
7 Supplementary Materials1

We report additional data and experimental results. We elaborate Global Hierarchical Violation2

in Section 7.1, offer a snippet of the DBPedia graph in Section ??, and provide supplementary3

comparative analysis of benchmarks in Section 7.2. Checklist is provided in the last page.4

7.1 Global Hierarchy Violation5

We elaborate Global Hierarchy Violation with illustrations. Consider the scenario in Figure 1(b),6

GHV calculates the number of the violations in 8 node pairs: A-B, A-D, A-E, A-C, A-F, B-D, B-E,7

and C-F. Among these pairs, A-F and C-F do not follow hierarchy constraint, so the GHV would8

be 2 in this scenario. While GHV sufficiently measure hierarchy violations, Yang and Howe also9

acknowledge that GHV has a blind spot. Figure 1 (c) presents a setup in which the pattern of the10

predicted probabilities is similar as presented in 1 (B), but the predicted probabilities in 1 (c) are11

much lower. Practically, thresholds are usually set around 50% to acquire labels. Hierarchy violations12

occur in this scenario would be irrelevant after thresholding.13

The main focus of HMC problems is to produce coherent predictions, i.e. the predicted labels14

respect hierarchy constraint. Hierarchy violation occurs when child nodes are predicted without15

parent nodes, as shown in Figure 1(a). For predicted probabilities, hierarchy violation happens when16

pB(x) > pA(x) where p(x) indicates predicted probability of input x and B is a child node of A. A17

demonstration is shown in Figure 1(b).18

Figure 1: Illustration of hierarchy violation with (a) predicted labels and (b) predicted probabilities (c)
low predicted probabilities. Letters identify nodes. Bold line circles predicted labels and red dashed
lines indicates labels with hierarchy violations (a) Hierarchy violations occur in this scenario because
a descedant node D is predicted without its ancestors nodes A and B (b) In this case, p annotations
indicate predicted probabilities. Hierarchy violations occur when the predicted probability of a child
node is higher than that of one of its ancestors. A-F and A-C pairs are hierarchy violations. (c)
The predicted outputs share the same patter as (b) with much lower values. Thresholds in real life
applications are often set around 50%. Although hierarchy violations are presented in this scenarios,
these violations would be irrelevant after thresholding.

7.2 Additional Comparative Analysis of Benchmarks19

We demonstrate supplementary comparative analysis of the current and Ontologue benchmarks.20

Distributional Analysis We perform four data distributional analysis on current benchmarks21

(Figure 3) and proposed benchmarks (Figure 2): (i) Data availability for labels (first column) (ii) Data22

distribution across hierarchy levels (second column) (iii) Node and leaf (marked in red) distribution23

across hierarchy levels with (third column) (iv) Label distribution over data (forth column).24

• Data availability for labels (first column): Each chart shows a histogram describing data25

availability for each node for the corresponding dataset. The histograms confirm that HMC26

datasets are often class imbalanced [? ]. Significant number of nodes in Diatoms, FUN collection,27

and GO collection have less than 5 data points to train on. The long-tailed distribution of the28

number of data items per label suggest that the challenge of these datasets is not in the hierarchical29
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Figure 2: Distribution analysis for the proposed benchmarks. The first column is the data availability
for labels. The second column shows the data distribution over the label hierarchy levels. The third
column demonstrates the node distribution over hierarchy levels with red bars indicate leaf (nodes
without children) distribution over hierarchy levels. The forth column illustrates label distribution
over data.

structure, but in the embodiment of a conventional few-shot learning problem. Our proposed30

toolkit and benchmarks address this issue by setting minimum data availability for the labels.31

This provide proper benchmarks for HMC algorithms to reduce the influence of the few-shot32

problems and evaluate the performance over hierarchical structure.33

• Data distribution across hierarchy levels (second column): Nodes at deeper levels often have34

lower data availability compared to nodes at higher levels as we can observe in DIATOMS,35

FUNCAT, GO collections and in proposed benchmarks. Our proposed benchmarks still carries36

high data availability at the deep levels.37

• Node and leaf distribution across hierarchy levels (third column): The label hierarchies of38

ENRON, DIATOMS, IMCLEF are shallow and the leaves (nodes without children) are all located39

in the bottom two levels. This undermines the difficulty of HMC problem provided from the label40

hierarchy. The proposed benchmarks have more organically constructed label hierarchies with41

leaves range from level 2 to level 10.42

• Label distribution over data: We discover that three of the datasets, DIATOMS, ImCLEF07A,43

and ImCLEF07D are not necessarily multi-label datasets because every data point is only assigned44

to one branch of labels. This significantly reduces the difficulty of the problem.45
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Figure 3: Distribution analysis for the current benchmarks. The first column is the data availability
for labels. The second column shows the data distribution over the label hierarchy levels. The third
column demonstrates the node distribution over hierarchy levels with red bars indicate leaf (nodes
without children) distribution over hierarchy levels. The forth column illustrates label distribution
over data.

The current benchmarks can be seen as tri-modal: There are three small and shallow hierarchies46

(ENRON, DIATOMS, and IMCLEF) from diverse domains with less than 100 nodes, a related set of47

functional genomic hierarchies of moderate size (FUNCAT), and gene ontology hierarchies where48

the number of labels is approximately the same as the number of data items GO. Since the size and49

structure correlates with domain, it becomes difficult to determine how performance results may50
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Table 1: Average number of parents (not considering roots) and children (not considering leaves)
of the current and proposed benchmarks. Label hierarchies in most current benchmarks are trees,
so the number of the parents for all node is 1. Only three nodes in the ENRON label hierarchy are
internal nodes (not a root or leaf) and they carry a lot of children nodes. The label hierarchies in the
Ontologue datasets are more diverse and complex and provide a more difficult HMC problem space.

Taxonomy Dataset Averaged
# of parents

Averaged
# of children

COMEDY 1.33 2.96
DBPEDIA ENGINEERING 1.14 3.52

(DAG) LAW 1.29 2.68
MAIN 1.52 4.12

ENRON 1.00 15.00
DIATOMS 1.00 3.12

Tree IMCLEF07A 1.00 2.66
IMCLEF07D 1.00 2.11

FUNCAT 1.00 2.71
DAG GO 1.41 2.78

generalize — we do not have large hierarchies in social domains or small hierarchies in biological51

domains, for example. Ontologue datasets provide diverse data distributions and tree structure to52

improve the generalization of the HMC benchmarks.53

Structural Analysis We investigate the structure of the label hierarchies by computing the averaged54

number of children and parents. Table 1 demonstrates the comparison between current benchmarks55

and Ontologue datasets. We disregard the root node when we calculate the average number of parents56

and ignore the leaves when we compute the average number of children. Label hierarchies in most57

current benchmarks are trees, so the number of parents for all nodes is 1. Enron is an extreme case58

given that there are only three internal nodes, not a root or leaf, in the label hierarchy. We can observe59

that the Ontologue datasets carry more complex and diverse hierarchies. The complexity of the label60

hierarchies provides a more difficult problem space for HMC.61
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