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Abstract

ℓ0 constrained optimization is prevalent in machine learning, particularly for high-
dimensional problems, because it is a fundamental approach to achieve sparse
learning. Hard-thresholding gradient descent is a dominant technique to solve
this problem. However, first-order gradients of the objective function may be
either unavailable or expensive to calculate in a lot of real-world problems, where
zeroth-order (ZO) gradients could be a good surrogate. Unfortunately, whether ZO
gradients can work with the hard-thresholding operator is still an unsolved prob-
lem. To solve this puzzle, in this paper, we focus on the ℓ0 constrained black-box
stochastic optimization problems, and propose a new stochastic zeroth-order gradi-
ent hard-thresholding (SZOHT) algorithm with a general ZO gradient estimator
powered by a novel random support sampling. We provide the convergence analysis
of SZOHT under standard assumptions. Importantly, we reveal a conflict between
the deviation of ZO estimators and the expansivity of the hard-thresholding opera-
tor, and provide a theoretical minimal value of the number of random directions
in ZO gradients. In addition, we find that the query complexity of SZOHT is
independent or weakly dependent on the dimensionality under different settings.
Finally, we illustrate the utility of our method on a portfolio optimization problem
as well as black-box adversarial attacks.

1 Introduction

ℓ0 constrained optimization is prevalent in machine learning, particularly for high-dimensional
problems, because it is a fundamental approach to achieve sparse learning. In addition to improving
the memory, computational and environmental footprint of the models, these sparse constraints
help reduce overfitting and obtain consistent statistical estimation [46, 5, 33, 29]. We formulate the
problem as follows:

min
x∈Rd

{f(x) := Eξf(x, ξ)} , s.t. ∥x∥0 ≤ k (1)

where f(·, ξ) : Rd → R is a differentiable function and ξ is a noise term, for instance related to an
underlying finite sum structure in f , of the form: Eξf(x, ξ) =

1
n

∑n
i=1 fi(x). Hard-thresholding

gradient algorithm [17, 31, 45] is a dominant technique to solve this problem. It generally consists in
alternating between a gradient step, and a hard-thresholding operation which only keeps the k-largest
components (in absolute value) of the current iterate. The advantage of hard-thresholding over its
convex relaxations ([39, 41]) is that it can often attain similar precision, but is more computationally
efficient, since it can directly ensure a desired sparsity level instead of tuning an ℓ1 penalty or
constraint. The only expensive computation in hard-thresholding is the hard-thresholding step itself,
which requires finding the top k elements of the current iterate. Hard-thresholding was originally
developed in its full gradient form [17], but has been later on extended to the stochastic setting by
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Table 1: Complexity of sparsity-enforcing algorithms. We give the query complexity for a precision ε, up to
the system error (see section 4). For first-order algorithms (FO), we give it in terms of number of first order
oracle calls (#IFO), that is, calls to ∇f(x, ξ), and for ZO algorithms, in terms of calls of f(ξ, ·). Here κ denotes
the condition number L

ν
, with L is the smoothness (or RSS) constant and ν is the strong-convexity (or RSC)

constant.
Type Name Assumptions #IZO/#IFO #HT ops.
FO/ℓ0 StoIHT [31] RSS, RSC O(κ log( 1ε )) O(κ log( 1ε ))

ZO/ℓ1 RSPGF [14] smooth3 O( d
ε2 ) —

ZO/ℓ1 ZSCG2[2] convex, smooth O( d
ε2 ) —

ZO/ℓ1 ZORO [7]
s-sparse gradient,
weakly sparse hessian,
smooth3, RSCbis

1
O(s log(d) log(1ε )) —

ZO/ℓ0 SZOHT RSS, RSC O((k + d
s2
)κ2 log( 1ε )) O(κ2 log( 1ε ))

ZO/ℓ0 SZOHT smooth, RSC O(kκ2 log( 1ε )) O(κ2 log( 1ε ))
1 The definition of Restricted Strong Convexity from [7] is different from ours and that of [31], hence

the bis subscript.
2 We refer to the modified version of ZSCG (Algorithm 3 in [2]).
3 RSPGF and ZORO minimize f(x) + λ∥x∥1: only f needs to be smooth.

Nguyen et al. [31], which developed a stochastic gradient descent (SGD) version of hard thresholding
(StoIHT), and further more with Zhou et al. [47], Shen and Li [36] and Li et al. [20], which used
variance reduction technique to improve upon StoIHT.

However, the first-order gradients used in the above methods may be either unavailable or expensive
to calculate in a lot of real-world problems. For example, in certain graphical modeling tasks [42],
obtaining the gradient of the objective function is computationally hard. Even worse, in some settings,
the gradient is inaccessible by nature, for instance in bandit problems [35], black-box adversarial
attacks [40, 9, 10], or reinforcement learning [34, 27, 11]. To tackle those problems, ZO optimization
methods have been developed [30]. Those methods usually replace the inaccessible gradient by its
finite difference approximation which can be computed only from function evaluations, following
the idea that for a differentiable function f : R → R, we have: f ′(x) = limh→0

f(x+h)−f(x)
h . Later

on, ZO methods have been adapted to deal with a convex constraints set, and can therefore be used
to solve the ℓ1 convex relaxation of problem (1). To that end, Ghadimi et al. [14], and Cai et al. [7]
introduce proximal ZO algorithms, Liu et al. [24] introduce a ZO projected gradient algorithm and
Balasubramanian and Ghadimi [2] introduce a ZO conditional gradient [19] algorithm. We provide
a review of those results in Table 1. As can be seen from the table, their query complexity is high
(linear in d), except [7] that has a complexity of O(s log(d) log( 1ε )), but assumes that gradients are
sparse. In addition, those methods must introduce a hyperparameter λ (the strength of the ℓ1 penalty)
or R (the radius of the ℓ1 ball), which need to be tuned to find which value ensures the right sparsity
level. Therefore, it would be interesting to use the hard-thresholding techniques described in the
previous paragraph, instead of those convex relaxations.

Unfortunately, ZO hard-thresholding gradient algorithms have not been exploited formally. Even
more, whether ZO gradients can work with the hard-thresholding operator is still an unknown
problem. Although there was one related algorithm proposed recently by Balasubramanian and
Ghadimi [2], they did not target ℓ0 constrained optimization problem and importantly have strong
assumptions in their convergence analysis. Indeed, they assume that the gradients, as well as the
solution of the unconstrained problem, are s-sparse: ∥∇f(x)∥0 ≤ s and ∥x∗∥0 ≤ s∗ ≈ s, where
x∗ = argminx f(x). In addition, it was recently shown by Cai et al. [7] that they must in fact
assume that the support of the gradient is fixed for all x ∈ X , for their convergence result to hold,
which is a hard limitation, since that amounts to say that the function f depends on s fixed variables.

To fill this gap, in this paper, we focus on the ℓ0 constrained black-box stochastic optimization
problems, and propose a novel stochastic zeroth-order gradient hard-thresholding (SZOHT) algorithm.
Specifically, we propose a dimension friendly ZO gradient estimator powered by a novel random
support sampling technique, and then embed it into the standard hard-thresholding operator.
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We then provide the convergence and complexity analysis of SZOHT under the standard assumptions
of sparse learning, which are restricted strong smoothness (RSS), and restricted strong convexity
(RSC) [31, 36], to retain generality, therefore providing a positive answer to the question of whether
ZO gradients can work with the hard-thresholding operator. Crucial to our analysis is to provide
carefully tuned requirements on the parameters q (the number of random directions used to estimate
the gradient, further defined in Section 3.1) and k. Finally, we illustrate the utility of our method on a
portfolio optimization problem as well as black-box adversarial attacks, by showing that our method
can achieve competitive performance in comparison to state of the art methods for sparsity-enforcing
zeroth-order algorithm described in Table 1, such as [14, 2, 7].

Importantly, we also show that in the smooth case, the query complexity of SZOHT is independent
of the dimensionality, which is significantly different to the dimensionality dependent results for
most existing ZO algorithms. Indeed, it is known from Jamieson et al. [18] that the worst case query
complexity of ZO optimization over the class Fν,L of ν-strongly convex and L-smooth functions
defined over a convex set X is linear in d. Our work is thus in line with other works achieving
dimension-insensitive query complexity in zeroth-order optimization such as [15, 37, 44, 7, 6, 2, 7,
22, 18], but contrary to those, instead of making further assumptions (i.e. restricting the class Fν,L

to a smaller class), we bypass the impossibility result by replacing the convex feasible set X by a
non-convex set (the ℓ0 ball), which is how we can avoid making stringent assumptions on the class of
functions f .

Contributions. We summarize the main contributions of our paper as follows:
1. We propose a new algorithm SZOHT that is, up to our knowledge, the first zeroth-order sparsity

constrained algorithm that is dimension independent under the smoothness assumption, without
assuming any gradient sparsity.

2. We reveal an interesting conflict between the error from zeroth-order estimates and the hard-
thresholding operator, which results in a minimal value for the number of random directions q
that is necessary to ensure at each iteration.

3. We also provide the convergence analysis of our algorithm in the more general RSS setting,
providing, up to our knowledge, the first zeroth-order algorithm that can work with the usual
assumptions of RSS/RSC from the hard-thresholding literature.

2 Preliminaries

Throughout this paper, we denote by ∥x∥ the Euclidean norm for a vector x ∈ Rd, by ∥x∥∞ the
maximum absolute component of that vector, and by ∥x∥0 the ℓ0 norm (which is not a proper norm).
For simplicity, we denote fξ(·) := f(·, ξ). We call uF (resp. ∇F f(x)) the vector which sets all
coordinates i ̸∈ F of u (resp. ∇f(x)) to 0. We also denote by x∗ the solution of problem (1) defined
in the introduction, for some target sparsity k∗ which could be smaller than k. To derive our result,
we will need the following assumptions on f .
Assumption 1 ((νs, s)-RSC, [17, 28, 26, 45, 20, 36, 31]). f is said to be νs restricted strongly convex
with sparsity parameter s if it is differentiable, and there exist a generic constant νs such that for all
(x,y) ∈ Rd with ∥x− y∥0 ≤ s:

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ νs
2
∥x− y∥2

Assumption 2 ((Ls, s)-RSS, [36, 31]). For almost any ξ, fξ is said to be Ls restricted smooth
with sparsity level s, if it is differentiable, and there exist a generic constant Ls such that for all
(x,y) ∈ Rd with ∥x− y∥0 ≤ s:

∥∇fξ(x)−∇fξ(y)∥ ≤ Ls∥x− y∥

Assumption 3 (σ2-FGN [16], Assumption 2.3 (Finite Gradient Noise)). f is said to have σ-finite
gradient noise if for almost any ξ, fξ is differentiable and the gradient noise σ = σ(f, ξ) defined
below is finite:

σ2 = Eξ[∥∇fξ(x
∗)∥2∞]

Remark 1. Even though the original version of [16] uses the ℓ2 norm, we use the ℓ∞ norm here,
in order to give more insightful results in terms of k and d, as is done classically in ℓ0 optimization,
similarly to [47]. We also note that in [16], x∗ denotes an unconstrained minimum when in our case
it denotes the constrained minimum for some sparsity k∗.
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For Corollary 2, we will also need the more usual smoothness assumption:

Assumption 4 (L-smooth). For almost any ξ, fξ is said to be L smooth, if it is differentiable, and for
all (x,y) ∈ Rd :

∥∇fξ(x)−∇fξ(y)∥ ≤ L∥x− y∥

3 Algorithm

3.1 Random support Zeroth-Order estimate

In this section, we describe our zeroth-order gradient estimator. It is basically composed of a random
support sampling step, followed by a random direction with uniform smoothing on the sphere
supported by this support. We also use the technique of averaging our estimator over q dimensions,
as described in [25]. More formally, our gradient estimator is described below:

∇̂fξ(x) =
d

qµ

q∑
i=1

(fξ(x+ µui)− fξ(x))ui (2)

where each random direction ui is a unit vector sampled uniformly from the set Sd
s2 := {u ∈

Rd : ∥u∥0 ≤ s2, ∥u∥ = 1}. We can obtain such vectors u by sampling first a random support S
(i.e. a set of coordinates) of size s2 from [d], (denoted as S ∼ U(

(
[d]
s2

)
) in Algorithm 1) and then

by sampling a random unit vector u supported on that support S, that is, uniformly sampled from
the set Sd

S := {u ∈ Rd : u[d]−S = 0, ∥u∥ = 1}, (denoted as u ∼ U(Sd
S) in algorithm 1). The

original uniform smoothing technique on the sphere is described in more detail in [12]. However,
in our case, the sphere along which we sample is restricted to a random support of size s2. Our
general estimator, through the setting of the variable s2, can take several forms, which are similar to
pre-existing gradient estimators from the literature described below:

• If s2 = d, ∇̂fξ(x) is the usual vanilla estimator with uniform smoothing on the sphere [12].
• If 1 ≤ s2 ≤ d, our estimator is similar to the Random Block-Coordinate gradient estimator

from Lian et al. [21], except that the blocks are not fixed at initialization but chosen randomly,
and that we use a uniform smoothing with forward difference on the given block instead of a
coordinate-wise estimation with central difference. This random support technique allows us to
give a convergence analysis under the classical assumptions of the hard-thresholding literature
(see Remark 3), and to deal with huge scale optimization, when sampling uniformly from a unit
d-sphere is costly [7, 6]: in the distributed setting for instance, each worker would just need to
sample an s2-sparse random vector, and only the centralized server would materialize the full
gradient approximation containing up to qs2 non-zero entries.

Error Bounds of the Zeroth-Order Estimator. We now derive error bounds on the gradient
estimator, that will be useful in the convergence rate proof, except that we consider only the restriction
to some support F (that is, we consider a subset of components of the gradient/estimator). Indeed,
proofs in the hard-thresholding literature (see for instance [45]), are usually written only on that
support. That is the key idea which explains how the dimensionality dependence is reduced when
doing SZOHT compared to vanilla ZO optimization. We give more insight on the shape of the
original distribution of gradient estimators, and the distribution of their projection onto a hyperplane
F in Figure 5 in Appendix E. We can observe that even if the original gradient estimator is poor, in
the projected space, the estimation error is reduced, which we quantify in the proposition below.

Proposition 1. (Proof in Appendix C.3 ) Let us consider any support F ⊂ [d] of size s (|F | = s).
For the Z0 gradient estimator in (2), with q random directions, and random supports of size s2, and
assuming that each fξ is (Ls2 , s2)-RSS, we have, with ∇̂F fξ(x) denoting the hard thresholding of
the gradient ∇fξ(x) on F (that is, we set all coordinates not in F to 0):

(a) ∥E∇̂F fξ(x)−∇F fξ(x)∥2 ≤ εµµ
2

(b) E∥∇̂F fξ(x)∥2 ≤ εF ∥∇F fξ(x)∥2 + εF c∥∇F cfξ(x)∥2 + εabsµ
2

(c) E∥∇̂F fξ(x)−∇F fξ(x)∥2 ≤ 2(εF + 1)∥∇F fξ(x)∥2 + 2εF c∥∇F cfξ(x)∥2 + 2εabsµ
2
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with εµ = L2
s2sd, εF =

2d

q(s2 + 2)

(
(s− 1)(s2 − 1)

d− 1
+ 3

)
+ 2,

εF c =
2d

q(s2 + 2)

(
s(s2 − 1)

d− 1

)
and εabs =

2dL2
s2ss2

q

(
(s− 1)(s2 − 1)

d− 1
+ 1

)
+ L2

s2sd

(3)

3.2 SZOHT Algorithm

We now present our full algorithm to optimize problem 1, which we name SZOHT (Stochastic
Zeroth-Order Hard Thresholding). Each iteration of our algorithm is composed of two steps: (i) the
gradient estimation step, and (ii) the hard thresholding step, where the gradient estimation step is
the one described in the section above, and the hard-thresholding is described in more detail in the
following paragraph. We give the full formal description of our algorithm in Algorithm 1.

In the hard thresholding step, we only keep the k largest (in magnitude) components of the current
iterate xt. This ensures that all our iterates (including the last one) are k-sparse. This hard-thresholding
operator has been studied for instance in [36], and possesses several interesting properties. Firstly, it
can be seen as a projection on the ℓ0 ball. Second, importantly, it is not non-expansive, contrary to
other operators like the soft-thresholding operator [36]. That expansivity plays an important role in
the analysis of our algorithm, as we will see later.

Compared to previous works, our algorithm can be seen as a variant of Stochastic Hard Thresholding
(StoIHT from [31]) , where we replaced the true gradient of fξ by the estimator ∇̂fξ(x). It is also
very close to Algorithm 5 from Balasubramanian and Ghadimi [2] (Truncated-ZSGD), with just
a different zeroth-order gradient estimator: we use a uniform smoothing, random-block estimator,
instead of their gaussian smoothing, full support vanilla estimator. This allows us to deal with very
large dimensionalities, in the order of millions, similarly to Cai et al. [6]. Furthermore, as described
in the Introduction, contrary to Balasubramanian and Ghadimi [2], we provide the analysis of our
algorithm without any gradient sparsity assumption.

The key challenge arising in our analysis is described in Figure 1: the hard-thresholding operator
being expansive [36], each approximate gradient step must approach the solution enough to stay close
to it even after hard-thresholding. Therefore, it is a priori unclear whether the zeroth-order estimate
can be accurate enough to guarantee the convergence of SZOHT. Hopefully, as we will see in the
next section, we can indeed ensure convergence, as long as we carefully choose the value of q.

Figure 1: Conflict between the hard-thresholding operator and the zeroth-order estimate.

4 Convergence analysis
In this section, we provide the convergence analysis of SZOHT, using the assumptions from section
2, and discuss an interesting property of the combination of the zeroth-order gradient estimate and
the hard-thresholding operator, providing a positive answer to the question from the previous section.
Theorem 1. (Proof in Appendix D.1) Assume that that each fξ is (Ls′ , s

′ := max(s2, s))-RSS, and
that f is (νs, s)-RSC and σ-FGN, with s = 2k + k∗ ≤ d, with d−k∗

2 ≥ k ≥ ρ2k∗/(1− ρ2)2, with ρ
defined as below. Suppose that we run SZOHT with random supports of size s2, q random directions,
a learning rate of η = νs

(4εF+1)L2
s′

, and k coordinates kept at each iterations. Then, we have a

geometric convergence rate, of the following form, with x(t) denoting the t-iterate of SZOHT:

E∥x(t) − x∗∥ ≤ (γρ)
t ∥x(0) − x∗∥+

(
γa

1− γρ

)
σ +

(
γb

1− γρ

)
µ
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Algorithm 1: Stochastic Zeroth-Order Hard-Thresholding (SZOHT)
Initialization: Learning rate η, maximum number of iterations T , size of the random directions
support s2, number of random directions q, number of coordinates to keep at each iteration
k = O(κ4k∗), initial point x(0) with ∥x(0)∥0 ≤ k∗ (typically x(0) = 0), .

Output :xT .
for t = 1, ..., T do

Sample ξ (for instance sample a train sample i)
for i = 1, ..., q do

Sample a random support S ∼ U(
(
[d]
s2

)
)

Sample a random direction ui from the unit sphere supported on S: ui ∼ U
(
Sd
S

)
Compute ∇̂fξ(x

t−1;ui) =
d
µ (fξ(x+ µui)− fξ(x))ui;

end
Compute ∇̂fξ(x

t−1) = 1
q

∑q
i=1 ∇̂fξ(x

t−1;uj)

Compute x̃t = xt−1 − η∇̂fξ(x
t−1);

Compute xt = x̃t
k as the truncation of x̃t with top k entries preserved;

end

with a = η
(√

(4εF s+ 2) + εF c(d− k) +
√
s
)
, b =

(√
εµ

Ls′
+ η

√
2εabs

)
,

ρ2 = 1− ν2s
(4εF + 1)L2

s′
, and γ =

√
1 +

(
k∗/k +

√
(4 + k∗/k) k∗/k

)
/2

and εF , εabs, and εµ are defined in (3).

(4)

Remark 2 (System error). The format of our result is similar to the ones in [45] and [31], in that it
contains a linear convergence term, and a system error which depends on the expected norm of the
gradient at x∗ (through the variable σ). We note that if f has a k∗-sparse unconstrained minimizer,
which could happen in sparse reconstruction, or with overparameterized deep networks (see for
instance [32, Assumption (2)]), then we would have ∥∇f(x∗)∥ = 0, and hence that part of the
system error would vanish. In addition to that usual system error, we also have here another system
error, which depends on the smoothing radius µ, due to the error from the ZO estimate.

Remark 3 (Generality). If we take s2 ≤ s, the first assumption of Theorem 1 becomes the requirement
that fξ is (Ls, s)-RSS. Therefore, SZOHT as well as the theorem above provides, up to our knowledge,
the first algorithm that can work in the usual setting of hard-thresholding algorithms (that is, (Ls, s)-
RSS and (νs, s)-RSC [31, 36]), as well as its convergence rate.

Interplay between hard-thresholding and zeroth-order error Importantly, contrary to previous
works in ZO optimization, q must be chosen carefully here, due to our specific setting combining
ZO and hard-thresholding. Indeed, as described in [36], the hard-thresholding operator is not non-
expansive (contrary to projection onto the ℓ1 ball) so it can drive the iterates away from the solution.
Therefore, enough descent must be made by the (approximate) gradient step to get close enough to
the solution, and it is therefore crucial to limit errors in gradient estimation. This problem arises
with any kind of gradient errors: for instance with SGD errors [31, 47], it is generally dealt with
either by ensuring some conditions on the function f [31], forming bigger batches of samples [47],
and/or considering a larger number of components k kept in hard-thresholding (to make the hard-
thresholding less expansive). In our work, similarly to Zhou et al. [47], we deal with this problem by
relaxing k and sampling more directions ui (which is the ZO equivalent to taking bigger batch-size
in SGD). However, there is an additional effect that happens in our case, specific to ZO estimation: as
described in Proposition 1, the quality of our estimator also depends on k. Therefore, it may be hard
to make the algorithm converge only by considering larger k: higher k means less expansivity (which
helps convergence), but worse gradient estimate (which harms convergence). We further illustrate
this conflict between the non-expansiveness of hard-thresholding (quantified by the parameter γ [36]),
and the error from the zeroth-order estimate, in Figure 1. Therefore, it is even more crucial to tune
precisely our remaining degree of freedom at hand which is q. More precisely, a minimal value of
q is always necessary to ensure convergence in our setting, contrary to most ZO setting (in which
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taking even q = 1 can work, as long as other constants like η are well chosen, see for instance [23,
Corollary 3]). The remark below gives some necessary conditions on q to illustrate that fact.
Remark 4 (Some necessary condition on q, proof in D.2). Let k∗ ∈ N∗ and assume, that k is such
that k > ρ2k∗/(1− ρ2)2 (which ensures that ργ < 1), and that k ≤ d−k∗

2 . These conditions imply
the following necessary (but not sufficient) condition on q:

• if s2 > 1: q ≥ 16d(s2−1)k∗κ2

(s2+2)(d−1)

[
18κ2 − 1 + 2

√
9κ2(9κ2 − 1) + 1

2 − 1
2k∗ + 3

2
d−1

k∗(s2−1)

]
• if s2 = 1: q ≥ 8κ2d√

d
k∗ +1

Remark 4 is just a warning that usual rules from ZO do not apply to SZOHT, but it does not say
how to choose q to ensure convergence: for that we would need some sufficient conditions on q for
Theorem 1 to apply. We give such conditions in the next section.

4.1 Weak/non dependence on dimensionality of the query complexity.

In this section, we provide Corollaries 1 and 2, following from Theorem 1, which give an example
of q that is sufficient to converge (that is, to obtain γρ < 1 in Theorem 1), and that achieves weak
dimensionality dependence in the case of RSS, and complete dimension independence in the case of
smoothness.
Corollary 1 (RSS fξ, proof in Appendix D.3). Assume that that almost all fξ are (Ls′ , s

′ :=

max(s2, s))-RSS, and that f is (νs, s)-RSC and σ-FGN, with s = 2k + k∗ ≤ d, with d−k∗

2 ≥ k ≥
(86κ4 − 12κ2)k∗ (with κ := Ls′

νs
) . Suppose that we run SZOHT with random support of size s2, a

learning rate of η = νs

13L2
s′

, with k coordinates kept at each iterations by the hard-thresholding, and

with q ≥ 2s + 6 d
s2

. Then, we have a geometric convergence rate, of the following form, with x(t)

denoting the t-iterate of SZOHT:

E∥x(t) − x∗∥ ≤ (γρ)
t ∥x(0) − x∗∥+

(
γa

1− γρ

)
σ +

(
γb

1− γρ

)
µ

with a, b and γ are defined in (4), and ρ =
√
1− 2

13κ2 . Therefore, the query complexity (QC) to

ensure that E∥x(t) − x∗∥ ≤ ε+
(

γa
1−γρ

)
σ +

(
γb

1−γρ

)
µ is O(κ2(k + d

s2
) log(1ε )).

We now turn to the case where the functions fξ are smooth. The key result in that case is that we can
have a query complexity independent of the dimension d, which is, up to our knowledge, the first
result of such kind for sparse zeroth-order optimization without assuming any gradient sparsity.
Corollary 2 (Smooth fξ, proof in Appendix D.4)). Assume that, in addition to the conditions from
Corollary 1 above, almost all fξ are L-smooth, with d−k∗

2 ≥ k ≥ (86κ4 − 12κ2)k∗ (with κ := L
νs

),
and take q ≥ 2(s+2), and s2 = d (that is, no random support sampling). Then, we have a geometric
convergence rate, of the following form, with x(t) denoting the t-iterate of SZOHT:

E∥x(t) − x∗∥ ≤ (γρ)
t ∥x(0) − x∗∥+

(
γa

1− γρ

)
σ +

(
γb

1− γρ

)
µ

Therefore, the QC to ensure that E∥x(t) − x∗∥ ≤ ε+
(

γa
1−γρ

)
σ +

(
γb

1−γρ

)
µ is O(κ2k log( 1ε )).

Additionally, our convergence rate highlights an interesting connection between the geometry of f
(defined by the condition number κ = Ls′/νs), and the number of random directions that we need
to take at each iteration: if the problem is ill-conditioned, that is κ is high, then we need a bigger k.
This result is standard in the ℓ0 litterature (see for instance [45]). But specifically, in our ZO case, it
also impacts the query complexity: since the projected gradient is harder to approximate when the
dimension k of the projection is larger, q needs to grow too, resulting in higher query complexity. We
believe this is an interesting result for the sparse zeroth-order optimization community: it reveals
that the query complexity may in fact depend on some notion of intrinsic dimension to the problem,
related to both the sparsity of the iterates k, and the geometry of the function f for a given s2 (through
the restricted condition number κ), rather than the dimension of the original space d as in previous
works like [14].
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5 Experiments

5.1 Sensitivity analysis

We first conduct a sensitivity parameter analysis on a toy example, to highlight the importance of
the choice of q, as discussed in Section 4. We fix a target sparsity k∗ = 5, choose k = 74k∗, and
consider a sparse quadric function f : R5000 → R, with: f(x) = 1

2∥a⊙ (x− b)∥2 (⊙ denotes the
elementwise product), with ai = 1 if i ≥ d− s and 0 otherwise (to ensure f is s-RSC and smooth,
with νs = L = 1), and bi =

i
100d for all i ∈ [d− 70k∗] and 0 for all d− 70k∗ ≤ i ≤ d (we make

such a choice in order to have ∥∇f(x∗)∥ small enough). We choose η as in Theorem 1: η = 1
(4εF+1)

with εF defined in Proposition 1 in terms of s and d (we take s2 = d), µ = 1e− 4, and present our
results in Figure 2, for six values of q. We can observe on Figure 2(b) that the smaller the q, the less
f(x) can descend. Interestingly, we can also see on Figure 2(a) that for q = 1 and 20, ∥x(t) − x∗∥
diverges: we can indeed compute that ργ > 1 for those q, which explains the divergence, from
Theorem 1.

5.2 Baselines

We compare our SZOHT algorithms with state of the art zeroth-order algorithms that can deal with
sparsity constraints, that appear in Table 1:

1. ZSCG [2] is a Frank-Wolfe ZO algorithm, for which we consider an ℓ1 ball constraint.

2. RSPGF [14] is a proximal ZO algorithm, for which we consider an ℓ1 penalty.

3. ZORO [7] is a proximal ZO algorithm, that makes use of sparsity of gradients assumptions,
using a sparse reconstruction algorithm at each iteration to reconstruct the gradient from a few
measurements. Similarly, as for ZSCG, we consider an ℓ1 penalty.

In all the applications below, we will tune the sparsity k of SZOHT, the penalty of RSPGF and ZORO,
and the radius of the constraint of ZSCG, such that all algorithms attain a similar converged objective
value, for fair comparison.

5.3 Applications

We compare the algorithms above on two tasks: a sparse asset risk management task from [8], and an
adversarial attack task [9] with a sparsity constraint.

Sparse asset risk management We consider the portfolio management task and dataset from [8],
similarly to [7]. We have a given portfolio of d assets, with each asset i giving an expected return
mi, and with a global covariance matrix of the return of assets denoted as C. The cost function we
minimize is the portfolio risk: xTCx

2(
∑d

i=1 xi)2
, where x is a vector where each component xi denotes

how much is invested in each asset, and we require to minimize it under a constraint of minimal
return r:

∑d
i=1 mixi∑d

i=1 xi
. We enforce that constraint using the Lagrangian form below. Finally, we add a

sparsity constraint, to restrict the investments to only k assets. Therefore, we obtain the cost function
below:

min
x∈Rd

x⊤Cx

2
(∑d

i=1 xi

)2 + λ

(
min

{∑d
i=1 mixi∑d
i=1 xi

− r, 0

})2

s.t. ∥x∥0 ≤ k

We use three datasets: port3, port4 and port5 from the OR-library [3], of respective dimensions
d = 89; 98; 225. We keep r and λ the same for the 4 algorithms: r = 0.1, λ = 10 (for port3 and
port4); and r = 1e − 3, λ = 1e − 3 for port5. For SZOHT, we set k = 10, s2 = 10, q = 10, and
(µ, η) = (0.015, 0.015) for port4, and (µ, η) = (0.1, 1) for port5 (µ and η are both obtained by grid
search over the interval [10−3, 103]). For all other algorithms, we got the optimal hyper-parameters
through grid search. We present our results in Figure 3.
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Few pixels adversarial attacks We consider the problem of adversarial attacks with a sparse
constraint. Our goal is to minimize minδ f(x+δ) such that ∥δ∥0 ≤ k, where f is the Carlini-Wagner
cost function [9], that is computed from the outputs of a pre-trained model on the corresponding
dataset. We consider three different datasets for the attacks: MNIST, CIFAR, and Imagenet, of
dimension respectively d = 784; 3072; 268203. All algorithms are initialized with δ = 0. We set
the hyperparameters of SZOHT as follows: MNIST: k = 20, s2 = 100, q = 100, µ = 0.3, η = 1;
CIFAR: k = 60, s2 = 100, q = 1000, µ = 1e − 3, η = 0.01; ImageNet: k = 100000, s2 = 1000,
q = 100, µ = 0.01, η = 0.015. We present our results in Figure 4. All experiments are conducted in
the workstation with four NVIDIA RTX A6000 GPUs, and take about one day to run.

5.4 Results and Discussion

We can observe from Figures 3 and 4 that the performance of SZOHT is comparable or better than
the other algorithms. This can be explained by the fact that SZOHT has a linear convergence, but the
query complexity of ZSCG and RSPGF is in O(1/T ). We can also notice that RSPGF is faster than
ZSCG, which is natural since proximal algorithms are faster than Frank-Wolfe algorithms (indeed, in
case of possible strong-convexity, vanilla Frank-Wolfe algorithms maintain a O(1/T ) rate [13], when
proximal algorithms get a linear rate [4, Theorem 10.29]). Finally, it appears that the convergence of
ZORO is sometimes slower, particularly at the early stage of training, which may come from the fact
that ZORO assumes sparse gradients, which is not necessarily verified in real-world use cases like
the ones we consider; in those cases where the gradient is not sparse, it is possible that the sparse
gradient reconstruction step of ZORO does not work well. This motivates even further the need to
consider algorithms able to work without those assumptions, such as SZOHT.

(a) f(x)

(b) ∥x− x∗∥

Figure 2: Sensitivity analysis

(a) port3 (b) port4 (c) port5

Figure 3: f(x) vs. # queries (asset management)

(a) MNIST (b) CIFAR (c) Imagenet

Figure 4: f(x) vs. # queries (adversarial attack)

6 Conclusion

In this paper, we proposed a new algorithm, SZOHT, for sparse zeroth-order optimization. We gave
its convergence analysis and showed that it is dimension independent in the smooth case, and weak
dimension-dependent in the RSS case. We further verified experimentally the efficiency of SZOHT
in several settings. Moreover, throughout the paper, we showed how the condition number of f as
well as the gradient error have an important impact on the convergence of SZOHT. As such, it would
be interesting to study whether we can improve the query complexity by regularizing f , by using
an adaptive learning rate or acceleration methods, or by using recent variance reduction techniques.
Finally, it would also be interesting to extend this work to a broader family of sparse structures, such
as low-rank approximations or graph sparsity. We leave this for future work.
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