
Appendix

A GED and SED

The computation of GED relies on a graph mapping.

Definition 1 (Graph Mapping) Given two graphs G1 and G2, let G̃1 = (Ṽ1, Ẽ1, L̃1) and G̃2 =

(Ṽ2, Ẽ2, L̃2) be obtained by adding dummy nodes and edges (labeled with ε) to G1 and G2 respectively,
such that |V1| = |V2| and |E1| = |E2|. A node mapping between G1 and G2 is a bijection π : G̃1 → G̃2

where (i) ∀v ∈ Ṽ1, π(v) ∈ Ṽ2 and at least one of v and π(v) is not a dummy; (ii) ∀e = (v1, v2) ∈
Ẽ1, π(e) = (π(v1), (π(v2))) ∈ Ẽ2 and at least one of e and π(e) is not a dummy.

Example 1 Fig. 1 shows a graph mapping. Edge mappings can be trivially inferred.

Definition 2 (Graph Edit Distance (GED) under mapping π) GED between G1 and G2 under π is

GEDπ(G1,G2) =
∑
v∈Ṽ1

d(L(v),L(π(v))) +
∑
e∈Ẽ1

d(L(e),L(π(e))) (12)

where d : Σ × Σ → R+
0 is a distance function over the label set. d(`1, `2) models an insertion if

`1 = ε, deletion if `2 = ε and replacement if `1 6= `2 and neither `1 nor `2 is a dummy.

We assume d to be a binary function, where d(`1, `2) = 1 if `1 6= `2, otherwise, 0.
Definition 3 (Graph Edit Distance (GED)) GED is the minimum distance under all mappings.

GED(G1,G2) = min
∀π∈Φ(G1,G2)

GEDπ(G1,G2) (13)

Φ(G1,G2) denotes the set of all possible node maps from G1 to G2.

Definition 4 (Subgraph Edit Distance (SED)) SED is the minimum GED over all subgraphs of G2.
SED(G1,G2) = min

S⊆G2
GED(G1,S) (14)

Observation 4 (i) GED(G1,G2) ≥ 0, (ii) SED(G1,G2) ≥ 0.

Observation 5 (i) GED(G1,G2) = 0 iff G1 is isomorphic to G2, (ii) SED(G1,G2) = 0 iff G1 is
subgraph isomorphic to G2.

B Additional Proofs

B.1 Proof of Theorem. 1

Our proof relies on two lemmas.

PROOF of Theorem 1. It suffices to prove (i) SED(G1,G2) ≥ ĜED(G1,G2) and (ii) ĜED(G1,G2) ≥
SED(G1,G2).

(i) Let S = (VS , ES ,LS) ⊆ G2 be the subgraph minimizing SED(G1,S) (Recall Eq. 14). Consider
the mapping π from G1 to S corresponding to SED(G1,S) (and hence GED(G1,S) as well). We
extend π to define a mapping π̂ from G1 to G2 by mapping of all nodes in set V2 \ VS to dummy
nodes in G1; the edge mappings are defined analogously.

Under this construction, SED(G1,S) = GED(G1,G2) =

ĜEDπ̂(G1,G2) ≥ ĜED(G1,G2). This follows from the property that under d̂, insertion costs are zero,
that is d̂(ε, `) = 0. Thus, the additional mappings introduced in π̂ do not incur additional costs under
d̂.

(ii) Consider S ⊆ G2 and a mapping π from G1 to S such that GEDπ(G1,S) = ĜED(G1,G2).
The existence of such a subgraph is guaranteed (See Lemma 3). From the definition of GED,
GEDπ(G1,S) ≥ GED(G1,S). Furthermore, since S ⊆ G2, GED(G1, S) ≥ SED(G1,G2). Combining
all these results, we have ĜED(G1,G2) ≥ GED(G1, S) ≥ SED(G1,G2).
Hence, the claim is proved. �

14

B.2 Proof of Thm 2.

PROOF. From Thm. 1, we know SED(G1,G2) = ĜED(G1,G2). Combining Obs. 1 with Theorem 1,
if we show d̂(`1, `3) ≤ d̂(`1, `2) + d̂(`2, `3), then the triangle inequality of SED is established. We
divide the proof into four cases:
(i) None of `1, `2, `3 is ε. Hence, d̂(`1, `3) = d(`1, `3) and the triangle inequality is satisfied.
(ii) `1 = ε. The LHS is 0 and hence the triangle inequality is satisfied.
(iii) `1 6= ε and `2 = ε. LHS≤ 1 and RHS= 1. Hence, satisfied.
(iv) Only `3 = ε. Here, LHS= 1 and RHS≥ 1.
These four cases cover all possible situations and hence, the triangle inequality is established. �

B.3 Proof of Lemma 3

Lemma 3 There exists a subgraph S of G2 and a node map π from G1 to S such that GEDπ(G1,S) =

ĜED(G1,G2).

PROOF. Let π′ be a node map from G1 to G2 corresponding to ĜED(G1,G2). Let h1, · · · , hl be the
nodes of G2 which are inserted in π′. Construct subgraph S of G2 by removing nodes h1, · · · , hl and
their incident edges from G2. Let π be the node map from G1 to S which is obtained by removing
h′1, · · · , h′l from the domain and h1, · · · , hl from the co-domain of π. Since insertion costs are 0 in d̂
and π contains only non-insert operations, then GEDπ(G1,S) = ĜED(G1,G2). Hence, the claim is
proved. �

B.4 Proof of Lemma 2.

PROOF. Let x,y ∈ Rn be vectors of dimension n. We use the notation x[i] to denote the ith
coordinate of x. We observe that :

(ReLU(x) + ReLU(y))[i] = ReLU(x)[i] + ReLU(y)[i] = ReLU(x[i]) + ReLU(y[i])

≥ ReLU(x[i] + y[i]) = (ReLU(x + y))[i]

Since ‖.‖ is monotonic, this implies ‖ReLU(x) + ReLU(y)‖ ≥ ‖ReLU(x + y)‖. Using the triangle
inequality for ‖.‖, we get:

‖ReLU(x)‖+ ‖ReLU(y)‖ ≥ ‖ReLU(x) + ReLU(y)‖ ≥ ‖ReLU(x + y)‖ (15)

Substituting x = ZGQ − ZGT ′ ,y = ZGT ′ − ZGT , we get,

‖ReLU(ZGQ − ZGT ′)‖+ ‖ReLU(ZGT ′ − ZGT)‖ ≥ ‖ReLU(ZGQ − ZGT)‖.

This implies F(ZGQ ,ZGT ′) + F(ZGT ′ ,ZGT) ≥ Fs (ZGQ ,ZGT). �

C Complexity Analysis

For this analysis, we make the simplifying assumption that the hidden dimension in the Pre-MLP,
GIN and Post-MLP are all d. The average density of the graph is g. The number of hidden layers in
Pre-MLP, and Post-MLP are L, and k in GIN.

The computation cost per node for each of these components are as follows.

• Pre-MLP: The operations in the MLP involve linear transformation over the input vector xv of
dimension |Σ|, followed by non-linearity. This results in O(|V|(|Σ| · d+ d2L)) cost.

• GIN: GIN aggregates information from each of the neighbors, which consumes O(d · g) time. The
linear transformation consumes an additional O(d2) time. Applying non-linearity takes O(d) time
since it is a linear pass over the hidden dimensions. Finally these operations are repeated over each
of the k hidden layers, results in a total O(k(d2 + dg)) computation time per node. Across, all
nodes, the total cost is O(|V|kd2 + |E|kd) time. The degree g terms gets absorbed since each edge
passes message twice across all nodes.

• Concatenation: This step consumes O(kd) time per node.
• Pool: Pool iterates over the GIN representation of each node requiring O(|V|dk) time.
• Post-MLP: The final MLP takes dk dimensional vector as input and maps it to a d dimensional

vector over L layers. This consumes O(kd2 + d2L) time.

15

Algorithm 1 BUILDINDEX

Input: Embeddings D of graphs
Output: Root node of the constructed tree
1: if D = ∅ then return NULL
2: ZP ← arbitrary embedding in D as pivot
3: m1 ← MEDIAN({Fs(ZP ,ZG) : ZG ∈ D \ {ZP}})
4: m2 ← MEDIAN({Fs(ZG ,ZP) : ZG ∈ D \ {ZP}})
5: D1 ← {ZG : Fs(ZP ,ZG) ≤ m1,Fs(ZG ,ZP) ≤ m2}
6: D2 ← {ZG : Fs(ZP ,ZG) ≤ m1,Fs(ZG ,ZP) > m2}
7: D3 ← {ZG : Fs(ZP ,ZG) > m1,Fs(ZG ,ZP) ≤ m2}
8: D4 ← {ZG : Fs(ZP ,ZG) > m1,Fs(ZG ,ZP) > m2}
9: for i = 1 to 4 do
10: ti ← BUILDINDEX(Di)

11: Return NODE(ZP ,m1,m2, t1, t2, t3, t4)

Combining all these factors, the total inference complexity for a graph isO(|V|(|Σ| ·d+d2L+kd2)+
|E|kd). This operation is repeated on both the query and target graphs to compute their embeddings,
on which distance function F is operated. Thus, the final cost is O(n(|Σ| · d+ d2L+ kd2) +mkd),
where n = |VQ|+ |VT | and m = |EQ|+ |ET |.

D Querying in the Embedding Space

We assume the standard querying setup where the database graphs are known apriori, while the query
graph is unseen and provided at query time. Since GREED generates pair-independent embeddings,
representations of the database graphs can be generated apriori and stored. Furthermore, due to both
the predicted GED and SED satisfying the triangle inequality, the embeddings can be indexed. Thus,
at query time, we need to perform only two operations: (1) embed the query graph GQ, and (2) scan
the database embeddings against the query embedding to compute the answer set. We focus the
discussion on the two most common database queries of range and k-NN queries.

Definition 5 (Range Query) Given a database D = {ZG1 , · · · ,ZGn} of graph embeddings, a query
graph GQ and a threshold θ, find the answer set A = {Gi | Fg(ZGi ,ZGQ) ≤ θ}.

Definition 6 (k-NN Query) Given a database D = {ZG1 , · · · ,ZGn} of graph embeddings, a query
graph GQ and k, find the database graphs with the k smallest distance to GQ as per Fg(ZGi ,ZGQ).

The above definitions can be adopted for SED by using Fs. For the rest of the discussion, we assume
Fs since due to asymmetry, SED requires some additional considerations.

D.1 Indexing

We exploit the triangle inequality of GED and SED to index the database embeddings. Alg. 1 presents
the pseudocode. We choose a random embedding ZP ∈ D as the pivot (line 2), based on which
we split the remaining embeddings into four groups (lines 3-8). This process continues recursively
on each group (lines 9-10) till a partition gets empty (line 1). Note that in GED the distances are

Algorithm 2 RANGEQUERY

Input: Query embedding ZGQ , threshold θ, root node t = NODE(ZP ,m1,m2, t1, t2, t3, t4)

Output: A← {ZG | Fs(ZGQ ,ZG) ≤ θ}
1: if t = NULL then return ∅
2: if Fs(ZP ,ZGQ) ≤ m1 − θ then
3: mark t3 and t4 for pruning
4: if Fs(ZGQ ,ZP) > m2 + θ then
5: mark t1 and t3 for pruning
6: if Fs(ZGQ ,ZP) ≤ θ −m1 then
7: A← A ∪ D1 ∪ D2

8: mark t1 and t2 for pruning
9: else
10: A← ∅
11: for i = 1 to 4 do
12: if ti is not marked for pruning then
13: A← A ∪ RANGEQUERY

(
ZGQ , θ, ti

)
14: Return A

16

Name Avg.|V| Avg.|E| |Σ| #Graphs Avg.|VQ| Avg.|EQ|
Dblp 1.66M 7.2M 8 1 15 14

Amazon 334k 925k 1 1 12 16
PubMed 19.7k 44.3k 3 1 12 11

CiteSeer 4.2k 5.3k 6 1 12 12
Cora_ML 3k 8.2k 7 1 11 11
Protein 38 70 3 1, 071 9 11

AIDS 14 15 38 1, 811 7 7
AIDS’ 9 9 29 700 9 9
Linux 8 7 1 1, 000 8 7
IMDB 13 65 1 1, 500 13 65

Table A: Datasets

symmetric and hence m1 and m2 will converge. Consequently, we will have two partitions at each
node instead of four.

D.2 Range Query

From the triangle inequality, we can infer the lower bounds listed in lines 2 and 4 of Alg. 2. Hence, if
these bounds are larger than θ, the corresponding sub-trees are pruned. Similarly, if the upper bound
is smaller than θ (line 6), the entire sub-tree is added to the answer set (line 7). Otherwise, we recurse
(lines 11-13).

D.3 k-NN query

k-NN utilizes the same bounds from Alg. 2 to prune and prioritize the search space. However,
exploration proceeds in a best-first search manner. Alg. 3 presents the pseudocode. Alg. 3 maintains
two priority-queues; one to keep track of the k-NN till the current stage of the search process (A in
line 1), and the second to store index nodes in ascending order of their lower bound distance (Cands
in line 2). We pop the best node P from Cands and include it to the answer set if the distance is
within top-k (lines 6-7). Further, the sub-tree at P is processed if it satisfies the lower bound criteria
(lines 8-15). The search ends when either Cands is either empty or the lower bound of the top-most
node is larger than the k-th distance in A (line 4). In case of GED, LB1 (line 8) and LB2 (line 9) will
converge to the same value due to symmetry .

D.4 Scaling SED to million-scale graphs

SED is typically encountered in situations where the query is a small graph (< 50 nodes) [9, 32] and
the target graph is a single large graph, potentially containing millions of nodes and edges. To scale
to million-sized target graphs, we perform neighborhood decomposition. Specifically, we extract the
k-hop neighborhood Gv around each node v ∈ VT in the target graph GT , embed them into feature
space using GREED, and then indexed as outlined § D.1. The distance between query GQ and GT is
computed as:

Algorithm 3 k-NN
Input: Query embedding ZGQ , k, root node t = NODE(ZP ,m1,m2, t1, t2, t3, t4)

Output: A← top-k closest embeddings in D
1: A← A priority queue of size up to k. Stores entries in descending order of distance.
2: Cands← A priority queue. Stores entries in ascending order of distance lower bound.

3: Cands.insert
(〈
t,Fs

(
ZGQ ,ZP

)〉)
4: while Cands.size() > 0 And Cands.top().LB < A.top().distance do
5: P ← Cands.pop()

6: if |A| < k Or Fs

(
ZGQ ,ZP

)
< A.top().distance then

7: A.insert
(〈
P,Fs

(
ZGQ ,ZP

)〉)
8: LB1 ← |Fs

(
ZP ,ZGQ

)
−m1|

9: LB2 ← |Fs

(
ZGQ ,ZP

)
−m2|

10: LB = max{LB1, LB2}
11: if LB ≤ θ then
12: Cands.insert (〈t1, LB〉)
13: Cands.insert (〈t2, LB〉)
14: Cands.insert (〈t3, LB〉)
15: Cands.insert (〈t4, LB〉)
16: Return A

17

Fs (GQ,GT) = min
∀Gv∈GT

{Fs (GQ,Gv)} (16)

We next show that as long as the k-hop neighborhoods are sufficiently large, the proposed neighbor-
hood decomposition strategy is optimal.

Theorem 3 A nearest subgraph S ⊆ GT to GQ can be found in an l/2-hop neighborhood Gv ⊆ GT ,
centered at some v ∈ VGT , where l is the length of the longest path in GQ.

PROOF. From Thm. 1, SED(GQ,GT) = ĜED(GQ,GT). Let π be the node map produced by
ĜED(GQ,GT). Let us now consider the subgraph S ⊆ GT induced by all node maps of π that are
not inserts. It follows that SED(GQ,GT) = ĜED(GQ,GT) = SED(GQ,S). Since there are no inserts,
the topology of S is a subgraph of G1 (i.e., subgraph isomorphic if we ignore label information).
Hence, the diameter of S is ≤ the length l of the longest path in GQ. Since S ⊆ GT , S is contained
in some l/2 neighborhood Gv of GT . �

Finding the length of the longest path is NP-hard. However, we do not need to find the exact length of
the longest path: any upper bound suffices. Moreover we do not even need the length of the longest
path for l. The nearest subgraph having a diameter equal to l is rare. In practice, the diameter of the
nearest subgraph is unlikely to be much higher than the diameter of the query itself.

E Datasets

Dblp: Dblp is a co-authorship network where each node is an author and two authors are connected
by an edge if they have co-authored a paper. The label of a node is the venue where the authors has
published most frequently. The dataset has been obtained from https://www.aminer.org/citation.
Amazon [28]: Each node in Amazon represents a product and two nodes are connected by an edge if
they are frequently co-purchased. The graph is unlabeled and hence equivalent to a graph containing
a single label on all nodes.
PubMed: PubMed dataset is a citation network which consists of scientific publications from PubMed
database pertaining to diabetes classified into one of three classes.
Protein: Protein dataset consists of protein graphs. Each node is labeled with a one of three
functional roles of the protein.
AIDS: AIDS dataset consists of graphs constructed from the AIDS antiviral screen database. These
graphs representing molecular compounds with Hydrogen atoms omitted. Atoms are represented as
nodes and chemical bonds as edges.
AIDS’: AIDS’ dataset is another collection of graphs constructed from the AIDS antiviral screen
database. The graphs and their properties differ from those in AIDS. These graphs also represent
chemical compound structures.
CiteSeer: CiteSeer is a citation network which consists of scientific publications classified into
one of six classes. Generally a smaller version is used for this dataset, but we use the larger version
from [8].
Cora_ML: Cora dataset is a citation dataset consisting of many scientific publications classified into
one of seven classes based on paper topic. Cora_ML is a smaller datset extracted from Cora [8].
Linux: Linux dataset is a collection of program dependence graphs, where each graph is a function
and nodes represent statements while edges represent dependency between statements.
IMDB: IMDB dataset is a collection of ego-networks of actors/actresses that have appeared together in
any movie.

F Baselines

GMN explicitly assumes the distance function to be symmetric, which violates SED. GRAPHSIM has
an assumption that a large difference in size of the query and target graphs leads to a large distance,
which is not true in SED. In GOTSIM, there is an explicit assumption of modeling a symmetric
distance function since they use cosine similarity to compare node neighborhoods The normalization
factor in Eq. 6 of [14] is also based on whole graph matching. Finally, GENN-A∗ is not included for
SED since it does not scale on graphs beyond 10 nodes (See § 4.3).

18

https://www.aminer.org/citation

(a) Query (b) Rank 1 (c) Rank 2 (d) Rank 3 (e) Rank 4 (f) Rank 5

Figure E: Visualizations of query and resulting matches produced by GREED. Red, Green
and Yellow colors indicate Carbon, Nitrogen and Oxygen atoms respectively. The actual and
predicted SED for the target graphs are (b) 0, 0.4, (c) 0, 0.5, (d) 1, 0.6, (e) 0, 0.6 and (f) 1, 0.6.

G Ablation Study

Impact of GIN: To highlight the importance of GIN, we conduct ablation studies by replacing the
GIN convolution layers in the model with several other convolution layers. As visible in the Table B,
GIN consistently achieves the best accuracy. This is not surprising since GIN is provably the most
expressive among GNNs in distinguishing graph structures (essential to SED or GED computation)
and is as powerful as the Weisfeiler-Lehman Graph Isomorphism test [47].

Methods CiteSeer (SED) PubMed (SED) Amazon (SED) IMDB (GED)

GREED (GIN) 0.519 0.728 0.495 6.734
GREED-GCN 0.556 0.756 0.532 12.151

GREED-GRAPHSAGE 1.364 1.156 1.841 91.312
GREED-GAT 1.294 1.259 1.843 89.034

Table B: Ablation studies: GIN vs others. RMSE produced by different methods are shown
and GREED with GIN produces the best results.

Pool functions CiteSeer (SED) PubMed (SED) Amazon (SED) IMDB (GED)

GREED (Sum) 0.519 0.728 0.495 6.734
GREED-Max 0.795 0.709 0.603 52.519

GREED-Mean 0.922 0.732 0.846 52.483
GREED-Attention 0.914 0.797 0.868 130.47

Table C: Ablation studies: sum-pool vs others. The sum-pool is the best choice among the
considered alternatives.

Impact of sum-pool: To substantiate our choice of the pooling layer, we have performed ablation
studies with various pooling functions as replacements for sum-pool. It is clear from Table C that
sum-pool is the best choice among the considered alternatives.

Sum-pool can better distinguish graph sizes better than other aggregation functions such as mean-pool
or max-pool. To elaborate, let us consider a graph G1 that is significantly larger than another graph
G2. In this scenario, the individual coordinates of G1’s embedding can potentially be significantly
larger than those of G2 since in G1 the summation is being done over a larger set of embeddings.
Both mean-pool and max-pool fail to capture the size information as effectively, since the max and
the mean operations do not scale with the number of inputs.

Impact of Pre-mlp layer: Table D presents the results. As visible, we do not see any significant
difference in performance on average.

Performance of GREED-NN and GREED-Dual on GED: Fig. F presents the results. The trends
are similar to what we observed for SED in Sec. 4.5. GREED-NN closes the performance gap with
GREED as more training data is provided. Furthermore, GREED-dual is consistently worse that
GREED.

H Alignment

In real-world applications of subgraph similarity search, alignments are of interest only for a small
number of similar subgraphs. Our framework is intended to serve as a filter to retrieve this small set
of similar subgraphs from a large number of candidates. To elaborate, a graph database may contain

19

RMSE With Pre-MLP Without Pre-MLP
AIDS’ (SED) 0.51 0.51

Amazon 0.5 0.39
CiteSeer 0.52 0.51
Cora_ML 0.64 0.68

AIDS (GED) 0.8 0.85
IMDB (GED) 6.73 7.68
Linux (GED) 0.42 0.41

Protein 0.52 0.52
PubMed 0.73 0.73

Table D: RMSE of GREED with and without the Pre-mlp layer.

0 50000 100000
Training Pairs

1

2

3

4

R
M
S
E

Greed-NN

Greed-Dual

Greed

(a) AIDS

0 50000 100000
Training Pairs

0.5

1.0

1.5

2.0

R
M
S
E

Greed-NN

Greed-Dual

Greed

(b) Linux

0 50000 100000
Training Pairs

0

200

400

600

R
M
S
E

Greed-NN

Greed-Dual

Greed

(c) IMDB

Figure F: Performance of GREED-NN and GREED-Dual on GED. Refer to § 4.5 for details.

Methods PubMed Amazon

GREED Retrieval 0.373 6.471
MIP-F2 Alignment 52.8 68.4

Table E: The average running times in seconds per top-10 query. Our technique is much faster
than MIP-F2 alignment.

thousands or millions of graphs (or alternatively, thousands or millions of neighborhoods of a large
graph) which need to be inspected for similar subgraphs. A user is typically interested in only a
handful of these subgraphs that are highly similar to the query. Since the filtered set is significantly
smaller, a non-neural exact algorithm suffices to construct the alignments (Lemma 1 allows us to
adapt general cost GED alignment techniques for SED alignment). Computing alignments across the
entire database is unnecessary and slows down the query response time.

To substantiate our claim, we show the average running time for answering 10-NN queries. We
break up the running time into two components: (i) 10-NN retrieval time by GREED, (ii) exact
alignment time using MIP-F2 for the 10-NN neighborhoods retrieved by GREED. We observe that
exact alignment by existing methods on the 10-NN neighborhoods completes in reasonable time. In
contrast, GENN-A∗ does not scale on either PubMed or Amazon since it computes alignments across
all (sub)graphs.

I Visualization

Searching for molecular fragment containment is a routine task in drug discovery [20]. Motivated by
this, we show the top-5 matches to an SED query on the AIDS dataset produced by GREED in Fig. E.
The query is a functional group (Hydrogen atoms are not represented). GREED is able to extract
chemical compounds that contain this molecular fragment (except for ranks 3 and 5, which contain
this group with 1 edit) from around 2000 chemical compounds with varying sizes and structures.
This validates the efficacy of GREED at a semantic level.

J Subgraph sampling strategies for SED generalizability

In RWR, we perform fixed length random walks, where the length of a walk is the average diameter
size of the queries generated through BFS during training. Next, we merge the walks to form a graph.

20

In RW, we perform random walks, till the diameter of the resultant graph is the same as the average
diameter of the BFS sampled train graphs.

The details of the SHADOW sampler is explained in [48].

K Extension to maximum common subgraph similarity (MCSS)

Besides GED, MCSS is also a popular similarity measure for whole-graph comparison. Except
the inductive bias injected through F , all components of GREED is generic for any graph distance
function. In this section, we replace F with an MLP and model MCSS. Table F presents the results.
As visible, the trends hold even in this distance function, where GREED outperforms the closest
baseline of H2MN.

Methods AIDS Linux IMDB

GREED 0.514 0.085 0.293
H2MN 0.652 0.152 0.475

Table F: RMSE on MCSS.

L Heat Maps for Prediction Error

In Figures G to P, we show the variation of the errors on SED and GED prediction with query sizes and
ground truth values for GREED and the baselines on all the corresponding datasets. This experiment
is an extension of the heat-map results in Fig. 3 in the main paper. These datasets show variations
in the distributions of SED and GED values. It is interesting to observe that among the baselines,
different methods perform well on different regions (i.e., combinations of high/low SED and high/low
query sizes). The baselines do not show good performance on all regions. However, for GREED, we
see a much better coverage for all types of regions in the domain. Furthermore, for every region, our
models outperform (or are at least competitive with) the best performing baseline for that region.

0 20 40
SED

5

10

15

20

25

Qu
er
y
Si
ze

(a) GREED

0 20 40
SED

(b) H2MN

0 20 40
SED

(c) H2MN-NE

0 20 40
SED

(d) SIMGNN

0 20 40
SED

(e) BRANCH

0 20 40
SED

0

1

2

3

4

5

(f) MIP-F2

Figure G: Heat Maps of SED error against query size and SED values for Dblp. Darker means
higher error.

0 20 40
SED

5

10

15

20

25

Qu
er
y
Si
ze

(a) GREED

0 20 40
SED

(b) H2MN

0 20 40
SED

(c) H2MN-NE

0 20 40
SED

(d) SIMGNN

0 20 40
SED

(e) BRANCH

0 20 40
SED

0

1

2

3

4

5

(f) MIP-F2

Figure H: Heat Maps of SED error against query size and SED values for Amazon. Darker
means higher error.

21

0 20 40
SED

5

10

15

20

25

Qu
er
y
Si
ze

(a) GREED

0 20 40
SED

(b) H2MN

0 20 40
SED

(c) H2MN-NE

0 20 40
SED

(d) SIMGNN

0 20 40
SED

(e) BRANCH

0 20 40
SED

0

1

2

3

4

5

(f) MIP-F2

Figure I: Heat Maps of SED error against query size and SED values for PubMed. Darker means
higher error.

0 20 40
SED

5

10

15

20

25

Qu
er
y
Si
ze

(a) GREED

0 20 40
SED

(b) H2MN

0 20 40
SED

(c) H2MN-NE

0 20 40
SED

(d) SIMGNN

0 20 40
SED

(e) BRANCH

0 20 40
SED

0

1

2

3

4

5

(f) MIP-F2

Figure J: Heat Maps of SED error against query size and SED values for CiteSeer. Darker
means higher error.

0 20 40
SED

5

10

15

20

25

Qu
er
y
Si
ze

(a) GREED

0 20 40
SED

(b) H2MN

0 20 40
SED

(c) H2MN-NE

0 20 40
SED

(d) SIMGNN

0 20 40
SED

(e) BRANCH

0 20 40
SED

0

1

2

3

4

5

(f) MIP-F2

Figure K: Heat Maps of SED error against query size and SED values for Cora_ML. Darker
means higher error.

0 20 40
SED

5

10

15

20

25

Qu
er
y
Si
ze

(a) GREED

0 20 40
SED

(b) H2MN

0 20 40
SED

(c) H2MN-NE

0 20 40
SED

(d) SIMGNN

0 20 40
SED

(e) BRANCH

0 20 40
SED

0

1

2

3

4

5

(f) MIP-F2

Figure L: Heat Maps of SED error against query size and SED values for Protein. Darker
means higher error.

0 10 20
SED

6

8

10

12

14

Qu
er
y
Si
ze

(a) GREED

0 20
SED

(b) H2MN

0 20
SED

(c) H2MN-NE

0 20
SED

(d) SIMGNN

0 20
SED

(e) BRANCH

0 10 20
SED

0

1

2

3

4

5

(f) MIP-F2

Figure M: Heat Maps of SED error against query size and SED values for AIDS. Darker means
higher error.

22

0 10 20
GED

2

4

6

8

10

Qu
er
y
Si
ze

(a) GREED

0 10 20
GED

(b) H2MN

0 10 20
GED

(c) H2MN-NE

0 10 20
GED

(d) SIMGNN

0 10 20
GED

(e) BRANCH

0 10 20
GED

0

1

2

3

4

5

(f) MIP-F2

Figure N: Heat Maps of GED error against query size and GED values for AIDS’. Darker means
higher error.

0 5 10 15
GED

4

6

8

10

Qu
er
y
Si
ze

(a) GREED

0 10
GED

(b) H2MN

0 10
GED

(c) H2MN-NE

0 10
GED

(d) SIMGNN

0 10
GED

(e) BRANCH

0 5 10 15
GED

0

1

2

3

4

5

(f) MIP-F2

Figure O: Heat Maps of GED error against query size and GED values for Linux. Darker
means higher error.

0 20 40
GED

10

15

20

25

Qu
er
y
Si
ze

(a) GREED

0 20 40
GED

0

5

10

15

20

25

(b) H2MN

0 20 40
GED

(c) H2MN-NE

0 20 40
GED

(d) SIMGNN

0 20 40
GED

(e) BRANCH

0 20 40
GED

0

5

10

15

20

25

(f) MIP-F2

Figure P: Heat Maps of GED error against query size and GED values for IMDB. Darker means
higher error.

23

	Ged and Sed
	Additional Proofs
	Proof of Theorem. 1
	Proof of Thm 2.
	Proof of Lemma 3
	Proof of Lemma 2.

	Complexity Analysis
	Querying in the Embedding Space
	Indexing
	Range Query
	k-NN query
	Scaling Sed to million-scale graphs

	Datasets
	Baselines
	Ablation Study
	Alignment
	Visualization
	Subgraph sampling strategies for Sed generalizability
	Extension to maximum common subgraph similarity (MCSS)
	Heat Maps for Prediction Error

