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Abstract

Sensory neuroprostheses are emerging as a promising technology to restore lost
sensory function or augment human capabilities. However, sensations elicited
by current devices often appear artificial and distorted. Although current models
can predict the neural or perceptual response to an electrical stimulus, an optimal
stimulation strategy solves the inverse problem: what is the required stimulus to
produce a desired response? Here, we frame this as an end-to-end optimization
problem, where a deep neural network stimulus encoder is trained to invert a known
and fixed forward model that approximates the underlying biological system. As a
proof of concept, we demonstrate the effectiveness of this hybrid neural autoencoder
(HNA) in visual neuroprostheses. We find that HNA produces high-fidelity patient-
specific stimuli representing handwritten digits and segmented images of everyday
objects, and significantly outperforms conventional encoding strategies across all
simulated patients. Overall this is an important step towards the long-standing
challenge of restoring high-quality vision to people living with incurable blindness
and may prove a promising solution for a variety of neuroprosthetic technologies.

1 Introduction

Sensory neuroprostheses are emerging as a promising technology to restore lost sensory function or
augment human capacities [1, 2]. In such devices, diminished sensory modalities (e.g., hearing [3],
vision [4, 5], cutaneous touch [6]) are re-enacted through streams of artificial input to the nervous
system. For example, visual neuroprostheses electrically stimulate neurons in the early visual system
to elicit neuronal responses that the brain interprets as visual percepts. Such devices have the potential
to restore a rudimentary form of vision to millions of people living with incurable blindness.

However, all of these technologies face the challenge of interfacing with a highly nonlinear system of
biological neurons whose role in perception is not fully understood. Due to the limited resolution of
electrical stimulation, prostheses often create neural response patterns foreign to the brain. Conse-
quently, sensations elicited by current sensory neuroprostheses often appear artificial and distorted
[7, 8]. A major outstanding challenge is thus to identify a stimulus encoding that leads to perceptually
intelligible sensations. Often there exists a forward model, f (Fig. 1A), constrained by empirical
data, that can predict a neuronal or (ideally) perceptual response to the applied stimulus (see [9] for a
recent review). To find the stimulus that will elicit a desired response, one essentially needs to find
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Figure 1: A) Sensory neuroprosthesis. A forward model (f ) is used to approximate the neuronal or,
ideally, perceptual response to electrical stimuli. B) Hybrid neural autoencoder (HNA). A deep neural
encoder (f−1) is trained to predict the patterns of electrical stimulation that elicit responses closest
to the target. C) Visual neuroprostheses are one prominent application of HNA, where an encoder
can be trained to predict the electrical stimulation needed to elicit a desired visual percept. D) The
trained encoder is deployed on a vision processing unit (VPU), predicting stimuli in real-time that are
decoded by the patient’s visual cortex.

the inverse of the forward model, f−1. However, realistic forward models are rarely analytically
invertible, making this a challenging open problem for neuroprostheses.

Here we propose to approach this as an end-to-end optimization problem, where a deep neural
network (DNN) (encoder) is trained to invert a known, fixed forward model (decoder, Fig. 1B).
The encoder is trained to predict the patterns of electrical stimulation patterns that elicit perception
(e.g., vision, audition) or neural responses (e.g., firing rates) closest to the target. This hybrid neural
autoencoder (HNA) could in theory be used to optimize stimuli for any open-loop neuroprosthesis
with a known forward model that approximates the underlying biological system.

In order to optimize end-to-end, the forward model must be differentiable and computationally
efficient. When this is not the case, an alternative approach is to train a surrogate neural network,
f̂ , to approximate the forward model [10–13]. However, even well-trained surrogates may result in
errors when included in our end-to-end framework, due to the encoders’ ability to learn to exploit the
surrogate model. We therefore also evaluate whether a surrogate approach to HNA is suitable.

To this end, we make the following contributions:

• We propose a hybrid neural autoencoder (HNA) consisting of a deep neural encoder trained to
invert a fixed, numerical or symbolic forward model (decoder) to optimize stimulus selection.
Our framework is general and addresses an important challenge with sensory neuroprostheses.

• As a proof of concept, we demonstrate the utility of HNA for visual neuroprostheses, where we
predict electrode activation patterns required to produce a desired visual percept. We show that
the HNA is able to produce high-fidelity, patient-specific stimuli representing handwritten digits
and segmented images of everyday objects, drastically outperforming conventional approaches.

• We evaluate replacing a computationally expensive or nondifferentiable forward model with a
surrogate, highlighting benefits and potential dangers of popular surrogate techniques.

2 Background

Sensory Neuroprostheses Recent advances in neural understanding, wearable electronics, and
biocompatible materials have accelerated the development of sensory neuroprostheses to restore
perceptual function to people with impaired sensation. Use of neuroprostheses typically requires
invasive implants that elicit neural responses via electrical, magnetic, or optogenetic stimulation.
Two of the most promising applications are cochlear implants, which stimulate the auditory nerve to
elicit sounds [3], and visual implants (see next subsection) to restore vision to the blind. However, a
variety of other devices are in development; for instance, to restore touch [6, 14] or motor function
[15]. The latter differ from other sensory neuroprostheses in that they generate stimuli using motor
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Figure 2: Left: Visual prosthesis. Incoming target images are transmitted from a camera to an
implant in the retina, which encodes the image as an electrical stimulus pattern. Center: Electrical
stimulation (red disc) of a nerve fiber bundle (gray lines) leads to elongated tissue activation (gray
shaded region) and phosphenes whose shape can be described by two parameters, λ (axonal spread)
and ρ (radial spread). Right: Predicted percepts for an MNIST digit using varying ρ and λ values.

feedback (closed loop) [16, 17]. In the absence of feedback (open loop), a proper stimulus encoding
is paramount to the success of these devices.

Restoring Vision to the Blind For millions of people who are living with incurable blindness,
a visual prostheses (bionic eye, Fig. 2, left) may be the only treatment option [18]. Analogous to
cochlear implants, these devices electrically stimulate surviving cells in the visual pathway to evoke
visual percepts (phosphenes), which can support simple behavioral tasks [5, 19, 20].

A common misconception is that each electrode in the array can be thought of as a pixel in an image;
to generate a complex visual experience, one then simply needs to turn on the right combination of
pixels [21]. However, recent evidence suggests that phosphenes often appear distorted (e.g., as lines,
wedges, and blobs) and vary drastically across subjects and electrodes [4, 7].

Phosphene appearance has been best characterized in epiretinal implants, where inadvertent activation
of nerve fiber bundles (NFBs) in the optic fiber layer of the retina leads to elongated phosphenes
[22, 23] (Fig. 2, center). To this end, Granley et. al [24] developed a forward model to predict
phosphene shape as a function of both neuroanatomical parameters (i.e., location of the stimulating
electrode) and stimulus parameters (i.e., pulse frequency, amplitude, and duration). With this model,
phosphenes are primarily characterized by two main parameters, ρ and λ, which dictate the size
and elongation of the elicited phosphene, respectively (Fig. 2, right). These parameters can be
determined using psychophysical tasks (e.g., drawings, brightness ratings) [22, 24], and although
they vary drastically across patients [22], they do not change much over time [25, 26]. Stimulation
from multiple electrodes is nonlinearly integrated into a combined perception, and if two electrodes
happen to activate the same NFB, they might not generate two distinct phosphenes.

3 Related Work

The conventional ‘naive’ encoding strategy sets the amplitude of each electrode to the brightness of
the corresponding pixel in the target image [5, 27], making the stimulus a down-sampled version of
the target. Although simple, this strategy only works with near-linear forward models, cannot account
for real phosphene data, and often leads to unrecognizable percepts (Fig. 2, right) [7, 22].

Many alternative stimulation strategies have been proposed [28]. Shah et al. [29] used a greedy
approach to iteratively select the stimuli that best recreate a desired neural activity pattern over a
given temporal window, assuming that the brain would integrate them into a coherent visual percept.
Ghaffari et al. [30] used a neural network surrogate model combined with an interior point algorithm
to optimize for localized, circular neural activation patterns for individual electrodes. Fauvel et
al. [31] used human in-the-loop Bayesian optimization to achieve encodings perceptually favored
by the simulated patient. Spencer et al. [32] proposed framing stimulus encoding as inversion of a
forward model of neural activation patterns, but to approximate the inverse, their approach either
requires simplification or is NP-hard [32].
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Van Steveninck et al. [33] proposed an end-to-end optimization strategy with a fixed phosphene
model, similar to HNA. However, their approach crucially differs from ours in its inclusion of a
secondary DNN to post-process the predicted phosphenes. This is a critical limitation, because a
low reconstruction loss does not reveal whether a high-fidelity encoder was learned or whether the
secondary decoder network simply learned to correct for the encoder’s mistakes. In addition, they
used an unrealistic phosphene model that simply upscales and smooths a binary stimulus pattern. It is
therefore not clear whether their results would generalize to real visual prosthesis patients.

Relic et al. [10] also utilized the end-to-end approach, but without the secondary decoder network used
in [33]. They used a more realistic phosphene model, which accounts for some spatial distortions (e.g.,
axonal streaks), but not the effects of stimulus parameters. Since including a realistic phosphene model
in the loop is not straightforward, they instead trained a surrogate neural network to approximate the
forward model. We re-implemented Relic’s surrogate approach in this paper as a baseline method to
compare against, as described in Section 4.

Taken together, we identified three main limitations of previous work that this study aims to address:

1) Unrealistic forward models. Most previous approaches (e.g., [29, 32, 33]) use an overly simpli-
fied forward model that cannot account for empirical data [7, 22]. We overcome this limitation
by developing (and inverting) a differentiable version of a neurophysiologically informed and
psychophysically validated phosphene model [24] that can account for the effects of stimulus
amplitude, frequency, and pulse duration on phosphene appearance.

2) Optimization of neural responses. Most previous approaches (e.g., [29, 32]) focus on optimiz-
ing neural activation patterns in the retina in response to electrical stimulation (“bottom-up”).
However, the visual system undergoes extensive remodeling during blinding diseases such as
retinitis pigmentosa [34]. Thus the link between neural activity and visual perception is unclear.
We overcome this limitation by inverting a phenomenological (“top-down”) model constrained by
behavioral data that predicts visual perception directly from electrical stimuli [22, 24].

3) Objective function Most previous approaches rely on minimizing mean squared error (MSE)
between the target and reconstructed image. Although simple and efficient, MSE is known to be
a poor measure of perceptual dissimilarity for images [35] and does not align well with human
assessments of image quality [36]. We overcome this limitation by proposing a joint perceptual
metric that combines mean absolute error (MAE), VGG, and Laplacian smoothing losses.

4 Methods

Problem Formulation We consider a system where there is some known forward process f
mapping stimuli to responses f : S 7→ R, f(S) ⊂ R. In the case of visual prostheses, f may map
stimuli to visual percepts. f may optionally be parameterized by patient-specific parameters ϕ.

Finding the best stimulus for an arbitrary target response t ∈ R is equivalent to finding the inverse of
f . However, since not every response can be perfectly reproduced by a stimulus, the true inverse of f
is not well defined. We therefore seek the pseudoinverse (still denoted as f−1 for simplicity) instead,
which outputs the stimuli that produce the closest response to t under some distance metric d:

f−1(t, ϕ) := argmin
s∈S

d(f(s;ϕ), t). (1)

This problem is straightforward to solve using an autoencoder approach, where a learned encoder
f−1 is trained to invert the fixed decoder f (i.e., forward model).

Encoder We approximate the pseudoinverse f−1 with a DNN encoder f̂−1(t, ϕ; θ) with weights θ,
trained to minimize the distance d between the target image t and predicted image t̂:

min
θ, ϕ∼p(ϕ)

d(t, t̂) (2)

t̂ = f( f̂−1(t, ϕ; θ); ϕ), (3)

where ϕ is sampled from a uniform random distribution spanning the empirically observed range of
patient-specific parameters [22, 24].
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We use a simple architecture consisting solely of fully connected (FC) and batch normalization (BN)
[37] layers (1.4M trainable parameters). First, the target t is flattened and input to a FC layer. In
parallel, the patient parameters ϕ are input to a BN layer and two hidden FC layers. Then, the outputs
of these two paths are concatenated, and the combined vector fed through two FC layers, producing an
intermediate representation x. Amplitudes are predicted from x with a FC layer. The amplitudes are
then concatenated with x, put through a BN layer, and used to predict frequency and pulse duration,
each with a FC layer. The outputs are merged into a stimulus matrix ŝ. All layers use leaky ReLU
activation, except for stimulus outputs, which use ReLU to enforce nonnegativity.

Decoder The HNA decoder is a differentiable approximation of the underlying biological system,
and describes the transform from stimulus to response. For our decoder f , we use a reformulated
but equivalent version of the model described in [24]. This model is specific to epiretinal prostheses;
analogous models exist for other neuroprostheses (e.g., auditory [38–43], tactile and somatosensory
[44–48]), and could potentially be adapted for use with HNA. We use a square 15 × 15 array of
150µm electrodes, spaced 400µm apart and centered on the fovea. The size and scale of this device
are motivated by similar designs in real epiretinal implants.

f takes as input a stimulus matrix s ∈ Rnex3
≥0 , where the stimulus on each electrode (se) is a biphasic

pulse train described by its frequency, amplitude, and pulse duration. A simulated map of retinal
NFBs is used to predict phosphene shape. Following [22], each retinal ganglion cells’ activation is
assumed to be the maximum stimulation intensity along its axon. Axon sensitivity is assumed to
decay exponentially with i) distance to the stimulating electrode (radial decay rate, ρ) and distance to
the soma along the curved axon (axonal decay rate, λ). To account for stimulus properties [24], ρ,
λ, and the per-electrode brightness are scaled by three simple equations Fsize(se, ϕ), Fstreak(se, ϕ),
and Fbright(se, ϕ), respectively.

The brightness of a pixel located at the point x ∈ R2 in the output image is given by

f(s;ϕ) = max
a∈A

∑
e∈E

Fbright(se, ϕ) exp

(
−||x− e||22

2ρ2Fsize(se, ϕ)
+

−ds(x,a)
2

2λ2Fstreak(se, ϕ)

)
(4)

where A is the cells’ axon trajectory, E is the set of electrodes, ϕ = {ρ, λ, ...} is a set of 12
patient-specific parameters, and ds is the path length along the axon trajectory [49]from a to x:

ds(x,a) =

∫ x

a

√
A(θ)2 +

(
dA(θ)

dθ

)2

dθ. (5)

This model (f ) can be fit to individual patients; however, it is computationally slow and not differen-
tiable. For more details on these equations, see [24]. We therefore considered two approaches:

• Differentiable Model: We reformulated equations 4 and 5 into an equivalent set of parallelized
matrix operations, implemented in Tensorflow [50]. Significant efforts were put towards de-
veloping a model optimized for XLA engines on GPU, resulting in speedups of up to 5000x
compared to the model as presented in [24], enabling large-scale gradient descent. To enforce
differentiability, we numerically approximated ds using |A| = 500 axon segments per axon.

• Surrogate Model: We also implemented the surrogate approach from [10] as a baseline method,
where f is approximated with another DNN f̂ϕ(s; θf ) with weights θf . To achieve this we
generated 50,000 percepts using randomly selected stimuli passed through f and fit a DNN
to produce identical images. As f is highly dependent on patient-specific parameters ϕ, we
generated new data and fit a separate surrogate model for each ϕ in our experimental set. Specific
implementation details of the surrogate are presented in Appendix A. Our implementation
improves upon [10] by using the more advanced phosphene model described above, which
accounts for effects of stimulus properties and allows for optimization of stimulus frequency in
addition to amplitude.

Metrics To measure perceptual similarity, we use a joint perceptual objective consisting of a VGG
[51] similarity term, a mean absolute error (MAE) term, and a smoothness regularization term. The
MAE term is given by LMAE = 1

|t| ||t− t̂||1.

The VGG term aims to capture higher-level differences between images [33, 52]. The target image
and reconstructed phosphene are input to VGG-19 pretrained on ImageNet [53], and the MSE between
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the activations on a downstream convolutional layer is computed. Let Vl be a function that extracts
the activations of the l-th convolutional layer for a given image. The VGG loss is then defined as
LVGG = 1

|t| ||Vl(t)− Vl(t̂)||22.

We also include a smoothing regularization term. This term imposes a loss on the second spatial
derivative of the predicted image. A low second derivative implies that where the target image does
change, it changes slowly. We found this encouraged smoother, more connected phosphenes. To
approximate the second derivative, we convolve the image with a Laplacian filter [54] of size k,
denoted by Lap(·, k), and compute the mean. The smoothness loss is given by:

LSmooth =
1

|t̂|

∑
i

( ∂2

dx2
t̂
)
i
=

1

|t̂|

∑
i

Lap(t̂, k)i. (6)

Our final objective is the weighted sum of the three individual losses, given by Eq. 7, where α and β
are hyperparameters controlling the relative weighting of the three terms.

d = LMAE + αLSmooth + βLVGG. (7)

We also implement a secondary metric to quantify phosphene recognizability, applicable only for
the MNIST reconstruction task. We first pre-train a classifier network on the MNIST targets until
it reaches 99% test accuracy, and then fix the weights. The relative accuracy (RA) is then defined
as the ratio of the classifiers accuracy on the reconstructed images to its accuracy on the targets
RA = ACC/ACC(t). A perfect encoder would result in RA = 100%. A similar process was not
possible for the COCO task due to the possibility of having multiple objects in each target image.

Training/Optimization We trained using Tensorflow 2.7 [50] on a single NVIDIA RTX 3090 with
24GB memory. Stochastic gradient descent with Nesterov momentum was used to minimize the
joint perceptual loss. We used a batch size of 16 due to memory limitations imposed by f . The
amplitude, frequency predictions are scaled by 2, 20 respectively, while the pulse duration predictions
were shifted by 1e-3 prior to being fed through the decoder. This encourages the initial predictions
of the network to be in a reasonable range. The Laplacian filter size k is set to 5. We choose l to
be first convolutional layer in the last block using cross validation (see Appendix B). Similarly, we
perform cross validation to find the best values for α and β. Instead of using one value, we found that
incrementally increasing the weighting of the VGG loss (β) from 0 while simultaneously decreasing
the initially high weight on the smoothing constraint (α) was crucial for performance, especially
when the range of allowed ϕ values was large (see Appendix B).

Datasets We first evaluated on handwritten digits from MNIST [55], enabling comparison to
previous works [10]. Images preprocessing consisted of resizing the target images to the same shape
as the output of f (49x49). We also evaluate on more realistic images of common objects from the
MS-COCO [56] dataset. We selected a subset of 25 of the MS-COCO object categories deemed
more likely to be encountered by blind individuals (e.g. people, household objects), and use only
images that contain at least one instance of these objects. We further filter out images by various other
criteria, such as being too cluttered or too dim. This process results in a total of approximately 47K
training images and 12K test images. See Appendix C for a full description of the selection process.

Natural images often contain too much detail to be encoded with prosthetic vision. While scene
simplification strategies exist [57], we focus on the encoding algorithm, so we simply used the
ground-truth segmentation masks to segment out the objects of interest. The images were then
converted to grayscale, and resized to 49× 49 pixels.

5 Results

5.1 MNIST

The phosphenes produced from the HNA, surrogate, and naive encoders on the MNIST test set are
shown in Fig. 3 and performance is summarized in Table 1. For each MNIST sample, the target
image is input to the encoder, which predicts a stimulus. The stimulus is fed through the true forward
model f , and the predicted phosphene is shown. Since the surrogate method must be retrained for
each ϕ, results are only shown for 4 simulated patients. Our proposed approach outperformed the
baselines across all metrics (see Appendix D for a comparison of stimuli).
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Figure 3: Reconstructed MNIST targets for HNA, surrogate, and naive encoders across 4 specific
simulated patients. Note that the brightness of the naive encoder is clipped for display

Table 1: MNIST performance

Encoding ρ=150 λ=100 ρ=150 λ=1500 ρ=800 λ=100 ρ=800 λ=1500

Joint Loss MAE RA Joint Loss MAE RA Joint Loss MAE RA Joint Loss MAE RA

Naive 1.161 0.1855 90.3 1.442 0.214 78.1 8.152 1.500 34.8 8.780 1.726 28.8
Surrogate 2.509 0.1351 53.8 3.118 0.2431 30.7 1.692 0.2135 19.9 1.694 0.2237 18.1

HNA 0.559 0.064 98.1 1.029 0.1412 89.3 0.913 0.113 95.9 0.957 0.126 94.8

5.2 COCO

The phosphenes produced by HNA and the naive encoder for the segmented COCO dataset are shown
in Fig. 4. We omit the surrogate results due to its poor perceptual performance on MNIST. Averaged
across all ϕ, HNA had a joint loss of 0.713 on the test set and MAE of 0.1408, while the naive encoder
had a joint loss of 1.873 and MAE of 0.2830.

5.3 Modeling Patient-to-Patient Variations

MNIST encoder performance across simulated patients (ϕ) is shown in Fig. 5. Since the surrogate
encoder has to be retrained for each patient, comparison is infeasible. To visualize the effects of
changing ρ and λ on the produced phosphenes, Fig. 5A shows the result of encoding two example
MNIST digits, both using the naive method and our encoder. As λ increases, the naive phosphenes
appear increasingly elongated, and as ρ increases, the phosphenes become increasingly large and
blurry. The phosphenes from HNA are slightly too dim and disconnected at low ρ, but are relatively
stable across other values of ρ and λ.

To compare performance across the entire dataset, we computed the average test set loss across
the same range of ρ and λ (Fig. 5B). The encoder performs well across a wide range of simulated
patients, with larger loss only at low ρ. The naive method performs well only on a limited set of ϕ,
with small λ and ρ ≈ 200. The naive loss was higher than the learned encoder at every simulated
point. Random sampling of ρ and λ for each image results in a joint loss of 0.921, MAE of 0.120,
and RA of 94.0% for HNA, while the naive encoder results in a joint loss of 3.17, MAE of 0.596, and
RA of 63.6%. The same analysis yielded similar results on COCO (Appendix E). An analysis across
other parameters is presented in Appendix F.

In order for prosthetic vision to be useful, different instances of the same objects would ideally
produce similar phosphenes, allowing for consistent perception. To evaluate whether our model
achieves this, we cluster the target images and resulting phosphenes using t-SNE [58] shown in
Fig. 5C. The ground truth images form clusters corresponding to the digits 0-9. The phosphenes from
our encoder roughly form similar, slightly less separated groupings, whereas the naive phosphenes do
not. To ensure that this was not the result of bad t-SNE hyperparameters, we repeated the clustering
across different perplexities and learning rates, obtaining similar or worse results.
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Figure 4: Original (top row), segmented (second row), and reconstructed targets for the COCO
dataset, for both HNA (third row) and naive encoders (bottom row). Left to right within each block of
4 images, ρ takes values of 200, 400, 600, 800. Left to right across blocks, λ takes values of 250, 750,
1250, 2000. Note that the brightness of the naive method is clipped for display.

Figure 5: Encoder performance across simulated patients (varying ρ and λ) on the MNIST dataset. A:
Target, HNA encoder, and naive encoder phosphenes for two example digits. B: Heatmaps showing
the log joint loss across ρ and λ for HNA and naive encoders. C: T-SNE clusterings on original
MNIST targets, HNA reconstructed phosphenes, and naive reconstructed phosphenes.

5.4 Joint Perceptual Error Ablation Study

To show that the joint perceptual metric performs better than any of its individual components, we
train models using just the VGG loss and just MAE loss. Shown are values for ρ=150 and λ=600.
As mentioned previously, encoders trained using just VGG loss fail to converge, thus we pretrain
the VGG encoder using MAE and smoothing loss, then transition to using only VGG. We do not
consider ablating the smoothing term (Eq. 6) because it is simply a regularization term. Fig. 6 shows
the phosphenes produced by HNA trained on the joint, VGG-only, and MAE-only loss.

The VGG encoder had a test VGG loss of 4% lower than the joint model, but its produced phosphenes
are oversmoothed and blurry. The MAE encoder had a final test MAE of 9% lower than the joint
model, but its produced phosphenes are disconnected and low-quality. The joint model had a RA of
99.0%, the VGG encoder had a RA of 95.9%, and the joint model had a RA of 77.6%

6 Discussion

Visual Prostheses We found that HNA is able to produce high-fidelity stimuli from the MNIST
and COCO datasets that outperform conventional encoding strategies across all tested conditions.
Importantly, HNA produces phosphenes that are consistent across representations of the same object
(Fig. 5C), which is critical to allowing prosthesis users to learn to associate certain visual patterns with
specific objects. On the MNIST task, HNA produced high quality reconstructions, nearly matching
the targets (Figure 3). On the harder COCO task, HNA significantly outperformed the naive encoder,
but was still unable to capture all of the detail in the images. In Appendix G, we demonstrate that this
is largely due to the implant’s limited spatial resolution and not a fundamental limitation of HNA.
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Figure 6: MNIST images for HNA encoders trained using the joint, VGG-only, and MAE-only loss.

Another advantage of the HNA is that it can be trained to predict stimuli across a wide range of
patient-specific parameter values ϕ, whereas the conventional naive encoder works well only for
small values of ρ and λ. This may be one reason why the naive encoding strategy has been shown to
lead to substantial individual differences in visual outcomes [19, 59]. Our results suggest that stimuli
produced with HNA may be able to reduce at least some amount of this patient-to-patient variability.

Furthermore, HNA also proved superior to a surrogate forward model. The latter offer an alternative
when the forward model is computationally expensive or not differentiable. Understandably, any
inaccuracies in the surrogate model will propagate to the learned encoder during training. However,
we observed that even for well trained surrogates, the encoder may still learn to exploit the inexact
surrogate instead of learning to invert the true model (see Appendix A). It is possible that this
exploitation could be mitigated to some extent by adversarially-robust training techniques [60]. We
suspect that the surrogate method’s inferior performance here compared to [10] can be explained
by our larger stimulus search space. Thus, we cannot currently suggest HNA for surrogate forward
models, unless the forward model is sufficiently simple or has a small stimulus space.

Deployment HNA encoders must be lightweight enough to be deployed in resource-limited neu-
roprosthetic environments. Our encoder’s single image inference time was 1.2ms on GPU and
4ms on CPU. Future work could reduce these numbers through network pruning, mixed precision,
and architecture search. Low-power Edge AI accelerators (e.g., Intel’s Neural Compute Stick) and
dedicated neuromorphic hardware (e.g., BrainChip’s Akida SoC) may provide another solution.

Broader Impacts While our work is presented in the context of visual prostheses, the HNA
framework may apply to any sensory neuroprosthesis where stimulus selection can be informed by a
numeric or symbolic forward model. For example, HNA could be used in cochlear implants [3] to
choose stimuli that result in a desired sound, and in spinal cord implants [15] to find the best way to
relay neural signals through a damaged section of the spinal cord. Conveniently, the forward models
required by HNA have already been developed for a range of applications [38–48]. However, HNA
might not apply to all neural interfaces, such as systems without a clear neural or perceptual target
(e.g., deep brain stimulation for the treatment of Parkinson’s [61]) or closed-loop systems [16, 62].

Limitations Despite HNA’s potential, the current implementation has a number of limitations.
First, as presented the HNA encoder only applies to static targets. Hence dynamic targets must be
split into individual frames and encoded separately. However, one approach might be to encode entire
stimulus sequences (instead of frames) that are optimized to reconstruct the dynamic target sequence.

Second, HNA works best if there is an accurate forward model mapping from stimulus space to
perception. However, Appendix H shows that HNA may still give benefits over a naive encoding
even when patient-specific parameters are unknown or mis-specified. In general, if a prosthesis elicits
similar results across patients, then a non-patient-specific model would suffice.

Third, the current works deals only with simulated patients. The use of a DNN for stimulus encoding
in real patients may raise safety concerns. Since we cannot examine the process by which stimuli
are chosen, it is possible that HNA might produce harmful stimuli that could lead to serious adverse
events (e.g., seizures). However, this concern is mitigated by the fact that most neuroprostheses are
equipped with firmware responsible for ensuring stimuli stay within FDA-approved safety limits.
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7 Conclusion

In summary, this paper proposes a hybrid autoencoder structure as a general framework for stimulus
optimization in sensory neuroprostheses and, as a proof of concept, demonstrates its utility on the
prominent example of visual neuroprostheses, drastically outperforming conventional encoding
strategies. This constitutes an important step towards the long-standing challenge of restoring high-
quality vision to people living with incurable blindness and may prove a promising solution for a
variety of neuroprosthetic technologies.
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