-train FP Networks. We further conduct evaluation on ImageNet dataset [9], which contains over
1.2M training images and 50K validation images belonging to 1,000 classes. The pre-processing
and data augmentation follow the same protocols as in [14]. We re-train two full-precision networks
including ResNet-18 and ResNet-50 [14] according to the experimental settings in [4]. The entire
training takes 150 epochs with a weight decay of 1 × 10−4 and the other hyper-parameters is the
same as that in CIFAR experiments. The final results are provided in the supplementary material and
the baseline results of CNN and BNN are also cited from [4].

Low-bit Quantization. We adopt the same quantization settings discussed in CIFAR experiments
except that the hyper-parameter α is set to 0.9992. Besides, in the QAT procedure, we also keep the
same settings as the full-training training, except that the learning rate is changed to 1× 10−3, and
only 20 epochs are used for saving training time.

Table 2: Quantization results of AdderNets on ImageNet.

Model Bits Top-1 Acc (%) Top-5 Acc (%)
PTQ QAT PTQ QAT

ResNet-18

8 67.7 (-0.2) - 87.7 (-0.1) -
6 67.7 (-0.2) - 87.6 (-0.2) -
5 67.4 (-0.5) - 87.3 (-0.5) -
4 66.5 (-1.4) 67.4 (-0.5) 86.6 (-1.2) 87.4 (-0.4)

ResNet-50

8 75.0 (-0.0) - 91.9 (-0.0) -
6 75.0 (-0.0) - 91.8 (-0.1) -
5 74.7 (-0.3) - 91.5 (-0.4) -
4 73.2 (-1.8) 73.7 (-1.3) 90.7 (-1.2) 90.9 (-1.0)

The quantization results are reported in Table 2. For both networks, there is almost no loss in 8-bit
and 6-bit quantization compared to the full-precision counterparts. For the 5-bit quantization, the
accuracy loss is still within an acceptable range, i.e., a maximum loss of 0.5%. Similar to CIFAR
experiments, QAT is adopted in 4-bit quantization. After 20 epochs training, the accuracy loss was
greatly reduced. For example, the accuracy loss of 4-bit ResNet-18 is reduced from 1.4% to 0.5%.

4.3 Comparisons with State-of-the-arts

Image Classification. We compare the proposed method with the existing AdderNet quantization
technique QSSF [35] on image classification task. We first compare the PTQ results on ImageNet
with it. The detailed Top-1 accuracy loss comparison with full-precision Adder ResNet-18 are
reported in Figure 5 (a). QSSF [35] simply adopt only one shared scale to quantize both the weights
and activations simultaneously, which ignores the properties of the distribution of the weights and
activations of AdderNet, leading to the problems of "Over clamp" and "Bits waste", further leading to
a poor accuracy. In contrast, we propose a quantization method consisting of three parts: clustering-
based weights grouping, lossless range clamp for weights and outliers clamp for activations. The
problems of "Over clamp" and "Bits waste" can be effectively resolved with our quantization method,
further leading to a high quantized accuracy. As the number of bits decreases, the advantages of
our method become more pronounced. For example, in the case of 4-bit, our method achieves 8.5%
higher accuracy than QSSF [35].

(a) Comparison of Adder ResNet-18 on ImageNet (b) Comparison of Adder ResNet-20 on CIFAR-100

Figure 5: Comparisons with QSSF [35] on image classification task.

8

In addition, we also compare the QAT results on CIFAR-100 with it. In Figure 5 (b), we visualize the
training loss, training accuracy and testing accuracy of the 4-bit Adder ResNet-20. For the accuracy
curve, the solid lines and dash lines represent the testing accuracy and training accuracy, respectively.
Our quantization method achieves a higher accuracy on both training and testing. Specifically, under
the same epoch, our method achieves 67.35% test accuracy, which is higher than 64.61% achieved by
QSSF [35].

Object Detection. AdderDet [5] presents an empirical study of AdderNet on object detection task.
Besides, the PTQ mAP with one shared scale of 8-bit Adder FCOS [34] is also reported in this work,
i.e., 36.2 on COCO val2017 [26], which is 0.8 lower than the full-precision counterpart. To verify
the generality of our quantization method on detection task, we conduct the PTQ experiment of the
8-bit Adder FCOS following the settings in AdderDet [5]. Specifically, the adder convolutions in
the backbone and neck are quantized with 4-group shared scales, and the hyper-parameter α is set to
0.9992. The final 8-bit quantized mAP with our method is 36.5, which is 0.3 higher.

Figure 6: Comparisons of accuracy and en-
ergy cost of ResNet-20 on CIFAR-100.

Energy Cost. In Figure 6, we compare the accu-
racy and energy cost of different network architectures
after quantization, including AdderNet, CNN and Shif-
tAddNet [39]. The experiments are based on ResNet-20
network and CIFAR-100 dataset. We follow the related
works [39, 35, 23] to measure the practical energy cost
of ResNet-20 with various bits and basic operations
on a FPGA platform. Besides, the quantized results
of CNN is achieved by the BRECQ [24] PTQ method.
The quantized accuracy of ShiftAddNet is cited from
the original paper [39] and the energy of ShiftAddNet
is calculated from the relative ratio of the energy of
ShiftAddNet and AdderNet in the original paper [39],
i.e., -25.2%. From Figure 6, under similar energy cost,
the quantized Adder ResNet-20 with our method achieves a higher accuracy.

4.4 Ablation Studies

In this subsection, we conduct thorough ablation studies based on the 4-bit quantized Adder ResNet-20
network on CIFAR-100 dataset.

Analysis on Sub-Methods. We first conduct analysis on three sub-methods as reported in Table 3,
including group-shared scales, lossless range clamp for weights and outliers clamp for activations.
The complete method achieves the highest accuracy of 67.35%, which is higher than the initial
accuracy of 57.88%. Besides, the introduction of any sub-method contributes to the improvement of
accuracy.

Table 3: Analysis on sub-methods.
Method

Acc (%)Group-Shared Scales Weights Clamp Activations Clamp
57.88

X 60.42
X 62.30

X 61.55
X X 65.17
X X X 67.35

Analysis on Group Number. The results with various group number are reported in Table 4, and
the relative FLOPs are calculated under the assumption that the number of channels of input and
output is 32. From Table 4, when the group number is 4, the quantized model achieves the highest
accuracy with a negligible increase in FLOPs. More group does not lead to a higher accuracy.

Analysis on Group Methods. We also conduct analysis on the group methods. The group number
we used is 4, and the results are reported in Table 5. Uniform indicates that the weights are evenly
grouped based on the output channel without clustering. Compared with other group methods, the
clustering method based on max(|W |) achieves the highest accuracy.

9

Table 4: Analysis on the group number.
Group Relative FLOPs Acc (%)

1 1 65.91
2 1.002 66.38
4 1.005 67.35
8 1.012 67.11

Table 5: Analysis on the group methods.
Group Method Acc (%)

Uniform 65.72
All 66.61

Mean 66.86
Max 67.35

5 Conclusion

To further improve the efficiency of AdderNet, this paper studies the quantization algorithm for
AdderNet. Considering that the weights of different channels may differ greatly, and the ranges of
weights and activations are different, we propose a scheme of group-shared scales and a clamp strategy
for weights and activations to improve the performance of quantized AdderNet. The effectiveness of
the proposed quantization method for AdderNet is well-verified on several benchmarks. We achieve
state-of-the-art results on various quantized network architectures and datasets. We believe that the
advantages of low-bit quantized AdderNet can shed light into the design of low-power hardware for
AI applications.

Acknowledgement

We gratefully acknowledge the support of MindSpore [17], CANN(Compute Architecture for Neural
Networks) and Ascend AI Processor used for this research. This research is supported by NSFC
(62072449, 61972271); National Key R&D Program of China (2020YFC2004100); University of
Macau Grant (MYRG2019-00006-FST).

References
[1] Ron Banner, Yury Nahshan, and Daniel Soudry. Post training 4-bit quantization of convolutional networks

for rapid-deployment. Advances in Neural Information Processing Systems, 32, 2019.

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[3] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. Deep learning with low precision by
half-wave gaussian quantization. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5918–5926, 2017.

[4] Hanting Chen, Yunhe Wang, Chunjing Xu, Boxin Shi, Chao Xu, Qi Tian, and Chang Xu. Addernet: Do we
really need multiplications in deep learning? In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1468–1477, 2020.

[5] Xinghao Chen, Chang Xu, Minjing Dong, Chunjing Xu, and Yunhe Wang. An empirical study of adder
neural networks for object detection. Advances in Neural Information Processing Systems, 34, 2021.

[6] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srinivasan,
and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural networks. arXiv
preprint arXiv:1805.06085, 2018.

[7] Kanghyun Choi, Deokki Hong, Noseong Park, Youngsok Kim, and Jinho Lee. Qimera: Data-free
quantization with synthetic boundary supporting samples. Advances in Neural Information Processing
Systems, 34, 2021.

[8] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in neural information processing systems,
pages 3123–3131, 2015.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[10] Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq-
v2: Hessian aware trace-weighted quantization of neural networks. Advances in neural information
processing systems, 33:18518–18529, 2020.

10

[11] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmendra S
Modha. Learned step size quantization. arXiv preprint arXiv:1902.08153, 2019.

[12] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. In ICLR, 2016.

[13] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algorithm. Journal of
the royal statistical society. series c (applied statistics), 28(1):100–108, 1979.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[15] Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pages 10–14. IEEE, 2014.

[16] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[17] Huawei. Mindspore. https://www.mindspore.cn/, 2020.

[18] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized neural
networks. Advances in neural information processing systems, 29, 2016.

[19] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2704–2713, 2018.

[20] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A whitepaper.
arXiv preprint arXiv:1806.08342, 2018.

[21] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[22] Junghyup Lee, Dohyung Kim, and Bumsub Ham. Network quantization with element-wise gradient
scaling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
6448–6457, 2021.

[23] Wenshuo Li, Hanting Chen, Mingqiang Huang, Xinghao Chen, Chunjing Xu, and Yunhe Wang. Winograd
algorithm for addernet. In Proceedings of the International Conference on Machine Learning, pages
6307–6315, 2021.

[24] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. arXiv preprint
arXiv:2102.05426, 2021.

[25] Mingbao Lin, Rongrong Ji, Zihan Xu, Baochang Zhang, Yan Wang, Yongjian Wu, Feiyue Huang, and
Chia-Wen Lin. Rotated binary neural network. Advances in neural information processing systems,
33:7474–7485, 2020.

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European conference on
computer vision, pages 740–755. Springer, 2014.

[27] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-Ting Cheng. Reactnet: Towards precise binary
neural network with generalized activation functions. In European Conference on Computer Vision, pages
143–159. Springer, 2020.

[28] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine Learning,
pages 7197–7206. PMLR, 2020.

[29] Ying Nie, Kai Han, Zhenhua Liu, An Xiao, Yiping Deng, Chunjing Xu, and Yunhe Wang. Ghostsr:
Learning ghost features for efficient image super-resolution. arXiv preprint arXiv:2101.08525, 2021.

[30] Ying Nie, Kai Han, and Yunhe Wang. Multi-bit adaptive distillation for binary neural networks.

[31] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classification using binary
convolutional neural networks. In European Conference on Computer Vision, pages 525–542. Springer,
2016.

11

https://www.mindspore.cn/

[32] Gil Shomron, Freddy Gabbay, Samer Kurzum, and Uri Weiser. Post-training sparsity-aware quantization.
Advances in Neural Information Processing Systems, 34, 2021.

[33] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing of deep neural networks:
A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017.

[34] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully convolutional one-stage object detection.
In Proceedings of the IEEE/CVF international conference on computer vision, pages 9627–9636, 2019.

[35] Yunhe Wang, Mingqiang Huang, Kai Han, Hanting Chen, Wei Zhang, Chunjing Xu, and Dacheng Tao.
Addernet and its minimalist hardware design for energy-efficient artificial intelligence. arXiv preprint
arXiv:2101.10015, 2021.

[36] Yixing Xu, Kai Han, Chang Xu, Yehui Tang, Chunjing Xu, and Yunhe Wang. Learning frequency
domain approximation for binary neural networks. Advances in Neural Information Processing Systems,
34:25553–25565, 2021.

[37] Yixing Xu, Yunhe Wang, Hanting Chen, Kai Han, Chunjing Xu, Dacheng Tao, and Chang Xu. Positive-
unlabeled compression on the cloud. Advances in Neural Information Processing Systems, 32, 2019.

[38] Yixing Xu, Chang Xu, Xinghao Chen, Wei Zhang, Chunjing Xu, and Yunhe Wang. Kernel based
progressive distillation for adder neural networks. In Proceedings of the Neural Information Processing
Systems, 2020.

[39] Haoran You, Xiaohan Chen, Yongan Zhang, Chaojian Li, Sicheng Li, Zihao Liu, Zhangyang Wang, and
Yingyan Lin. Shiftaddnet: A hardware-inspired deep network. Advances in Neural Information Processing
Systems, 33:2771–2783, 2020.

[40] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets: Learned quantization for highly
accurate and compact deep neural networks. In Proceedings of the European conference on computer
vision (ECCV), pages 365–382, 2018.

[41] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160,
2016.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Section 1 .

(b) Did you describe the limitations of your work? [Yes] We have discussed the limitations
in the section of limitations and societal impacts in the supplemental material.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We
have discussed the potential negative societal impacts in the section of limitations and
societal impacts in the supplemental material.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 2.2,
Section 3.1 and Section 3.2 .

(b) Did you include complete proofs of all theoretical results? [Yes] See Section 2.2,
Section 3.1 and Section 3.2 .

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4.1 and Section 4.2 .

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] The common settings on ImageNet.

12

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

	Introduction
	Preliminaries and Motivation
	Preliminaries
	Motivation

	Approach
	Clustering-based Weights Grouping
	Clamp for Weights and Activations

	Experiments
	Experiments on CIFAR
	Experiments on ImageNet
	Comparisons with State-of-the-arts
	Ablation Studies

	Conclusion

