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Abstract

Deep topic models have been proven as a promising way to extract hierarchical la-
tent representations from documents represented as high-dimensional bag-of-words
vectors. However, the representation capability of existing deep topic models is
still limited by the phenomenon of “posterior collapse”, which has been widely
criticized in deep generative models, resulting in the higher-level latent representa-
tions exhibiting similar or meaningless patterns. To this end, in this paper, we first
develop a novel deep-coupling generative process for existing deep topic models,
which incorporates skip connections into the generation of documents, enforcing
strong links between the document and its multi-layer latent representations. After
that, utilizing data augmentation techniques, we reformulate the deep-coupling
generative process as a Markov decision process and develop a corresponding
Policy Gradient (PG) based training algorithm, which can further alleviate the
information reduction at higher layers. Extensive experiments demonstrate that
our developed methods can effectively alleviate “posterior collapse” in deep topic
models, contributing to providing higher-quality latent document representations.

1 Introduction

Topic modeling has become a successful technique for text analysis and been widely applied to various
problems in machine learning (ML) [1, 2, 3] and natural language processing (NLP) [4, 5] over the
past two decades. Representing documents as bag-of-words (BoW) vectors, vanilla probabilistic
topic models (PTMs), with latent Dirichlet allocation (LDA) [6] being the best known representative,
typically formulate each document as a mixture over latent topics, where each topic is characterized
by a distribution over the terms of the vocabulary and describes an interpretable semantic concept.
Although being widely used, the modeling capability of these shallow topic models is still restricted
by their single-layer structure, and has difficulty in exploring hierarchical thematic structures. To
this end, a series of deep topic models [7, 8, 9] have been developed to extract multi-layer document
representations from a text corpus, providing a more intuitive way for users to understand text data.

Recently, benefiting from the development of deep neural networks (DNNs), there has been an emerg-
ing research interest to develop neural topic models (NTMs) to boost the performance, efficiency,
and usability of topic modeling with DNNs. Specifically, following the framework of variational
autoencoder (VAE) [10], most NTMs [11, 12, 13] construct a variational inference network (encoder)
to project each document into its stochastic latent representation, and then reconstruct the correspond-
ing BoW observation with a stochastic/deterministic decoder. By modeling the inference/generative
process with DNNs, these NTMs are more flexible and scalable than traditional Bayesian PTMs,
contributing to performing large-scale downstream tasks, especially in NLP tasks [14, 15].
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“Posterior collapse” has been widely criticized in the field of generative model [16, 17], and the
occurrence of this phenomenon will cause the approximated posterior qϕ(z|x) collapses to it non-
information prior distribution pθ(z), leading their KL divergence to be close to zero [10, 16, 17, 18].
For deep topic models, despite achieving attractive performance, existing PTMs or NTMs still suffer
from different degrees of “posterior collapse”, which causes their exhibiting similar or meaningless
patterns at higher layers [19, 20, 21]. Although there have been several deep NTMs [20, 21] trying
to alleviate this issue by constructing more flexible inference networks, the collapse phenomenon
in deep NTMs may not be solved in essence, because the true posterior provided by the generative
model and the objective function for optimization remain almost unchanged [18].

To extract higher-quality hierarchical latent document representations, in this paper, we develop a
deep-coupling generative process equipped with a Policy Gradients (PG) based training algorithm for
existing deep topic models. The main contributions of this work are as follows:

• We develop a deep-coupling generative process for deep topic models, which incorporates
skip connections into the generation of documents to alleviate “posterior collapse”.

• We take a specific NTM as an example to explain how to construct a deep topic model with
the deep coupling generation process, and develop a deep-coupling hierarchical Embedding
Topic Model (dc-ETM), which can be extended to other deep topic models.

• Utilizing the property of sequence-like generation process, we design a PG-based training
algorithm for dc-ETM, which can further alleviate the information reduction at higher layers.

• Compared to existing deep topic models, extensive experimental results show that dc-ETMs
can lead to less “posterior collapse” and provide higher-quality latent representations.

2 Related Work

Probabilistic Topic Model: Deep PTMs [7, 8, 9, 22] are developed to infer multi-layer document
representations, whose adjacent layers are connected with specific factorization. For instance, gamma
belief network (GBN) [8] is constructed via factorizing the shape parameters of the gamma distributed
latent representations; DPFA [7] extends PFA [23] into a multi-layer version but is restricted to model
binary topic usage patterns; DirBN [9] is developed via factorizing the Dirichlet distributed topic
matrix. Although providing readily interpretable multi-layer latent document representations, the
representation capability of these deep PTMs is limited by adopting CRT distribution to upward
propagate data information to higher layers with their backbones [19].

Neural Topic Model: Most existing NTMs [12, 20, 21, 24, 25, 26] can be viewed as extensions of
PTMs under the VAE framework and focus on modeling the generative/inference process with DNNs.
For instance, one popular research direction of NTMs is to develop more flexible inference network
with reparametrization tricks [12, 20] and the other could be incorporating word embeddings into the
generative model [21, 24]. However, as far as we know, few efforts have been made to alleviate the
phenomenon of “posterior collapse” in NTMs by modifying its generative process, which is a great
challenge under the framework of topic modeling and also the main contribution of this work.

Besides, distinct from the way of combining reinforcement learning (RL) with topic models in
previous works [27, 28, 29], our work is the first to formulate the topic modeling generative process
as a sequential decision making one to incorporate RL-based training algorithms, which focuses on
providing higher-quality latent document representations by alleviating “posterior collapse”.

3 Deep-Coupling Generative Process for Deep Topic Models

To give an intuitive insight on “posterior collapse” in deep topic models, we provide a detailed
introduction for “posterior collapse” in Appendix J and then visualize the higher-level topics learned
by a recent popular NTM named SawETM [21] in Fig. 3, which exhibit similar semantic patterns and
limit its representation capability. Then, we take SawETM as an example, but not limited to this, to
illustrate how to construct a deep topic model with the deep coupling generation process, leading
to a novel dc-ETM in Fig. 1(c). Compared to the usual structures of deep PTMs and NTMs shown
in Fig. 1(a) and 1(b), besides the design of inference network, the main difference of dc-ETM is
incorporating skip connections into the generation of documents, enforcing strong links between the
document and its multi-layer latent representations to alleviate “posterior collapse”.
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Figure 1: The overview of the network structure of (a) deep PTM, (b) deep NTM, and (c) dc-ETM
developed in this paper, where the symbol definitions are consistent with those in Sec. 3.1.

3.1 Deep-Coupling Hierarchical Embedding Topic Model

As a usual VAE-like model, the developed dc-ETM consists of a generative model (decoder) and an
inference network (encoder). Below, we focus on presenting the generative model of dc-ETM, which
can be flexibly applied for other deep topic models to alleviate “posterior collapse”, and leave the
details of the inference network to Appendix A.

Generative Model: Given a text corpus consisting of N documents X={xn}Nn=1, each document
can be represented as a high-dimensional sparse BoW vector xn ∈ ZK(0)

, where Z = {0, 1, ...} and
K(0) denotes the vocabulary size. Then, from top to bottom, the generative model of the dc-ETM
with L hidden layers can be formulated as

θ(l)
n ∼ Gam(Φ(l+1)θ(l+1)

n , 1/c(l+1)
n ), l = 1, ..., L− 1, · · ·,θ(L)

n ∼ Gam(r, 1/c(L+1)
n ), (1)

xn ∼ Pois(
L∑

l=1

α(l)Φ̂(l)θ(l)
n ), α = Softmax(ξ), ϕ(l)

k = Softmax(β(l−1)Tβ
(l)
k ), l = 1, ..., L− 1,

where, Φ(l) ∈ RK(l−1)×K(l)

+ denotes the topic matrix (factor loading) and each column ϕ
(l)
k ∈

RK(l−1)

+ indicates a specific topic (factor) at layer l; θ(l)
n ∈ RK(l)

+ denotes the gamma distributed
latent representation (topic proportions) at layer l, K(l) denotes the number of hidden units (topics)
at layer l. Under the Poisson likelihood, the observed multivariate count vector xn is first factorized
into L equal-size latent matrix {α(l)Φ̂(l)θ

(l)
n }Ll=1, where, Φ̂(l) ∈ RK(0)×K(l)

+ can be regarded as the
projection of topic matrix Φ(l) to the observation space and the detailed definition will be discussed
in the next paragraph; α(l) denotes the importance weight of Φ̂(l)θ

(l)
n for generating the observation

xn, and the summation of the whole weight vector α ∈ RL
+ is constrained to be equal to one with a

Softmax normalization. Then, the latent representation θ
(l)
n at layer l is further factorized into the

product of the topic matrix Φ(l+1) ∈ RK(l)×K(l+1)

+ and topic proportions θ(l+1)
n ∈ RK(l+1)

+ at the next
layer under the shape of gamma distribution. The top layer’s latent representation θ

(L)
n shares the same

gamma shape parameters r ∈ RK(L)

+ and we apply a gamma distributed prior on the scale parameters
c
(l)
n for l ∈ {2, ..., L+ 1}. With the recent popular distributed topic representation in NTMs [24, 30],

each topic ϕ
(l)
k is treated as the result of applying a Softmax normalization on the inner product of

its distributed representation β
(l)
k ∈ RD and topic embedding matrix β(l−1) ∈ RD×K(l−1)

at the
previous layer, where D denotes the dimension of the embedding space.

The projections of topic matrices to the observation space, denoted as {Φ̂(l)}Ll=1, build the straight-
forward connections between the document xn and its multi-layer latent representations {θ(l)

n }Ll=1,
which alleviates the information reduction at higher layers by sharing the pressure of document
modeling with all hidden layers. To reduce the computation and storage cost of the developed
dc-ETM, we develop two variants for ϕ̂(l)

k ∈ RK(0)

+ without introducing any extra parameter. The
one variant is adopting the property of topic hierarchy elaborated in Sec. 3.2 to obtain each ϕ̂

(l)
k by
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successively multiplying topic matrices at lower layers as

ϕ̂
(l)
k =

l−1∏
t=1

Φ(t)ϕ
(l)
k , (2)

and the other variant is treating the projection ϕ̂
(l)
k as the result of the inner product of its distributed

representation β
(l)
k and the word embedding matrix β(0) at the observed space, as follows

ϕ̂
(l)
k = Softmax(β(0)Tβ

(l)
k ). (3)

We emphasize that the first variant can be used to extend most existing deep topic models, while the
latter is limited to NTMs equipped with topic embedding techniques. We use the suffix −α and −β
to distinguish the variants defined in Eq. (2) and Eq. (3), and their detailed implementations can be
found in Appendix I.

Generally speaking, the deep-coupling generative process in dc-ETM not only preserves the hierarchy
of traditional deep topic models, leading to multi-layer document representations to enhance the
modeling capability and interpretability, but also alleviates the issue that the amount of information
will decrease rapidly with the network going deeper, benefiting from building the straightforward
connections between observation xn and its higher-level latent representations {θ(l)

n }l>1. Besides
alleviating “posterior collapse”, the characteristics of deep-coupling network structure of dc-ETM
also brings us a new view to design the corresponding inference network and training algorithm.

Inference Network: The details of the inference network of dc-ETM can be found in Appendix A.

3.2 Model Property

Sequence-like Generative Process: Taking advantages of the properties of the Poisson distribution,
the original generative process of the observed data xn defined in Eq. (1) can be rewritten as:

xn =

L∑
l=1

x(l)
n , x(l)

n ∼ Pois(α(l)Φ̂(l)θ(l)
n ), (4)

where x(l)
n denotes the augmented observation at layer l, and is generated from the Poisson distribution

with a rate of α(l)Φ̂(l)θ
(l)
n . Then, the observed data xn can be regarded as not only the summation

over these augmented vectors {x(l)
n }Ll=1, but also equal to the weighted summation over the latent

vectors {Φ̂(l)θ
(l)
n }Ll=1 on the mean, where the weight vector α satisfies the constraint

∑L
l=1 α

(l) = 1.

Rethinking the generative process of the developed dc-ETM reformulated in Eq. (4), the set of
augmented observation vectors {x(l)

n }Ll=1 can naturally form an observation sequence [x(L)
n , ...,x

(1)
n ]

by sorting these vectors according to their dependencies in the generative process (from deep to
shallow). For each hidden layer (time step) l, the generative process will first incorporate the prior
information passing from deeper hidden layers {θ(t)

n }t>l, and then generate the latent representation
θ
(l)
n at the current layer (time step), which not only is supposed to generate the current observation

vector x(l)
n under the Poisson likelihood, but also introduces the information into the shape parameter

of the following gamma distributed latent representation θ
(l−1)
n at the next layer (time step).

Thus, the deep-coupling generative process of dc-ETM originally defined in Eq. (1) can be naturally
reinterpreted from the perspective of sequence generation, and its reformulation defined in Eq. (4)
can be also equivalently reformulated as:

xn ∼
L∑

l=1

Pois(α(l)Φ̂(l)θ(l)
n ), (5)

providing an intuitive insight for the decomposition of the likelihood function in Sec. 4.1.

Hierarchical Semantic Topics: The developed dc-ETM can naturally interpret each seman-
tic topic ϕ

(l)
k at layer l by visualizing its projection to the vocabulary space calculated as
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{[
∏l−1

t=1 Φ
(t)]ϕ

(l)
k }K(l)

k=1 , and each document can also be roughly seen as a random mixture over
K(l) topics with θ

(l)
n being the corresponding topic proportions at layer l as

E
[
xn|θ(l)

n ,
{
Φ(t), c(t)n

}l

t=1

]
=

[
l∏

t=1

Φ(t)

]
θ
(l)
n∏l

t=2 c
(t)
n

, (6)

which can be obtained with the law of total expectation. Moreover, similar to the underlying idea of
the deep learning, the topics learned by dc-ETM tend to be more specific at lower (bottom) layers
and those at higher (top) layers are more general, as shown in Fig. 7.

Secondly, in dc-ETM, both words β(0) ∈ RD×K(0)

and hierarchical topics {β(l) ∈ RD×K(l)}Ll=1
are represented as embedding vectors under the same semantic space, contributing to intuitively
measuring and visualizing the distance between different topics (words), which has been proven to be
effective in capturing the underlying semantic structure as shown in Fig. 5(a).

4 Policy Gradient-based Training Algorithm

4.1 ELBO of dc-ETM

As a VAE-like NTM, the developed dc-ETM can be trained like usual VAEs by directly maximizing
the evidence lower bound (ELBO), specifically as

L(xn) = Eq(θn|xn)[ln p(xn|θn)]− KL(q(θn|xn)||p(θn)), (7)

where the first term is the expected log-likelihood and the other term is the Kullback–Leibler (KL)
divergence from the prior p(θn) to the variational posterior q(θn|xn).

Through introducing the augmented vectors {x(l)
n }Ll=1, the log-likelihood of xn in dc-ETM can be

equivalently reformulated as

ln p(xn|θn) = E
q({x(l)

n }L
l=1|−)

[
ln p(xn|{x(l)

n }Ll=1)

L∏
l=1

p(x(l)
n |θ(l)

n )

]
(8)

= E
q({x(l)

n }L
l=1|−)

[
ln p(xn|{x(l)

n }Ll=1)
]
+ E

q({x(l)
n }L

l=1|−)

[
L∑

l=1

ln p(x(l)
n |θ(l)

n )

]
,

where the function in the second expectation term can be treated as the summation of the set of
log-likelihood of {x(l)

n }Ll=1. Due to the hierarchical network structure, the KL divergence term can
be factorized as

KL(q(θn|xn)||p(θn)) =
L∑

l=1

E
q(θ

(l)
n |−)

[
ln

q(θ
(l)
n |−)

p(θ
(l)
n |Φ(l+1),θ

(l+1)
n )

]
, (9)

where q(θ
(l)
n |−) is constructed by a Weibull-based inference network described in Appendix A and

p(θ
(l)
n |Φ(l+1),θn

(l+1)) satisfies a gamma prior in Eq. (1), and their KL divergence has an analytic
expression, benefiting from adopting the Weibull reparameterization technique [20].

Combining the aforementioned derivations, the ELBO of dc-ETM can be equivalently rewritten as

L(xn) =E
q({x(l)

n }L
l=1|−)

[
ln p(xn|{x(l)

n }Ll=1)
]
+ E

q({x(l)
n ,θ

(l)
n }L

l=1|−)

[
L∑

l=1

ln p(x(l)
n |θ(l)

n )

]

−
L∑

l=1

E
q(θ

(l)
n |−)

[
ln

q(θ
(l)
n |−)

p(θ
(l)
n |Φ(l+1),θ

(l+1)
n )

]
, (10)

which can be directly optimized with gradient-based methods to update both the encoder parameters
Ω and decoder parameters Ψ in dc-ETM. We emphasize that, after deriving the augmented vectors

5



{x(l)
n }Ll=1 from xn via data augmentation technique [8], the first expectation term in L(xn) will be a

constant and the ELBO can be directly optimized by maximizing the following loss function

L̂({x(l)
n }Ll=1) =

L∑
l=1

E
q(θ

(l)
n |−)

[
ln p(x(l)

n |θ(l)
n )

]
−

L∑
l=1

E
q(θ

(l)
n |−)

[
ln

q(θ
(l)
n |−)

p(θ
(l)
n |Φ(l+1),θ

(l+1)
n )

]
,

=

L∑
l=1

E
q(θ

(l)
n |−)

[
ln

p(x
(l)
n |θ(l)

n )p(θ
(l)
n |Φ(l+1),θ

(l+1)
n )

q(θ
(l)
n |−)

]
,

=

L∑
l=1

L̂(l)(x(l)
n ;α(l), Φ̂(l),θ(l)

n , {Φ(t),θ(t)
n }t>l) (11)

which can be roughly treated as the ELBO of a sequence [x
(L)
n , ...,x

(1)
n ] generated from a sequence

of latent representations [θ(L)
n , ...,θ

(1)
n ] [31, 32], and naturally meets the sequence-like generative

process of dc-ETM as discussed in Sec. 3.2.

4.2 Optimization with Policy Gradient

Similar to RNN-based model, after augmenting {x(l)
n }Ll=1 from xn, the loss function of dc-ETM

defined in Eq. (11) is equal to the summation of L sub-loss functions, where each sub-loss function
L̂(l)(x

(l)
n ) can be equivalently regarded as a separate loss of a subsequence generation model that is

only a part of the whole sequential generative model and expected to output x(l)
n at the final time step

l. Inspired by the great success achieved by RL methods [33, 34, 35, 36] in learning a stable long
sequence (Markov decision process) with high quality, we consider the sequence-like generation
procedure of a L-layer dc-ETM as a Markov decision process with L time steps, and develop a novel
training mechanism based on Policy Gradient [35] for dc-ETM, which injects the future rewards
obtained from generating the suffix subsequence into each current sub-loss function L̂(l)(x

(l)
n ).

Specifically, we treat the whole dc-ETM as a stochastic policy network π(a
(l)
n |s(l)n ) expected to

generate a fixed-length action sequence [a(L)
n , ..., a

(1)
n ] from the observation xn, defining the state s(l)n

as {xn, {Φ(t),θ
(t)
n }t>l} and the action a

(l)
n as α(l)Φ̂(l)θ

(l)
n . For each time step l, given the current

state s
(l)
n , the policy network π(a

(l)
n |s(l)n ) will first sample θ

(l)
n from the inference network via

θ(l)
n ∼ q(θ(l)

n |xn, {Φ(t),θ(t)
n }t>l), (12)

and further obtain the corresponding action as

a(l)n = α(l)Φ̂(l)θ(l)
n , (13)

which can be regarded as directly drawing from π(a
(l)
n |s(l)n ). The state transition is deterministic

after an action has been chosen, indicating that the next state s(l−1)
n = {xn, {Φ(t),θ

(t)
n }t>l−1} if the

current state s
(l)
n = {xn, {Φ(t),θ

(t)
n }t>l} and the action a

(l)
n = α(l)Φ̂(l)θ

(l)
n .

Then we take the separate loss L̂(l)(x
(l)
n ) defined in Eq. (11) as the immediate reward at the the time

step l, formulated as

r(s(l)n , a(l)n ) = E
q(θ

(l)
n |−)

[
ln p(x(l)

n |α(l), Φ̂(l),θ(l)
n )

]
− E

q(θ
(l)
n |−)

[
ln

q(θ
(l)
n |−)

p(θ
(l)
n |Φ(l+1),θ

(l+1)
n )

]
,

(14)

and the action-value function can be formulated as

Qπ(s(l)n , a(l)n ) = r(s(l)n , a(l)n ) + Eπ

[
l−1∑
i=1

γir(s(l−i)
n , a(l−i)

n )

]
, (15)

which indicates the expected accumulative reward starting from state s
(l)
n , taking action a

(l)
n , and

then generating the suffix subsequence [a
(l−1)
n , ..., a

(1)
n ] with the policy network π(a

(l)
n |s(l)n ) and the

discount factor 0 < γ ≤ 1.
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Following [33], the objective function of training dc-ETM with policy gradient can be estimated (on
one episode) as

J(xn;Ω,Ψ) ≃
∑L

l=1

∫
a
(l)
n

π(a(l)n |s(l)n )Qπ(s(l)n , a(l)n ) =
∑L

l=1
E
π(a

(l)
n |s(l)n )

[
Qπ(s(l)n , a(l)n )

]
,

(16)
where Ω and Ψ indicate the encoder and decoder parameters in dc-ETM respectively. We note that the
expectation E [·] can be approximated by sampling methods based on the Weibull reparameterization,
and the objective function can be directly optimized by advanced gradient descent algorithms, like
Adam [37] and RMSprop [38]. We provide the details of PG-based training algorithm in Appendix C.

5 Experiments

To evaluate the effectiveness of the developed dc-ETM and the corresponding policy gradients
(PG) based training algorithm, we make extensive experiments on both quantitative and qualitative
aspects. Considering there are two dc-ETM variants as described in 3.1, we use the suffix −α and
−β to distinguish the variants defined in Eq. (2) and Eq. (3) respectively, and highlight whether
the dc-ETM is trained with the PG based algorithm in Sec. 4.2. The implementation is available at
https://github.com/yewen99/dc-ETM.

5.1 Datasets and Baselines

Datasets: Four widely used document benchmarks, specifically R8 [39], 20Newsgroups (20News)
[40], Reuters Corpus Volume I (RCV1) [41] and World Wide Web Knowledge Base (WebKB) [42]
are included in the following experiments. We summarize the statistics of benchmarks in Appendix D
and follow the procedure in [21] to preprocess these documents to obtain their BoW representations.

Baselines: We compare the developed dc-ETMs with a series of topic models, which can be roughly
divided into two categories: 1) shallow topic models such as LDA [6], AVITM [12] and ETM [24],
where LDA is a PTM and the others are NTMs; 2) deep topic models including PGBN [8], WHAI
[20] and SawETM [21], where PGBN is a deep PTM and the others are deep NTMs. We emphasize
that WHAI and SawETM are the most relevant strong baselines for comparison, both of which
provide hierarchical Weibull-based latent document representations, and SawETM has achieved
state-of-the-art performance on unsupervised document modeling and clustering tasks.

Experimental Settings: To make a fair comparison, we set the same network structure for all
deep topic models as [256, 128, 64, 32, 16] from shallow to deep. For PTMs, we use the default
hyperparameter settings in their published papers and accelerate the Gibbs sampling with GPU.
For NTMs, we set the size of their hidden layers as 256, the embedding size as 100 for them
incorporating word embeddings, like ETM, SawETM and dc-ETMs, and the mini-batch size as
200. For optimization, we adopt the same Adam optimizer [43] with a learning rate of 1e-2. All
experiments are performed with an Nvidia RTX 3090 GPU and implemented with PyTorch [44].

5.2 Quantitative Comparisons

To investigate whether the proposed skip-connection structures in both dc-ETM variants can alleviate
“posterior collapse”, especially at higher layers, we compare them with other popular deep topic
models in the first part. Then, to investigate whether the mitigation of “posterior collapse” can
improve the quality of latent document representations at higher layers, we conduct more quantitative
comparisons in the rest parts. We report the error bars in Appendix E.

Document Modeling: In Fig. 2, for each deep topic model, we plot the curve of point log-likelihood
ln p(xn|−) as a function of iterative epochs conditioned on the t-th-layer reconstruction Φ̂(t)θ

(t)
n ,

which can be used to measure the degree of “posterior collapse” by the relevance between the data
sample xn and its latent representation θ

(t)
n . From the results, we can see that although SawETM

and WHAI achieve a comparable performance with dc-ETMs on the first hidden layer in Fig. 2(a),
their reconstruction quality decreases dramatically with the network going deeper in Fig. 2(b) and
2(c), potentially reflecting that little data information can be propagated to higher layers of these
traditional deep topic models. Benefiting from introducing skip connections into the generative
process, dc-ETMs can significantly alleviate “posterior collapse” at higher hidden layers.
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Figure 2: Point log-likelihood ln p(xn|Φ̂(t)θ
(t)
n ) of different deep topic models on 20News dataset

as a function of iterative epoches, where Φ̂(t)θ
(t)
n can be treated as the projection of θ(t)

n from the
latent space to the observation space, as discussed in Sec. 3.2.

Table 1: Comparisons of the average of perplexities and topic
diversities across all hidden layers on various benchmarks.

Model Perplexity Topic Diversity

R8 20News RCV1 R8 20News RCV1

LDA [6] 996 1091 1242 0.288 0.356 0.423
AVITM [12] 561 1030 1121 0.330 0.408 0.483

ETM [24] 985 989 1480 0.352 0.410 0.524

PGBN [8] 657 743 1086 0.221 0.186 0.355
WHAI [20] 773 870 1192 0.183 0.158 0.294

SawETM [21] 530 732 920 0.207 0.175 0.331

dc-ETM-α 521 730 912 0.212 0.281 0.435

dc-ETM-β 427 710 873 0.346 0.429 0.566

dc-ETM-α (Policy) 463 707 896 0.279 0.385 0.519

dc-ETM-β (Policy) 420 647 841 0.379 0.456 0.584

Perplexity & Topic Diversity:
To make a more comprehensive
quantitative comparison, we use
the average of heldout-word per-
plexities (the lower is the better)
and topic diversities (the higher is
the better) across all hidden lay-
ers to measure the document mod-
eling performance and topic qual-
ity of these deep topic models
with {θ(t)

n }Tt=1 and {Φ(t)
n }Tt=1,

respectively. The experimental
settings are consistent with those
in [21], and the experimental re-
sults have been exhibited in Ta-
ble 3. Benefiting from hierarchical network structures, the modeling capability of deep topic models
generally outperform those shallow ones. Thanks to enhancing the connections between the observa-
tion and multiple hidden layers with the deep-coupling generative process, the developed dc-ETMs
achieve lower perplexity scores and provide higher-quality topics than traditional topic models. Then,
the PG-based training algorithm brings further performance improvement to our dc-ETMs.

Table 2: Document clustering comparison on the 1st hidden layer
or the concatenation of all hidden layers of different topic models.

Model Layer WebKB 20News R8

Purity NMI Purity NMI Purity NMI

LDA 1 53.40 11.23 41.79 45.15 65.74 40.47
AVITM 1 54.18 17.77 42.33 46.33 70.96 41.20

ETM 1 51.43 12.52 42.61 48.40 72.20 41.28

PGBN 1 55.37 16.27 43.30 46.51 74.52 41.24
All 53.58 15.39 41.17 44.20 72.93 31.35

WHAI 1 59.89 25.95 42.25 46.98 74.70 43.98
All 57.46 24.49 32.00 37.51 70.80 41.25

SawETM 1 57.89 21.91 43.33 50.77 75.25 42.97
All 51.75 20.60 38.69 39.33 75.89 39.55

dc-ETM-α 1 61.14 26.29 32.81 43.64 75.60 39.83
All 63.18 28.35 41.83 44.52 76.31 43.73

dc-ETM-β 1 54.71 21.43 39.80 44.30 74.30 38.63
All 67.29 33.60 45.00 46.20 76.25 45.64

dc-ETM-α (Policy) 1 49.71 14.86 37.88 43.56 71.65 32.73
All 64.32 33.65 42.21 45.59 77.46 44.60

dc-ETM-β (Policy) 1 57.32 26.05 40.11 44.12 71.30 38.34
All 69.32 38.53 48.60 55.79 78.29 48.62

Document Clustering: To evalu-
ate the quality of the extracted la-
tent document representations on
downstream tasks, we consider
document clustering, where we
use the topic models after train-
ing to extract the latent represen-
tations of the testing documents
and then use k-means to pre-
dict the clustering labels. Using
the Purity and Normalized Mu-
tual Information (NMI) as met-
rics (the higher the better), the
results shown in Table 4 demon-
strate that concatenating hierar-
chical latent document representa-
tions extracted by traditional deep
topic models cannot improve and
even hurt the clustering perfor-
mance, potentially indicating that
the latent representations at higher layers are meaningless. However, distinct from traditional deep
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(a) Φ̂(5) learned by dc-ETM

5_0: lines subject organization com article just don writes university like

5_1: lines subject organization com article just don university writes like

5_2: lines subject organization com article just don writes university like

5_3: lines subject organization com article just don writes university like

5_4: lines subject organization com article just don university writes like

5_5: lines subject organization com article just don university writes like

5_6: lines subject organization com article just don writes university like

(b) Φ̂(5) learned by SawETM

Figure 3: The 5th-layer topics learned by dc-ETM and SawETM with the same network structure on
20News, where each topic is interpreted by its top-10 words. More comparisons refer to Appendix F.

topic models, the concatenation operation on the latent representations of dc-ETMs can significantly
improve the performance, which can be attributed to enforcing strong links between the multi-layer
representations and the observation with the skip connections in the generation.

5.3 Qualitative Analysis

As discussed in Sec. 3.2, the developed dc-ETM inherits both the characteristics of hierarchical topic
structure and semantic topic embeddings. Then we compare the hierarchical topics of a 5-layer
dc-ETM trained on 20News with those learned by SawETM for qualitative analysis.

Topic Visualization: With the visualization techniques [8], we exhibit the 5th-layer topics learned
by dc-ETM and SawETM on 20News in Fig. 3 and Fig. 7, where each topic is interpreted by its
top-10 words by sorting the word probabilities by descending order. Obviously, the topics learned by
SawETM are quite similar, explaining the reason why concatenating its hierarchical latent document
representations cannot improve and even hurt the performance on downstream tasks. On the contrary,
the developed dc-ETM can learn meaningful and diverse topics at higher layers, indicating that more
data information is passed to higher layers to alleviate “posterior collapse”. We also exhibit a 5-layer
topic tree learned by dc-ETM in Fig. 7 to illustrate the topic hierarchy of dc-ETM in Appendix N.

Topic Embedding Visualization: After extracting hierarchical topic trees by dc-ETM, we visualize
some of these trees originated from different topic nodes at layer 5 by projecting their semantic
embeddings with t-SNE [45]. As shown in Fig. 5(a), we can find that the topics in the same topic
tree tend to be closer than others from different trees in the semantic embedding space and similar
phenomenon occurs in the words for describing the same root topic, which indicates the hierarchy
learn by dc-ETM is of high quality. Note that we also visualize the topics consisting of similar top
words in Fig. 5(b) and 5(c), learned by dc-ETM and SawETM respectively, which demonstrates that
the developed dc-ETM can provide more meaningful and discriminative topic and word embeddings.

6 Conclusion

To provide higher-quality hierarchical latent representations for deep topic modeling, in this paper,
with the deep-coupling generative process, we develop a novel dc-ETM, which is constructed by
introducing skip connections into the generative process of GBN and also incorporates both topic
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Figure 4: A hierarchical topic tree example learned by a 5-layer dc-ETM on 20News dataset.
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Figure 5: t-SNE visualization of a) multiple 5-layer hierarchical topic trees learned by dc-ETM,
whose leaf nodes are distinguished by different colors; b) and c) various semantic topics equipped
with their own top-10 representative word embeddings learned by dc-ETM and SawETM on 20News.

embedding and Weibull reparameterization techniques. Utilizing the property of sequence-like
generation process, we design a PG-based training algorithm for dc-ETM to further alleviate the
information reduction at higher layers. We note that the main idea of designing dc-ETM equipped
with the PG-based training algorithm can potentially be extended to other deep topic models.
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