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Abstract

We consider a linear stochastic bandit problem involving M agents that can col-
laborate via a central server to minimize regret. A fraction α of these agents are
adversarial and can act arbitrarily, leading to the following tension: while collabora-
tion can potentially reduce regret, it can also disrupt the process of learning due to
adversaries. In this work, we provide a fundamental understanding of this tension
by designing new algorithms that balance the exploration-exploitation trade-off
via carefully constructed robust confidence intervals. We also complement our
algorithms with tight analyses. First, we develop a robust collaborative phased elim-
ination algorithm that achieves Õ

(
α+ 1/

√
M
)√

dT regret for each good agent;
here, d is the model-dimension and T is the horizon. For small α, our result thus
reveals a clear benefit of collaboration despite adversaries. Using an information-
theoretic argument, we then prove a matching lower bound, thereby providing
the first set of tight, near-optimal regret bounds for collaborative linear bandits
with adversaries. Furthermore, by leveraging recent advances in high-dimensional
robust statistics, we significantly extend our algorithmic ideas and results to (i) the
generalized linear bandit model that allows for non-linear observation maps; and
(ii) the contextual bandit setting that allows for time-varying feature vectors.

1 Introduction

One of the primary challenges in modern large-scale computing systems is that of security. Given
that the individual agents in such large systems are often vulnerable to attacks, it is important to
understand how the overall system behaves in the face of adversarial corruptions. This observation
has spurred a line of research dedicated to the design and analysis of distributed algorithms that are
provably robust to a small fraction of adversarial agents; notably, motivated by emerging learning
paradigms such as federated learning [1–3], this body of work has focused primarily on empirical
risk minimization/stochastic optimization [4–14]. However, when it comes to multi-agent sequential
decision-making problems under uncertainty (e.g., bandits and reinforcement learning), our under-
standing of analogous questions is quite limited. Our goal in this paper is to bridge the above gap by
studying a collaborative linear bandit [15, 16] problem in the presence of adversaries.

In our model, M agents interact with the same linear bandit characterized by a d-dimensional
unknown parameter θ∗, and a finite set of K arms. These agents can collaborate via a central server to
improve performance, as measured by cumulative regret. As examples, consider (i) a team of robots
exploring actions (arms) in a common environment and interacting with a central controller; and (ii)
a group of people exploring restaurants (arms) and writing reviews for a web-recommendation server.
In the absence of adversaries, there is a clear reason to collaborate in either case: by exchanging
information, each agent can reduce its uncertainty about the arms faster than it could when it acts
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alone, and thereby incur lesser regret. The situation becomes murkier and more delicate when certain
agents misbehave: What if certain robots get attacked or certain people deliberately write spam
reviews? More generally, the main question we ask in this paper is the following.

In a multi-agent linear stochastic bandit problem, can we still hope for benefits of collaboration when
a fraction α of the agents are adversarial? If so, what are the fundamental limits of such benefits?

As far as we are aware, the answers to these questions have thus far remained elusive, motivating our
current study. The main technical hurdle we must overcome is to delicately balance the exploration-
exploitation trade-off in the presence of both statistical uncertainties due to the environment, and
worst-case adversarial behavior. Importantly, the above trade-off - intrinsic to sequential decision-
making - is absent in static optimization problems. Thus, the ideas used to guarantee robustness for
distributed optimization do not apply to our problem, making our task quite non-trivial.

Our Contributions. In this paper, we contribute to a principled study of several canonical structured
linear bandit settings with adversarial agents. Our specific contributions are as follows.

• Robust Collaborative Linear Bandit Algorithm. We propose RCLB - a phased elimination
algorithm that relies on distributed exploration, and balances the exploration-exploitation dilemma in
the presence of adversaries via carefully constructed robust confidence intervals. We prove that RCLB
guarantees Õ

((
α+ 1/

√
M
)√

dT
)

regret for each good agent; see Theorem 1. This result is both
novel, and significant in that it reveals a clear benefit of collaboration (despite adversaries) for small
values of α. In particular, when α = 0, the regret bound of RCLB is minimax-optimal in all relevant
parameters: the model-dimension d, the horizon T , and the number of agents M .

• Fundamental Limits. At this stage, one may ask: Is the additive α
√
T term in Theorem 1 simply

an artifact of our analysis? In Theorem 2, we establish a fundamental lower bound, revealing that
such a term is in fact unavoidable; it is the price one must pay due to adversarial corruptions. A key
implication of this result is that our work is the first to provide tight, near-optimal regret bounds for
collaborative linear bandits with adversaries. The proof of Theorem 2 relies on a novel connection
between the information-theoretic arguments in [17], and ideas from the robust mean estimation
literature [18, 19]. As such, our proof technique may be relevant for related settings.

In our next set of contributions, we significantly extend our results to more general bandit models.

• Generalized Linear Bandit Setting. In Theorem 3, we prove that one can achieve bounds akin
to that in Theorem 1 for the generalized linear bandit model (GLM) [20, 21] that accounts for
non-linear observation maps. To achieve this result, we propose a variant of RCLB that leverages very
recently developed tools from high-dimensional robust Gaussian mean estimation [22]. Deriving
robust confidence intervals for this setting requires some work: we exploit regularity properties of
the non-linear observation model along with error bounds from [22] for this purpose. As far as we
are aware, Theorem 3 is the first result to establish adversarial-robustness for GLMs, allowing our
framework to be applicable to a broad class of problems (e.g., logistic and probit regression models).

• Contextual Bandit Setting. Finally, we turn our attention to the contextual bandit setting where
the feature vectors of the arms can change over time. This setting is practically quite relevant as
web-recommendation systems are often modeled as contextual bandits [23]. The main challenge here
arises from the need to simultaneously contend with time-varying optimal arms and adversaries. To
handle this scenario, we develop a robust variant of the SUPLINREL algorithm [24] that guarantees a
near-optimal regret bound identical to that of Theorem 1; see Theorem 4.

Overall, via the proposal of new robust algorithms complemented with tight analyses, our work takes
an important step towards multi-agent sequential decision-making in the presence of adversaries.

Related Work. There is a growing strand of literature that studies the effect of reward corruption
in stochastic bandits (for a single-agent setting) where the adversary has a fixed corruption budget
[25–32]. The techniques in these papers do not apply to our work as our setting is very different: the
adversarial agents in our model can act arbitrarily, and have no budget constraints. Several papers
study multi-agent bandit problems in the absence of adversaries [33–52]. A few very recent ones
[53–56] also look at the effect of attacks, but for the simpler unstructured multi-armed bandit problem.
Accounting for adversarial agents in the structured linear bandit setting we consider here requires
significantly different techniques that we develop in this paper.
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2 Problem Formulation

We consider a setting comprising of a central server and M agents; the agents can communicate only
via the server. Each agent i ∈ [M ] interacts with the same linear bandit model characterized by an
unknown parameter θ∗ that belongs to a known compact set Θ ⊂ Rd. We assume ∥θ∗∥ ≤ 1.2 The set
of actions A for each agent is given by K distinct vectors in Rd, i.e., A = {a1, . . . , aK}, where K is
a finite, positive integer. Based on all the information acquired by an agent i up to time t− 1, it takes
an action ai,t ∈ A at time t, and receives a reward yi,t given by the following observation model:

yi,t = ⟨θ∗, ai,t⟩+ ηi,t. (1)

Here, {ηi,t} is a sequence of independent Gaussian random variables with zero mean and unit
variance. Thus far, we have essentially described a distributed/multi-agent linear stochastic bandit
model. Departing from this standard model, we focus on a setting where a fraction α ∈ [0, 1/2) of
the agents are adversarial; the adversarial set is denoted by B, where |B| = αM . In particular, we
consider a worst-case attack model, where each adversarial agent i ∈ B is assumed to have complete
knowledge of the system, and is allowed to act arbitrarily. Under this attack model, an agent i ∈ B
can transmit arbitrarily corrupted messages to the central server.

Our performance measure of interest is the following group regret metric RT defined w.r.t. the
non-adversarial agents:

RT = E

 ∑
i∈[M ]\B

T∑
t=1

⟨θ∗, a∗ − ai,t⟩

 , (2)

where a∗ = argmaxa∈A⟨θ∗, a⟩ is the optimal arm, and T is the time horizon.3 We will work under
a regime where the horizon T is large, satisfying T ≥Md. The goal of the good (non-adversarial)
agents is to collaborate via the server and play a sequence of actions that minimize the group regret
RT . Let us now make a few key observations. In principle, each good agent can choose to act
independently throughout (i.e., not talk to the server at all), and achieve Õ(

√
dT ) regret by playing

a standard bandit algorithm. Clearly, the group regret RT would scale as Õ
(
(1− α)M

√
dT
)

in
such a case. In the absence of adversaries however, one can achieve a significantly better group
regret bound of Õ

(√
MdT

)
via collaboration, i.e., the regret per good agent can be reduced by a

factor of
√
M relative to the case when it acts independently (see, for instance, [41] and [45]). Our

specific interest in this paper is to investigate whether, and to what extent, one can retain the benefits
of collaboration despite the worst-case attack model described above. Said differently, we ask: Can
we improve upon the trivial per agent regret bound of Õ(

√
dT ) in the presence of adversaries?

Throughout the rest of the paper, we will answer the above question in the affirmative by deriving
novel robust algorithms for several canonical bandit models, and then establishing near-optimal regret
bounds for each such model.

3 Robust Collaborative Phased Elimination Algorithm for Linear Bandits

In this section, we develop a robust phased elimination algorithm that achieves the near-optimal
regret bound of Õ

((
α+

√
1/M

)√
dT
)

per good agent. This is non-trivial as we must account
for the worst-case attack model described in Section 2. To highlight the challenges that we need
to overcome, consider the following scenario. During the initial stages of the learning process,
when the arms in A have not been adequately sampled by the agents, even a good agent may have
“poor estimates" of the true payoffs associated with each arm, i.e., the variance associated with such
estimates may be large. This statistical uncertainty can be exploited by the adversarial agents to their
benefit. In particular, we need to devise an approach that can distinguish between benign stochastic
perturbations (due to the noise in our model) and deliberate adversarial behavior. In what follows, we
describe our proposed algorithm - Robust Collaborative Phased Elimination for Linear
Bandits (RCLB) - that precisely does so in a principled way.

2We will use ∥ · ∥ to represent the Euclidean norm, and a′ to denote the transpose of a vector a.
3For ease of exposition, we assume that there is an unique optimal arm.
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Algorithm 1 Robust Collaborative Phased Elimination for Linear Bandits (RCLB)

Input: Action set A = {a1, . . . , aK}, confidence parameter δ, and corruption fraction α.
Initialize: ℓ = 1 and A1 = A.
1: Let Vℓ(π) ≜

∑
a∈Aℓ

π(a)aa′ and gℓ(π) ≜ maxa∈Aℓ
∥a∥2Vℓ(π)

−1 . Server solves an approximate
G-optimal design problem to compute a distribution πℓ over Aℓ such that gℓ(πℓ) ≤ 2d and
|Supp(πℓ)| ≤ 48d log log d.

2: For each a ∈ Aℓ, server computes m(ℓ)
a via Eq. (5), and broadcasts {m(ℓ)

a }a∈Aℓ
to all agents.

3: for i ∈ [M ] \ B do
4: For each arm a ∈ Aℓ, pull it m(ℓ)

a times. Let r(ℓ)i,a be the average of the rewards observed by
agent i for arm a during phase ℓ.

5: Compute local estimate θ̂(ℓ)i of θ∗ as follows.4

θ̂
(ℓ)
i = Ṽ −1

ℓ Yi,ℓ, where Ṽℓ =
∑

a∈Supp(πℓ)

m(ℓ)
a aa′ ; Yi,ℓ =

∑
a∈Supp(πℓ)

m(ℓ)
a r

(ℓ)
i,aa. (3)

6: Transmit θ̂(ℓ)i to server. Adversarial agents can transmit arbitrary vectors at this stage.
7: end for
8: Server computes robust mean pay-offs for each active arm: for each a ∈ Aℓ, estimate µ(ℓ)

a as

µ(ℓ)
a = Median

(
{⟨θ̂(ℓ)i , a⟩, i ∈ [M ]}

)
.

9: Define robust confidence threshold γℓ ≜
√
2C
(
1 + α

√
M
)
ϵℓ, where C is as in Lemma 1.

Server performs phased elimination with the robust means and γℓ to update active arm set:

Aℓ+1 = {a ∈ Aℓ : max
b∈Aℓ

µ
(ℓ)
b − µ

(ℓ)
a ≤ 2γℓ}. (4)

10: ℓ = ℓ+ 1 and Goto line 1.

Description of RCLB (Algorithm 1). The RCLB algorithm we propose is inspired by the phased
elimination algorithm in [57, Chapter 22], but features some key differences due to the distributed
and adversarial nature of our problem. The algorithm proceeds in epochs/phases, and in each phase ℓ,
the server maintains an active candidate set Aℓ of potential optimal arms. The exploration of arms in
Aℓ is distributed among the agents. Upon such exploration, each agent i reports back a local estimate
θ̂
(ℓ)
i of the unknown parameter θ∗; adversarial agents can transmit arbitrarily corrupted messages at

this stage. Using the local parameter estimates {θ̂(ℓ)i }i∈[M ], the server then constructs (i) a robust
estimate of the true mean payoff ⟨θ∗, a⟩ for each active arm a ∈ Aℓ, and (ii) an inflated confidence
interval that captures both statistical and adversarial uncertainties associated with such robust mean
estimates. This step is crucial to our scheme and requires a lot of care as we explain shortly. With
the robust mean payoffs and associated confidence intervals in hand, the server eliminates arms with
rewards far away from that of the optimal arm a∗. We now elaborate on the above ideas.

•Optimal Experimental Design. To minimize the regret incurred in each phase ℓ, we need to minimize
the number of arm-pulls made to arms inAℓ. To that end, we appeal to a concept from statistics known
as optimal experimental design. The concept is as follows. Let π : A → [0, 1] be a distribution on
A such that

∑
a∈A π(a) = 1. Now define V (π) ≜

∑
a∈A π(a)aa

′; g(π) ≜ maxa∈A ∥a∥2V (π)−1 .
The so-called G-optimal design problem seeks to find a distribution (design) π∗ that minimizes g. In
essence, sampling each arm a ∈ A in proportion to π∗(a) minimizes the number of samples/arm-pulls
needed to achieve a desired level of precision in the estimates of the arm means ⟨θ∗, a⟩, a ∈ A. For
our purpose, we only need to solve an approximate G-optimal design problem: using the Frank-Wolfe
algorithm and an appropriate initialization, one can efficiently find an approximate optimal design
π such that g(π) ≤ 2d, and |Supp(π)| ≤ 48d log log d [58, Chapter 3]. Accordingly, the server
computes such an approximate optimal distribution πℓ over Aℓ in each epoch ℓ (line 1 of Algo. 1).

4Throughout, we assume that Ṽ −1
ℓ is invertible in each epoch ℓ; this is the case when Aℓ spans Rd. If Aℓ

does not span Rd, we can consider the lower dimensional subspace given by span(Aℓ).
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• Construction of Robust Arm-Payoff Estimates and Confidence Intervals. In each phase ℓ, the server
computes T (ℓ)

a and m(ℓ)
a for every a ∈ Aℓ as follows:

T (ℓ)
a =

⌈
πℓ(a)d

ϵ2ℓ
log

(
1

δℓ

)⌉
and m(ℓ)

a =

⌈
T

(ℓ)
a

M

⌉
, (5)

where πℓ(a) is obtained from the approximate G-optimal design problem, ϵℓ = 2−ℓ, δℓ = δ̄/(Kℓ2),
and δ̄ is a design variable to be chosen later. The idea is to explore an arm a T

(ℓ)
a times to estimate

⟨θ∗, a⟩ up to a precision that scales linearly with ϵℓ; in later phases, we require progressively finer
precision (hence, ϵℓ decays exponentially with ℓ). The task of exploration is distributed among the
agents, with each agent i being assigned m(ℓ)

a arm-pulls for every a ∈ Aℓ. Using the rewards that
it observes during phase ℓ, each good agent i ∈ [M ] \ B computes a local estimate θ̂(ℓ)i of θ∗, and
transmits it to the server (lines 3-7 of Algo. 1). The key question now is as follows: How should the
server use the local estimates {θ̂(ℓ)i }i∈[M ]? Let us consider two natural strategies.

Candidate Strategies. One option could be to use the local estimates {θ̂(ℓ)i }i∈[M ] along with a
high-dimensional robust mean estimation algorithm to compute a robust estimate of θ∗. Yet another
strategy could be for the server to query the raw observations (i.e., the yi,t’s) from the agents, use an
univariate robust mean estimation algorithm (e.g., trimmed mean or median) to generate a “clean"
version of each observation, and then use these clean observations to compute a robust estimate of
θ∗. Although feasible, each of the above strategies can unfortunately lead to an additional

√
d factor

in the regret bound; we discuss this point in detail in the Appendix. The main message we want to
convey here is that certain natural candidate solutions can lead to sub-optimal regret bounds.

Main Ideas. Our main insight is the following: to achieve near-optimal optimal regret bounds, one
need not go through the route of first computing a robust estimate of θ∗. As our analysis will soon
reveal, it suffices to instead compute robust estimates of the arm pay-offs {⟨θ∗, a⟩}a∈Aℓ

directly by
employing the estimator in line 8 of Algo. 1. The key statistical property that we exploit here is
that for each a ∈ Aℓ and i ∈ [M ] \ B, the quantity ⟨θ̂(ℓ)i , a⟩ is conditionally-Gaussian with mean
⟨θ∗, a⟩. This observation informs the choice of the median operator in line 8 of Algo. 1. Our next
task is to compute appropriate confidence intervals for the robust arm-mean-estimates in order to
eliminate sub-optimal arms. This is a delicate task as such confidence intervals need to account for
both statistical uncertainties and adversarial perturbations. Indeed, if the confidence intervals are too
tight, then they can lead to elimination of the optimal arm a∗; if they are too loose, then they can lead
to large regret. The confidence threshold γℓ in line 9 of Algo. 1 strikes just the right balance; the
choice of such intervals is justified in Lemma 1.

We now state and discuss our main result concerning the performance of RCLB.
Theorem 1. (Performance of RCLB) Suppose α ∈ [0, 0.5). Given any δ ∈ (0, 1), set δ̄ = δ/(10K).
Then, RCLB guarantees that with probability at least 1− δ, the following holds for each good agent
i ∈ [M ] \ B:

T∑
t=1

⟨θ∗, a∗ − ai,t⟩ = Õ
((
α+

√
1/M

)√
dT
)
. (6)

Main Takeaways. From Theorem 1, we note that RCLB guarantees sublinear regret despite the
presence of adversarial agents. More importantly, the regret bound in Eq. (6) has optimal dependence
on the model-dimension d, the horizon T , and also on the number of agents M when α = 0 (i.e.,
in the absence of adversaries). When α is small, Eq. (6) reveals that one can indeed retain the
benefits of collaboration, and improve upon the trivial per agent regret of Õ(

√
dT ). Interestingly, this

result mirrors that of a similar flavor for distributed stochastic optimization under attacks: given M
machines, α fraction of which are corrupt, the authors in [6] showed that no algorithm can achieve
statistical error lower than Ω̃

(
α/
√
T + 1/

√
MT

)
for strongly convex loss functions; here, T is the

number of samples on each machine. As far as we are aware, this is the first work to establish an
analogous result for collaborative linear bandits. Inspired by the lower bound in [6], one may ask: Is
the additive α

√
T term in Eq. (6) unavoidable? We will provide a definitive answer in Section 4.

Finally, we note that Theorem 1 immediately implies a bound of Õ
((
αM +

√
M
)√

dT
)

on the
group regret RT . We provide a formal proof of this fact in Appendix C.
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Proof Outline of Theorem 1. The first main step in our analysis of Theorem 1 is to provide
guarantees on the estimates {µ(ℓ)

a }a∈Aℓ
computed in line 8 of RCLB. This is achieved as follows.

Lemma 1. (Robust Confidence Intervals) Fix any epoch ℓ. There exists an universal constant C > 0
such that for each active arm b ∈ Aℓ, the following holds with probability at least 1− δℓ:

|µ(ℓ)
b − ⟨θ∗, b⟩| ≤ γℓ, where γℓ =

√
2C
(
1 + α

√
M
)
ϵℓ. (7)

Equipped with the above result, we argue that with high-probability, (i) the optimal arm a∗ is never
eliminated by RCLB (Lemma 4 in App. C); and (ii) in each epoch ℓ, an active arm inAℓ can contribute
to at most O(γℓ) per-time-step regret (Lemma 5 in App. C). Putting these pieces together in a careful
manner yields the desired result; we defer a detailed proof of Theorem 1 to Appendix C.

In the next section, we derive a lower bound that provides fundamental insights into the impact of the
adversarial agents for the multi-agent sequential decision-making problem considered in this paper.

4 Lower Bounds

In this section, we assess the optimality of the regret bound obtained in Theorem 1. To do so, we
consider a slightly different attack model: we assume that each of the agents is adversarial with
probability α, independently of the other agents. Thus, the expected fraction of adversaries is α.
Next, to provide a clean argument, we will focus on a class of policies Π where at each time-step
t, the server assigns the same action to every agent, i.e., ai,t = at,∀i ∈ [M ]. We note that all the
algorithms developed in this paper adhere to policies in Π. Moreover, policies within the class Π yield
the minimax optimal per-agent regret bound of order Õ(

√
dT/
√
M) when α = 0. Since the standard

multi-armed bandit setting [59] is a special case of the structured linear bandit setting considered
here, a lower bound for the former implies one for the latter. With this in mind, let us denote by
E(K)
N (1) the class of multi-armed bandits with K arms, where the reward distribution of each arm is

Gaussian with unit variance. An instance νµ ∈ E(K)
N (1) is characterized by the mean vector µ ∈ RK

associated with the K arms. Finally, let R(s)
T (νµ) denote the expected cumulative regret of the server

(which is the same as that of a good agent i ∈ [M ] \ B) when it interacts with the instance νµ. We
can now state the following result which establishes a fundamental lower bound for our problem.

Theorem 2. (Fundamental Lower Bound) Given any policy in Π, there exist two distinct instances
νµ, νµ′ ∈ E(2)N (1), and an universal constant c > 1, such that

max{R(s)
T (νµ), R

(s)
T (νµ′)} ≥ cα

√
T , (8)

irrespective of the number of agents M .

Main Takeaways. Observe from Eq. (6) that even when M is arbitrarily large, the additive α
√
T

term due to the adversaries remains unaffected - Is this term truly unavoidable or just an artifact of
our analysis? Theorem 2 settles this question by revealing a fundamental performance limit: every
policy in Π has to suffer the additive α

√
T regret, regardless of the number of agents. Thus, taken

together, Theorems 1 and 2 provide the first set of tight, near-optimal regret guarantees for the setting
considered in this paper. We consider this to be a significant contribution of our work.

Proof Idea for Theorem 2. For our setting, the standard techniques to prove lower bounds for
non-adversarial bandits do not directly apply. The lower-bound proofs used for reward-corruption
models [60], and attacks with a fixed budget [31], are not applicable either. This motivates us to use
a new proof technique that combines information-theoretic arguments in [17] with ideas from the
robust mean estimation literature [18, 19]. Specifically, for a two-armed bandit setting, we carefully
construct two instances and attack strategies such that the joint distribution of rewards seen by the
server is identical for both instances. Moreover, the instances are constructed such that (i) the optimal
arm in one instance is sub-optimal for the other; and (ii) the per-time-step regret for selecting a
sub-optimal arm in either instance is Ω(α/

√
T ). For a detailed proof, see Appendix D.

Having established tight bounds for the linear bandit model in Section 2, in the sequel, we will show
how our algorithmic ideas and results can be significantly extended to more general settings.
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5 Extension to Generalized Linear Models with Adversaries

In this section, we will show how to achieve a regret bound akin to that in Theorem 1 for the non-linear
observation model shown below [20, 21], known as the generalized linear model (GLM):

yi,t = µ (⟨θ∗, ai,t⟩) + ηi,t, (9)

where µ : R→ R is a continuously differentiable function typically referred to as the (inverse) link
function, and ηi,t ∼ N (0, 1) is as before. Our goal is to now control the following notion of regret:

RGLM
T = E

 ∑
i∈[M ]\B

T∑
t=1

(µ (⟨θ∗, a∗⟩)− µ (⟨θ∗, ai,t⟩))

 , (10)

where a∗ = argmaxa∈A µ(⟨θ∗, a⟩). The main technical challenge relative to the setting considered
in Section 2 pertains to the construction of the robust confidence intervals. In particular, the non-
linearity of the map µ(·) makes it hard to apply the technique adopted in line 8 of RCLB, necessitating
a different approach that we describe next. We start with the following standard assumption [20, 21].
Assumption 1. The function µ : R → R is continuously differentiable, Lipschitz with constant
k2 ≥ 1, and such that

k1 = min{1, inf
θ∈Θ,a∈A

µ̇(⟨θ, a⟩)} > 0.

Here, µ̇(·) is used to represent the derivative of µ(·).

Next, for any θ ∈ Rd, we define hℓ(θ) ≜
∑
a∈Supp(πℓ)

m
(ℓ)
a µ(⟨θ, a⟩)a. We now describe a variant of

RCLB - dubbed RC-GLM - for generalized linear models. Notably, unlike the standard bandit algorithms
[20, 21] for GLM’s that build on LinUCB, RC-GLM is based on phased elimination.

Description of RC-GLM. Our algorithm uses as a sub-routine the recently proposed Iteratively
Reweighted Mean Estimator for computing a robust estimate of the mean of high-dimensional
Gaussian random variables with adversarial outliers [22]. Specifically, suppose we are given M
d-dimensional samples x1, . . . , xM , such that (1 − α)M of these samples are drawn i.i.d. from
N (v,Σ), where v ∈ Rd is an unknown mean vector, and Σ ∈ Rd×d is a known covariance matrix.
The remaining αM samples are adversarial outliers and can be arbitrary. The estimator in [22] takes
as input the M samples, the corruption fraction α, and the covariance matrix Σ. It then outputs an
estimate v̂ of v such that with high probability, ∥v̂ − v∥ = Õ

(
∥Σ∥1/22

(√
d/M + α

√
log(1/α)

))
.

Importantly, the estimator in [22] runs in polynomial-time, and is minimax-rate-optimal. Let us now
see how this estimator - described in Appendix E - can be applied to our setting.

We only describe the key differences of RC-GLM relative to RCLB here, and defer a detailed description
of RC-GLM to Appendix E. To get around the difficulty posed by the non-linear link function, our
main idea is to first compute a robust estimate θ̂(ℓ) of θ∗ at the server, and then use it to develop
a phased elimination strategy. To that end, instead of computing a local estimate θ̂(ℓ)i as in RCLB,
each good agent i ∈ [M ] \ B transmits Yi,ℓ to the server, and the server computes a vector Xℓ as
follows: Xℓ = ITW({Ṽ −1/2

ℓ Yi,ℓ, i ∈ [M ]}). Here, Ṽ −1/2
ℓ and Yi,ℓ are as in Eq. (3), and we used

ITW(·) to denote the output of the robust estimator in [22]. Our key observation here is that for each
good agent i, Ṽ −1/2

ℓ Yi,ℓ is a d-dimensional Gaussian random variable with mean Ṽ −1/2
ℓ hℓ(θ∗), and

covariance matrix Σ = Id, justifying the use of the robust Gaussian mean estimator in [22]. The fact
that Σ = Id is crucial in our algorithm design as the error-bound in [22] scales with the 2-norm of
Σ. Essentially, the above steps enable us to extract a statistic Xℓ that captures information about the
agents’ observations during epoch ℓ. Using this statistic, the server next computes an estimate θ̂(ℓ) of
θ∗ by solving hℓ(θ̂(ℓ)) = Ṽ

1/2
ℓ Xℓ,5 and employs the following phased elimination strategy:

Aℓ+1 = {a ∈ Aℓ : maxb∈Aℓ
µ(⟨θ̂(ℓ), b⟩)− µ(⟨θ̂(ℓ), a⟩) ≤ 2γ̄ℓ}; γ̄ℓ = C̄(k2/k1)

(√
d+ α

√
M log(1/α)

)
ϵℓ,

where C̄ is an universal constant known to the server. Deriving an analogue of Lemma 1 to compute
the robust confidence threshold γ̄ℓ requires some work. This is achieved by exploiting the regularity
properties of the link function in tandem with the confidence bounds in [22]; see Appendix E for
details and a proof of our main result for RC-GLM stated below.

5We argue in Appendix E that this equation admits a unique solution.
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Algorithm 2 Robust BaseLinUCB (at Server)

Input: Confidence parameter δ̄, corruption fraction α, and index set ψt ⊆ [t− 1].
1: At ← Id

M +
∑
τ∈ψt

xτ,aτx
′
τ,aτ .

2: for i ∈ [M ] do ▷ Compute local parameters for each agent
3: bi,t ←

∑
τ∈ψt

ri,τxτ,aτ ; θ̂i,t ← A−1
t bi,t.

4: end for
5: for a ∈ [K] do ▷ Compute robust estimates for each feature vector

6: r̂t,a ← Median
(
{⟨θ̂i,t, xt,a⟩, i ∈ [M ]}

)
;wt,a ←

(
α+ 2C

√
log( 1

δ̄
)

M

)
∥xt,a∥A−1

t
, where

C is as in Lemma 1.
7: end for

Theorem 3. (Performance of Algorithm RC-GLM) Suppose α < (5 −
√
5)/10, and M =

Ω(log(KT )). Given any δ ∈ (0, 1), RC-GLM guarantees that with probability at least 1 − δ, the
following holds for each good agent i ∈ [M ] \ B:

T∑
t=1

(µ (⟨θ∗, a∗⟩)− µ (⟨θ∗, ai,t⟩)) = Õ
(
(k2/k1)

(
α
√
log (1/α) +

√
d/M

)√
dT
)
. (11)

Main Takeaways. Theorem 3 significantly generalizes Theorem 1 and shows that even for general
non-linear observation maps, one can reap the benefits of collaboration in the presence of adversaries.
The additional

√
d factor in the bound of (11) relative to that in (6) is inherited from the error-rate

guarantees in [22]; the task of tightening this bound is left as future work. Nonetheless, Theorem 3 is
the only result we are aware of that provides adversarial-robustness guarantees for GLMs.
Remark 1. (Communication Complexity of RCLB and RC-GLM) It is not hard to see that the number
of epochs/phases in RCLB and RC-GLM is O(log(MT )). Since communication between the server
and the agents occurs only once in every epoch, we note that the communication complexity of these
algorithms scale logarithmically with the horizon T . Thus, our proposed algorithms not only lead to
near-optimal regret bounds in the face of worst-case adversarial attacks, they are also communication-
efficient by design. This is an important point to take note of as communication-efficiency is a key
consideration in large-scale computing paradigms such as federated learning.

6 Robust Collaborative Contextual Bandits with Adversaries

In this section, we will consider a collaborative contextual bandit setting where at each time-step
t ∈ [T ], the server and the agents observe K d-dimensional feature vectors, {xt,a|a ∈ [K]}, with
∥xt,a∥ ≤ 1,∀a ∈ [K] and ∀t ∈ [T ]. We assume that the adversarial agents have no control over the
generation of the feature vectors. Associated with each arm a ∈ [K], the stochastic reward observed
by an agent i ∈ [M ] comes from the following observation model:

yi,t(a) = ⟨θ∗, xt,a⟩+ ηi,t(a), (12)
where {ηi,t(a)} are drawn i.i.d. from N (0, 1). At each time step t, a good agent i ∈ [M ] \ B plays
an action ai,t ∈ [K], and receives the corresponding reward ri,t ≜ yi,t(ai,t) based on the observation
model in (12). The main difference of the setting considered here relative to the one in Section
2 is that the feature vectors for each arm can change over time. As a result, the optimal action
a∗t = argmaxa∈[K]⟨θ∗, xt,a⟩ can change over time, making it particularly challenging to compete
with a time-varying optimal action in the presence of adversaries. This dictates the need for a different
algorithmic strategy compared to the one we developed in Section 1. Before we develop such a
strategy, let us first formally define the performance metric of interest to us in this setting:

RContext
T = E

 ∑
i∈[M ]\B

T∑
t=1

⟨θ∗, xt,a∗t − xt,ai,t⟩

 . (13)

The main question we ask is: For the contextual bandit setting described above, can one continue to
hope for benefits of collaboration in the presence of adversaries? In what follows, we will answer
this question in the affirmative by developing a variant of the SUPLINREL algorithm in [24].

8



Algorithm 3 Robust Collaborative SupLinUCB for Contextual Bandits (at Server)

Input: Confidence parameter δ, corruption fraction α, and horizon T .
1: S ← ⌈lnT ⌉;ψ(s)

1 ← ∅,∀s ∈ [S].
2: for t ∈ [T ] do
3: s← 1 and A1 ← [K].
4: repeat
5: Use Algorithm 2 with δ̄ = δ/(KST ), and index set ψ(s)

t to compute robust estimates
{r̂(s)t,a , w

(s)
t,a} of the means and variances of the payoffs associated with each arm a ∈ As.

6: If w(s)
t,a > 2−s/

√
M for some a ∈ As, then choose this arm, i.e., set at = a. Store the

corresponding phase: ψ(s)
t+1 = ψ

(s)
t ∪ {t}, ψ

(ℓ)
t+1 = ψ

(ℓ)
t ∀ℓ ̸= s.

7: Else if w(s)
t,a ≤ 1/

√
MT ∀a ∈ As, then select the arm with the highest robust upper

confidence bound: at = argmaxa∈As

(
r̂
(s)
t,a + w

(s)
t,a

)
. Do not store this phase, i.e., ψ(ℓ)

t+1 =

ψ
(ℓ)
t ∀ℓ ∈ [S].

8: Else if w(s)
t,a ≤ 2−s/

√
M ∀a ∈ As, then update active arm-set as

As+1 = {a ∈ As|max
b∈As

(
r̂
(s)
t,b + w

(s)
t,b

)
−
(
r̂
(s)
t,a + w

(s)
t,a

)
≤ 2(1−s)/

√
M}.

9: s← s+ 1.
10: until an action at is chosen.
11: Broadcast the chosen action at to every agent (i.e., ai,t = at,∀i ∈ [M ]), and receive

corresponding rewards {ri,t}i∈[M ]. Adversarial agents can transmit arbitrary reward values.
12: end for

Description of Algorithm 3. At each time-step t, our proposed algorithm, namely Algorithm 3,
scans through the set A of arms to determine a suitable action at. This scanning process (lines 4-10
of Algo. 3) is done at the server over S phases. Corresponding to each phase s ∈ [S], the server
maintains a set ψ(s)

t ; the set ψ(s)
t stores all the time-steps in [t− 1] where an action is chosen in phase

s of the scanning process based on line 6 on Algo. 3. The scanning process itself relies on Algorithm
2 as a sub-routine. Specifically, in each phase s, the server first invokes Algorithm 2 to obtain a
robust estimate r̂(s)t,a of ⟨θ∗, xt,a⟩ for each arm a ∈ As, along with an associated inflated confidence

width w(s)
t,a (line 5 of Algo. 3). If the confidence width is too large for a particular arm (as in line

6), then such an arm requires exploration and is accordingly chosen to be at. If, on the other hand,
the confidence widths of all arms are sufficiently small (as in line 7), then at is chosen to be the arm
with the highest upper-confidence bound. Thus, we follow the principle of optimism in the face of
uncertainty here, while exercising caution to account for the presence of adversaries (via the use of
inflated confidence intervals). If the conditions in lines 6 and 7 both fail, then the arms in As require
further screening. Accordingly, we move to the next phase s+ 1, retaining only those arms that are
sufficiently close to the optimal arm a∗t ; see line 8 of Algo. 3. Our main innovation lies in (i) the
construction of the robust arm-estimates in Algo. 2 that account for both statistical and adversarial
behavior, and (ii) the careful use of such estimates in lines 6-8 of Algo. 3 to pick the action at. The
next result reveals that the combination of these ideas yields near-optimal regret bounds.
Theorem 4. (Performance of Algo. 3) Suppose α ∈ (0, 0.5). Given any δ ∈ (0, 1), Algo. 3
guarantees that with probability at least 1− δ, the following holds for each good agent i ∈ [M ] \ B:

T∑
t=1

⟨θ∗, xt,a∗t − xt,ai,t⟩ = Õ
((
α+

√
1/M

)√
dT
)
. (14)

Main Takeaways. For the contextual bandit setting considered here, the single-agent minimax
optimal regret in the absence of adversaries is Õ(

√
dT ) [24]. In light of the lower bound in Theorem

2, we see that Theorem 4 provides a near-optimal regret guarantee, just as Theorem 1.
Remark 2. For ease of exposition, we have considered Gaussian noise (in the observation model)
throughout the paper. However, both our algorithms and results can be extended with slight modifica-
tions to sub-Gaussian noise sequences. We elaborate on this point in Appendix B.
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(a) (b) (c) (d)
Figure 1: Plots of per-agent regret for the linear bandit experiment. (a) Comparison between RCLB
and a vanilla non-robust phased elimination algorithm. (b) Performance of RCLB for varying number
of agents M , with α = 0.1. (c) Performance of RCLB for varying corruption fraction α, with
M = 100. For (d), we set α = 0.1, M = 100, and compare RCLB to a phased elimination algorithm
where the agents do not collaborate. We also plot theoretical upper-bounds: f1(T ) = 40

√
dT and

f2(T ) = 40(α+
√
(1/M))

√
dT .

7 Simulation Results

We report simulation results on synthetic data to corroborate our developed theory. Additional
simulations on contextual bandits and alternate attack models are presented in Appendix H.

Experimental Setup. We consider a setting with 50 actions in R5; we describe how these actions
and θ∗ are generated in Appendix H. The rewards are generated based on the observation model in
Eq. (1). We now describe the attack model. To manipulate the server into selecting sub-optimal arms,
each adversarial agent i employs the simple strategy of reducing the rewards of the good arms and
increasing the rewards of the bad arms. More precisely, in each epoch ℓ, upon pulling an arm a and
observing the corresponding reward ya, an adversarial agent i does the following: if ya > p⟨θ∗, a∗⟩,
then this reward is corrupted to ỹa = ya − β; and if ya ≤ p⟨θ∗, a∗⟩, then the reward is corrupted to
ỹa = ya+ β. For this experiment, we fix p = 0.6 and β = 5. Agent i ∈ B then uses all the corrupted
rewards in epoch ℓ to generate the local model estimate θ̂(ℓ)i that is transmitted to the server.

Discussion of Simulation Results. Fig. 1 summarizes our experimental results. In Fig. 1(a), we
compare our proposed algorithm RCLB to a vanilla distributed phased elimination (PE) algorithm that
does not account for adversarial agents. Specifically, the latter is designed by replacing the median
operation in line 8 of Algorithm 1 with a mean operation, and setting the threshold γℓ in line 9 to be
ϵℓ. Fig. 1(a) shows that even a small fraction α = 0.1 of adversaries can cause the non-robust PE
algorithm to incur linear regret. In contrast, RCLB continues to guarantee sub-linear regret bounds
despite adversarial corruptions. Furthermore, the regret bound of RCLB in the presence of a small
fraction of adversarial agents is close to that of the non-robust algorithm in the absence of adversaries.
This goes on to establish the robustness of RCLB.

Fig. 1(b) depicts the performance of RCLB for varying values of the number of agents M , at a fixed
corruption level α = 0.1. We observe that increasing M results in lower regret, indicating a clear
benefit of collaboration despite the presence of adversaries. In Fig. 1(c), we vary the corruption
fraction α, keeping M fixed at 100. As expected, increasing α leads to higher (albeit sub-linear)
regret. Importantly, the trends observed in both Fig. 1(b) and Fig. 1(c) are consistent with the
theoretical upper-bound of O((α+ 1/

√
M)
√
dT ) predicted by Theorem 1.

A trivial way to avoid adversarial corruption is for a good agent to not participate in any collaboration
at all, and run a standard single-agent bandit algorithm. This would result in such an agent incurring
O(
√
dT ) regret. The purpose of Fig. 1(d) is to drive home the point that RCLB can lead to significant

improvements over a trivial non-collaborative strategy. To make this point clear, we compare RCLB
to a standard single-agent phased elimination algorithm that does not involve any collaboration,
and observe that despite adversarial corruption, RCLB leads to considerably lower regret bounds as
compared to the non-collaborative strategy. This highlights the importance of our approach.
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Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, H Brendan McMahan, et al.
Towards federated learning at scale: System design. arXiv preprint arXiv:1902.01046, 2019.

[3] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
Intelligence and Statistics, pages 1273–1282. PMLR, 2017.

[4] Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial
settings: Byzantine gradient descent. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 1(2):1–25, 2017.

[5] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning
with adversaries: Byzantine tolerant gradient descent. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, pages 118–128, 2017.

[6] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. In International Conference on Machine Learning,
pages 5650–5659. PMLR, 2018.

[7] Lingjiao Chen, Zachary Charles, Dimitris Papailiopoulos, et al. Draco: Robust distributed
training via redundant gradients. arXiv preprint arXiv:1803.09877, 2018.

[8] Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine stochastic gradient descent. arXiv
preprint arXiv:1803.08917, 2018.

[9] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized byzantine-tolerant sgd. arXiv
preprint arXiv:1802.10116, 2018.

[10] Liping Li, Wei Xu, Tianyi Chen, Georgios B Giannakis, and Qing Ling. Rsa: Byzantine-
robust stochastic aggregation methods for distributed learning from heterogeneous datasets. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 1544–1551,
2019.

[11] Avishek Ghosh, Justin Hong, Dong Yin, and Kannan Ramchandran. Robust federated learning
in a heterogeneous environment. arXiv preprint arXiv:1906.06629, 2019.

[12] Avishek Ghosh, Raj Kumar Maity, Swanand Kadhe, Arya Mazumdar, and Kannan Ramachan-
dran. Communication efficient and Byzantine tolerant distributed learning. In 2020 IEEE
International Symposium on Information Theory (ISIT), pages 2545–2550. IEEE, 2020.

[13] Avishek Ghosh, Raj Kumar Maity, and Arya Mazumdar. Distributed newton can communicate
less and resist Byzantine workers. arXiv preprint arXiv:2006.08737, 2020.

[14] Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Learning from history for byzantine robust
optimization. In International Conference on Machine Learning, pages 5311–5319. PMLR,
2021.

[15] Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under
bandit feedback. 2008.

[16] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear
stochastic bandits. Advances in neural information processing systems, 24:2312–2320, 2011.

[17] Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet. Bounded regret in stochastic
multi-armed bandits. In Conference on Learning Theory, pages 122–134. PMLR, 2013.

[18] Mengjie Chen, Chao Gao, and Zhao Ren. Robust covariance matrix estimation via matrix depth.
arXiv preprint arXiv:1506.00691, 2015.

11



[19] Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation of mean and covariance.
In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages
665–674. IEEE, 2016.

[20] Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The
generalized linear case. In NIPS, volume 23, pages 586–594, 2010.

[21] Lihong Li, Yu Lu, and Dengyong Zhou. Provably optimal algorithms for generalized linear
contextual bandits. In International Conference on Machine Learning, pages 2071–2080.
PMLR, 2017.

[22] Arnak S. Dalalyan and Arshak Minasyan. All-in-one robust estimator of the gaussian mean.
The Annals of Statistics, 2022.

[23] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pages 661–670, 2010.

[24] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

[25] Kwang-Sung Jun, Lihong Li, Yuzhe Ma, and Xiaojin Zhu. Adversarial attacks on stochastic
bandits. arXiv preprint arXiv:1810.12188, 2018.

[26] Fang Liu and Ness Shroff. Data poisoning attacks on stochastic bandits. In International
Conference on Machine Learning, pages 4042–4050. PMLR, 2019.

[27] Thodoris Lykouris, Vahab Mirrokni, and Renato Paes Leme. Stochastic bandits robust to
adversarial corruptions. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, pages 114–122, 2018.

[28] Anupam Gupta, Tomer Koren, and Kunal Talwar. Better algorithms for stochastic bandits with
adversarial corruptions. In Conference on Learning Theory, pages 1562–1578. PMLR, 2019.

[29] Ilija Bogunovic, Andreas Krause, and Jonathan Scarlett. Corruption-tolerant gaussian process
bandit optimization. In International Conference on Artificial Intelligence and Statistics, pages
1071–1081. PMLR, 2020.

[30] Evrard Garcelon, Baptiste Roziere, Laurent Meunier, Jean Tarbouriech, Olivier Teytaud,
Alessandro Lazaric, and Matteo Pirotta. Adversarial attacks on linear contextual bandits.
arXiv preprint arXiv:2002.03839, 2020.

[31] Ilija Bogunovic, Arpan Losalka, Andreas Krause, and Jonathan Scarlett. Stochastic linear
bandits robust to adversarial attacks. In International Conference on Artificial Intelligence and
Statistics, pages 991–999. PMLR, 2021.

[32] Jiafan He, Dongruo Zhou, Tong Zhang, and Quanquan Gu. Nearly optimal algorithms for linear
contextual bandits with adversarial corruptions. arXiv preprint arXiv:2205.06811, 2022.

[33] Keqin Liu and Qing Zhao. Distributed learning in multi-armed bandit with multiple players.
IEEE Transactions on Signal Processing, 58(11):5667–5681, 2010.

[34] Dileep Kalathil, Naumaan Nayyar, and Rahul Jain. Decentralized learning for multiplayer
multiarmed bandits. IEEE Transactions on Information Theory, 60(4):2331–2345, 2014.

[35] Soummya Kar, H Vincent Poor, and Shuguang Cui. Bandit problems in networks: Asymptot-
ically efficient distributed allocation rules. In 2011 50th IEEE Conference on Decision and
Control and European Control Conference, pages 1771–1778. IEEE, 2011.

[36] Peter Landgren, Vaibhav Srivastava, and Naomi Ehrich Leonard. Distributed cooperative
decision-making in multiarmed bandits: Frequentist and bayesian algorithms. In 2016 IEEE
55th Conference on Decision and Control (CDC), pages 167–172. IEEE, 2016.

[37] Peter Landgren, Vaibhav Srivastava, and Naomi Ehrich Leonard. Distributed cooperative
decision making in multi-agent multi-armed bandits. Automatica, 125:109445, 2021.

12



[38] Shahin Shahrampour, Alexander Rakhlin, and Ali Jadbabaie. Multi-armed bandits in multi-agent
networks. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 2786–2790. IEEE, 2017.

[39] Swapna Buccapatnam, Jian Tan, and Li Zhang. Information sharing in distributed stochastic
bandits. In 2015 IEEE Conference on Computer Communications (INFOCOM), pages 2605–
2613. IEEE, 2015.

[40] Ravi Kumar Kolla, Krishna Jagannathan, and Aditya Gopalan. Collaborative learning of
stochastic bandits over a social network. IEEE/ACM Transactions on Networking, 26(4):1782–
1795, 2018.

[41] Yuanhao Wang, Jiachen Hu, Xiaoyu Chen, and Liwei Wang. Distributed bandit learning:
Near-optimal regret with efficient communication. arXiv preprint arXiv:1904.06309, 2019.

[42] Abishek Sankararaman, Ayalvadi Ganesh, and Sanjay Shakkottai. Social learning in multi agent
multi armed bandits. Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 3(3):1–35, 2019.

[43] David Martínez-Rubio, Varun Kanade, and Patrick Rebeschini. Decentralized cooperative
stochastic bandits. arXiv preprint arXiv:1810.04468, 2018.

[44] Abhimanyu Dubey et al. Kernel methods for cooperative multi-agent contextual bandits. In
International Conference on Machine Learning, pages 2740–2750. PMLR, 2020.

[45] Abhimanyu Dubey and Alex Pentland. Differentially-private federated linear bandits. arXiv
preprint arXiv:2010.11425, 2020.

[46] Anusha Lalitha and Andrea Goldsmith. Bayesian algorithms for decentralized stochastic bandits.
arXiv preprint arXiv:2010.10569, 2020.

[47] Ronshee Chawla, Abishek Sankararaman, Ayalvadi Ganesh, and Sanjay Shakkottai. The
gossiping insert-eliminate algorithm for multi-agent bandits. In International Conference on
Artificial Intelligence and Statistics, pages 3471–3481. PMLR, 2020.

[48] Ronshee Chawla, Abishek Sankararaman, and Sanjay Shakkottai. Multi-agent low-dimensional
linear bandits. arXiv preprint arXiv:2007.01442, 2020.

[49] Avishek Ghosh, Abishek Sankararaman, and Kannan Ramchandran. Collaborative learning and
personalization in multi-agent stochastic linear bandits. arXiv preprint arXiv:2106.08902, 2021.

[50] Mridul Agarwal, Vaneet Aggarwal, and Kamyar Azizzadenesheli. Multi-agent multi-armed
bandits with limited communication. arXiv preprint arXiv:2102.08462, 2021.

[51] Zhaowei Zhu, Jingxuan Zhu, Ji Liu, and Yang Liu. Federated bandit: A gossiping approach. In
Abstract Proceedings of the 2021 ACM SIGMETRICS/International Conference on Measurement
and Modeling of Computer Systems, pages 3–4, 2021.

[52] Chengshuai Shi, Cong Shen, and Jing Yang. Federated multi-armed bandits with personalization.
In International Conference on Artificial Intelligence and Statistics, pages 2917–2925. PMLR,
2021.

[53] Abhimanyu Dubey and Alex Pentland. Private and byzantine-proof cooperative decision-making.
In AAMAS, pages 357–365, 2020.

[54] Daniel Vial, Sanjay Shakkottai, and R Srikant. Robust multi-agent multi-armed bandits. In
Proceedings of the Twenty-second International Symposium on Theory, Algorithmic Foundations,
and Protocol Design for Mobile Networks and Mobile Computing, pages 161–170, 2021.

[55] Daniel Vial, Sanjay Shakkottai, and R Srikant. Robust multi-agent bandits over undirected
graphs. arXiv preprint arXiv:2203.00076, 2022.

[56] Aritra Mitra, Hamed Hassani, and George Pappas. Exploiting heterogeneity in robust federated
best-arm identification. arXiv preprint arXiv:2109.05700, 2021.

13



[57] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[58] Michael J Todd. Minimum-volume ellipsoids: Theory and algorithms. SIAM, 2016.

[59] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2):235–256, 2002.

[60] Sayash Kapoor, Kumar Kshitij Patel, and Purushottam Kar. Corruption-tolerant bandit learning.
Machine Learning, 108(4):687–715, 2019.

[61] Zixin Zhong, Wang Chi Cheung, and Vincent Tan. Probabilistic sequential shrinking: A best
arm identification algorithm for stochastic bandits with corruptions. In International Conference
on Machine Learning, pages 12772–12781. PMLR, 2021.

[62] Shreyas Sundaram and Bahman Gharesifard. Distributed optimization under adversarial nodes.
IEEE Transactions on Automatic Control, 64(3):1063–1076, 2018.

[63] Lili Su and Nitin H Vaidya. Byzantine-resilient multiagent optimization. IEEE Transactions on
Automatic Control, 66(5):2227–2233, 2020.

[64] Kananart Kuwaranancharoen, Lei Xin, and Shreyas Sundaram. Byzantine-resilient distributed
optimization of multi-dimensional functions. In 2020 American Control Conference (ACC),
pages 4399–4404. IEEE, 2020.

[65] Nirupam Gupta, Thinh T Doan, and Nitin H Vaidya. Byzantine fault-tolerance in decentralized
optimization under 2f-redundancy. In 2021 American Control Conference (ACC), pages 3632–
3637. IEEE, 2021.

[66] Arman Adibi, Aritra Mitra, George J Pappas, and Hamed Hassani. Distributed statistical
min-max learning in the presence of Byzantine agents. arXiv preprint arXiv:2204.03187, 2022.

[67] Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics, pages
492–518. Springer, 1992.

[68] Peter J Huber. Robust statistics, volume 523. John Wiley & Sons, 2004.

[69] Yu Cheng, Ilias Diakonikolas, and Rong Ge. High-dimensional robust mean estimation in
nearly-linear time. In Proc. of the thirtieth annual ACM-SIAM symp. on discrete algorithms,
pages 2755–2771. SIAM, 2019.

[70] Stanislav Minsker. Uniform bounds for robust mean estimators. arXiv preprint
arXiv:1812.03523, 2018.

[71] Gabor Lugosi and Shahar Mendelson. Robust multivariate mean estimation: the optimality of
trimmed mean. The Annals of Statistics, 49(1):393–410, 2021.

14



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] While explaining the main

takeaways from Theorem 3 in Section 5, we mention that our regret bound features an
additional

√
d term relative to Theorem 1. Tightening this bound is part of our future

work.
(c) Did you discuss any potential negative societal impacts of your work? [No] We could

not think of any negative societal impacts of our work.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] We provide complete

proofs of all our results in the supplemental material.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15


