
One-shot Neural Backdoor Erasing via Adversarial
Weight Masking

Shuwen Chai ∗

Renmin University of China
chaishuwen@ruc.edu.cn

Jinghui Chen †

Pennsylvania State University
jzc5917@psu.edu

Abstract

Recent studies show that despite achieving high accuracy on a number of real-
world applications, deep neural networks (DNNs) can be backdoored: by injecting
triggered data samples into the training dataset, the adversary can mislead the
trained model into classifying any test data to the target class as long as the trigger
pattern is presented. Various methods have been proposed to nullify such backdoor
threats. Notably, a line of research aims to purify the potentially compromised
model. However, one major limitation of this line of work is the requirement to
access sufficient original training data: the purifying performance is much worse
when the available training data is limited. In this work, we propose Adversarial
Weight Masking (AWM), a novel method capable of erasing the neural backdoors
even in the one-shot setting. The key idea behind our method is to formulate
this into a min-max optimization problem: first, adversarially recover the trigger
patterns and then (soft) mask the network weights that are sensitive to the recovered
patterns. Comprehensive evaluations of several benchmark datasets suggest that
AWM can largely improve the purifying effects over other state-of-the-art methods
on various available training dataset sizes.

1 Introduction

Deep neural networks (DNNs) have been widely applied in a variety of critical applications, such
as image classification [17], object detection [48, 63] , natural language processing [9], and speech
recognition [19], with tremendous success. The training of modern DNN models usually relies
on large amount of training data and computation, therefore, it is common to collect data over the
Internet or directly use pretrained models from third-party platforms. However, this also gives room
for potential training-time attacks [43, 11, 21, 38, 40]. Particularly, backdoor attack [15, 32, 6, 43,
1, 33, 37, 45, 30] is among one of the biggest threats to the safety of the current DNN models: the
adversary could inject triggered data samples into the training dataset and cause the learned DNN
model to misclassify any test data to the target class as long as the trigger pattern is presented. In the
meantime, the model still enjoy decent performances on clean tasks thus the backdoors can be hard
to notice. Recent advanced backdoor attacks also adopt invisible [27], or even sample-specific [29]
triggers to make it even stealthier.

Facing the immediate threat from backdoor adversaries, many backdoor defense or detection methods
[31, 35, 16, 52, 58, 60] have been proposed. Particularly, we focus on a line of research which aims
to purifying the potentially compromised model without any access to the model’s training process.
This is actually a quite realistic setting as the large-scale machine learning model nowadays [9, 2] can
hardly be trained by individuals. Earlier works in this line usually purify the backdoored model via
model fine-tuning [54, 7] or distillation [28, 14]. The problem is fine-tuning and distillation procedure

∗This work was done when the author was remotely interned at Pennsylvania State University.
†Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



can still preserve certain information on the backdoor triggers and thus it is hard to completely remove
the backdoor. Moreover, since it is hard to for one to access the entire training data, longer time of
fine-tuning of a small subset of data usually leads to overfitting and deteriorated model performances
on clean tasks. In order to remove the backdoor in a more robust way, recent researches focus on
removing the backdoor with adversarial perturbations [57, 60]. Particularly, [57] aims to extract
sensitive neurons (by adversarial perturbations) that are highly related to the embedded triggers and
prune them out. However, one major limitation is that it still requires to access sufficient original
training data in order to accurately locate those sensitive neurons: the purifying performance is a lot
worse when the available training data is insufficient. This largely limit the practicality of the defense
as it can be hard to access sufficient original training data in real-world scenarios.

In this paper, we propose the Adversarial Weight Masking (AWM) method, a novel backdoor removal
method that is capable of erasing the neuron backdoor even in the one-shot setting. Specifically, AWM
adopts a minimax formulation to adversarially (soft) mask certain parameter weights in the neuron
network. Intuitively, AWM aims to lower the weights on parameters that are related to the backdoor
triggers while focusing more on the robust features [23]. Extensive experiments on backdoor removal
with various available training data sizes demonstrate that our method is more robust to the available
data size and even works under the extreme one-shot learning case while other baseline cannot. As a
side product, we also found that AWM’s backdoor removal performance for smaller sized networks
are significantly better compared to other baselines.

2 Related Works

There exists a large body of literature on neural backdoors. In this section, we only review and
summarize the most relevant works in backdoor attacks, defenses and adversarial training.

Backdoor Attacks The backdoor attack aims to embed predefined triggers into a DNN during
training time. The adversary usually poisons a small fraction of training data through attaching a
predefined trigger and relabeling them as corresponding target labels, which can be the same for all
poisoned samples [6, 15] or different for each class [37]. In contrast, clean-label attacks [43, 1] only
attach the predefined trigger to data from a target class and do not relabel any instances. On the design
of backdoor triggers, BadNets attack [15] is the first to patch instances with a white square and reveal
the backdoor threat in the training of DNNs. [32] optimizes trojan triggers by inversing the neurons.
To make the triggers harder for detection, [45] proposed an adaptive adversarial training algorithm
that maximizes the indistinguishability of the hidden representations of poisoned data and clean
data while training. [30, 37] composites multiple or sample-aware trojan triggers to elude backdoor
scanners. [6] first proposed the necessity of making triggers invisible and generated poisoned images
by blending the backdoor trigger with benign images instead of by patching directly. Following this
idea, some other invisible attacks [27, 29] are also prevailing, suggesting that poisoned images should
be indistinguishable compared with their benign counter-part to evade human detection.

Backdoor Defenses Opposite to backdoor attack, backdoor defense aims to detect a triggered
model or remove the embedded backdoor. For the purpose of detection, the defender may detect
abnormal data before model training [47, 35, 10, 12] or identify poisoned model after training
[53, 59]. Another line of research focuses on backdoor removal through various techniques including
fine-tuning [52, 16, 54], distillation [7], or model ensemble [28, 25]. DeepSweep [41] searches
data augmentation functions to transform the infected model as well as the inference samples to
rectify the model output of trigger-patched samples. However, this method relies on the access to
the poisoned data. Recently, [60] formalizes backdoor removal as a minimax problem and utilizes
the implicit hypergradient to solve it. As it needs fine-tuning the parameters, performance decay
may happen when the available fune-tuning data is limited. Another latest work [57] discovers
that backdoored DNNs tend to collapse and predict target label on clean data when neurons are
perturbed, and therefore pruning sensitive neurons can purify the model. From empirical studies, we
still discover that it cannot maintain its efficacy with a small network and one-shot learning.

Adversarial Training Our work is also related to study of adversarial training [36], which adopts min-
max robust optimization techniques for defending against adversarial examples [13, 50, 22, 5, 4, 8].
[61] theoretically studies the trade-off between natural accuracy and robust accuracy. [62] proposes
friendly adversarial training with better trade-off between natural generalization for adversarial

2



robustness. Recent study [56] also reveals the relationship between robustness and model width.
Several works also study accelerating adversarial training in practice [44, 3, 55].

3 Preliminaries and Insignts

3.1 Preliminaries

Defense Setting. We adopt a typical defense setting where the defender outsourced a backdoored
model from an untrusted adversary. The defender is not aware of whether the model is been
backdoored or which is the target class. The defender is assumed to have access to a small set of
training data (or data from the same distribution) but no access to the entire original training data.

Adversarial Neuron Pruning. ANP [57] is one of the state-of-the-art backdoor removal method that
adversarially perturbs and prunes the neurons without knowing the exact trigger patterns.

Denote w and b as the weight and bias of the network. Considering a DNN f with L layers, let’s
denote the k-th neuron in the l-th layer as z

(l)
k = σ(w

(l)
k z(l−1) + b

(l)
k ), where σ is the activation

function. ANP works by first finding the neurons that are possibly compromised to the trigger patterns
and then prune them out to remove the backdoors. Specifically, it will first perturb all the neurons
in DNN by multiplying small numbers δ(l)k and ξ

(l)
k on the corresponding weight w(l)

k and bias b(l)
k

respectively. Then we have z(l)k = σ((1+ δ
(l)
k )w

(l)
k z(l−1) + (1+ ξ

(l)
k )b

(l)
k ) as the new neuron output.

To simplify the notation, let’s denote ◦ as the above multiplication on the neuron-level, n as the total
number of neurons, ϵ the maximum level of perturbation. Then the goal of this perturbation is to find
the perturbation that can maximize the classification loss:

max
δ,ξ∈[−ϵ,ϵ]n

E(x,y)∼D L(f(x; (1 + δ) ◦w, (1 + ξ) ◦ b), y) (3.1)

Note that δ and w have different dimensions so that the perturbation is not weight-wise but neuron-
wise. Those weights corresponding to the same neuron are multiplied with the same perturb fraction
δ. ANP claimed that by solving problem (3.1), we can identify sensitive neurons related to potential
backdoors. With the solved δ and ξ, the second step is to optimize the mask for neurons with the
following objective:

min
m∈{0,1}n

E(x,y)∼D αL(f(x;m ◦w,b), y) + β max
δ,ξ∈[−ϵ,ϵ]n

L(f(x; (m+ δ) ◦w, (1 + ξ) ◦ b), y)

(3.2)

By solving the above min-max optimization, the poisoned model prunes those sensitive neurons de-
tected by neuron perturbation and removes the potential backdoors. Note that when BatchNorm (BN)
[24] layer is used, ANP’s perturbation on w and b will be canceled out by the batch normalization
and nothing changes after BN layers. Therefore, the implementation ANP directly perturb the scale
and shift parameters in the BN layers in such cases.

3.2 Problems of ANP

ANP [57] claims to be an effective backdoor removal method without knowing the exact trigger
pattern, and since it does not really fine-tune the model but directly prune the neurons, it can preserve
decent model accuracy on the clean tasks. However, its backdoor removal performance largely
depends on the effectiveness of identifying the sensitive neurons regarding the backdoor trigger: if Eq.
(3.2) failed to identify the accurate binary mask m, ANP will perform badly on backdoor removal
tasks. Unfortunately, in certain practical settings, ANP does fail to: 1) remove the backdoor when the
available clean training data size is extremely small; 2) maintain high accuracy on clean tasks when
the network size is small and the BN layer is used.

We select the BadNets attack for illustration and set the target class as 8 to train the backdoored
models. First, we test the ANP performances with various sizes of available training data. The left
part of Figure 1(a) shows that the perturbed neurons (by ANP) tend to predict the target class a lot
more often than other classes when the size of available training data is sufficient, however, when the
size of available data drops to 10, it can no longer effectively indicates such pattern and the prediction
portion on different classes distributes quite evenly. As an immediate result, ANP’s backdoor removal
performance significantly degrades when the size of available data is small (Figure 1(a) right part).

3



(a) The left shows the prediction portion for each class
with perturbed neurons with various available training
data size. The right shows the ASR/ACC of the ANP
pruned models with various available training data size.

(b) The left shows the prediction portion for each
class with perturbed neurons with ResNet and VGG
model. The right shows the ASR/ACC of the ANP
pruned models under various pruning threshold.

Figure 1: An illustrative example of the failure cases of ANP.

We then investigate how the network size affects ANP’s performance by applying it on both VGG
(small) and ResNet-18 (large) backdoored models. The left part of Figure 1 (b) indicates that while
ANP’s perturb neuron is able to show larger prediction portion on the target class, when applying on
smaller VGG model, its magic failed again. The right part of Figure 1 (b) illustrates the ASR/ACC
of the ANP pruned models under various pruning threshold. We can observe that it is hard to find a
suitable pruning threshold for the smaller VGG network to obtain both high ASR and low ACC.

4 Our Proposed Method

In this section, we introduce our proposed method. Inspired by the above analysis in Section 3, we
propose Adversarial Weight Masking (AWM) for better backdoor removal under practical settings.

Soft Weight Masking. From the analysis in Section 3, the neuron pruning method can be inappropri-
ate when the backdoored model (with BN layers) is small and only has few layers: pruning certain
neurons in the BN layer cuts off the information from a whole channel, which inevitably ignores
some certain beneficial information for the clean tasks. To fix this drawbacks, we propose to adopt
weight masking instead of neuron pruning:

min
m∈[0,1]d

E(x,y)∼D αL(f(x;m⊙ θ), y) + β max
δ∈[−ϵ,ϵ]d

L(f(x; (m+ δ)⊙ θ), y), (4.1)

where θ ∈ Rd denotes the entire neural network weights, δ denotes the small perturbations on the
network parameters, m is the weight mask of the same dimension as θ, ⊙ denotes the Hadamard
product (element-wise product). Eq. (4.1) follows the general idea of ANP by first identifying the
sensitive part of the neural network and then lower such sensitivity. The major changes here is that
we are no longer pruning out the neurons, instead, we add an additional mask for all the network
weights. Note that such design would provide more flexibility in removing backdoor-related parts
and thus avoid over-killing in BN layers. Since we apply weight masking instead of neuron pruning,
we can also use soft mask m ∈ [0, 1]d instead of binary neuron masks as in ANP [57].

Adversarial Trigger Recovery. Another issue identified in Section 3 is that ANP performs poorly
when the available training data size is small. And it seems that under such challenging conditions,
perturbing the mask itself does not give clues to which part of the network is really sensitive to
the backdoor triggers. Inspired from adversarial training literature [36], we can first optimize the
following objective for adversarially estimating the worst-case trigger patterns:

max
∥∆∥1⩽τ

E(x,y)∼D L(f(x+∆;θ), y), (4.2)

where ∥ · ∥1 denotes the L1 norm and τ limits the strength of the perturbation. Note that technically
speaking, Eq. (4.2) only aims to find a L1 norm universal perturbation that can mislead the current
model toward misclassification. Yet since we are not aware of the target class, this is a reasonable
surrogate task for the trigger recovery. Based on Eq. (4.2), we can integrate it with soft weight
masking and formulate it as a min-max optimization problem:

min
m∈[0,1]d

E(x,y)∼D αL(f(x;m⊙ θ), y) + β max
∥∆∥1⩽τ

[L(f(x+∆;m⊙ θ), y)] , (4.3)

4



where α and β are tunable hyper-parameters.

Sparsity Regularization. To push our defense to mask out backdoor-related weights more aggres-
sively, we adopt the L1 norm regularization on m for further controlling its sparsity level, as inspired
by previous works [52, 49] on trigger optimization.

Combining soft weight masking, adversarial trigger recovery together with sparsity regularization on
m, gives the full Adversarial Weight Masking formulation:

min
m∈[0,1]d

E(x,y)∼D αL(f(x;m⊙ θ), y) + β max
∥∆∥1⩽τ

[L(f(x+∆;m⊙ θ), y)] + γ∥m∥1, (4.4)

where α, β and γ are tunable hyper-parameters. Intuitively, AWM works by first identifying the
worst-case universal triggers (which are highly likely to be the actual triggers or different patterns
with similar backdoor effects), and then finding an optimal weight mask m to lower the importance
on the identified triggers while maintaining the accuracy on clean tasks.

Unlike ANP, which directly prunes out the suspicious neurons, we aim at learning a soft mask for
each parameter weight, i.e., each element in m lies in between [0, 1]. Such design can help preserve
the information beneficial to the clean tasks and thus avoid over-killing. Moreover, adopting soft
masks can also avoid the problem of setting the hyper-parameters on the pruning threshold, which is
also heuristic and hard to generalize for various experimental settings.

Algorithm 1 Adversarial Weight Masking (AWM)
Input: Infected DNN f with θ, Clean dataset D = {(xi, yi)}ni=1, Batch size b, Learning rate η1, η2,
Hyper-parameters α, β, γ, Epochs E, Inner iteration loops T , L1 norm bound τ .

1: Initialize all elements in m as 1
2: for i = 1 to E do
3: Initialize ∆ as 0

// Phase 1: Inner Optimization
4: for t = 1 to T do
5: Sample a minibatch (x, y) from D with size b
6: Linner = L(f(x+∆;m⊙ θ), y)
7: ∆ = ∆− η1∇∆Linner

8: end for
9: Clip ∆: ∆ = ∆×min(1, τ

∥∆∥1
)

// Phase 2: Outer Optimization
10: for t = 1 to T do
11: Louter = αL(f(x;m⊙ θ), y) + βL(f(x+∆;m⊙ θ), y) + γ∥m∥1
12: m = m+ η2∇mLouter

13: Clip m to [0, 1].
14: end for
15: end for

Output: Filter masks m for weights in network f .

Algorithm Details. The detailed steps of AWM is summarized in Algorithm 1. We solve the min-max
optimization problem in Eq. (4.4) by alternatively solving the inner and outer objectives. Specifically,
we initialize all the mask values as 1. In each epoch, we repeat the following steps: 1) initialize ∆ as
0, and then perform K-steps of gradient descent on ∆ and clip it with its L1 norm limit τ ; 2) we
update soft weight mask in the outer optimization via stochastic gradient descent, where the first term
is to minimize the clean classification loss, the second term is for lowering the weights associated
with ∆, and the third term is the L1 regularization on m, followed by a clipping operation to keep
m within [0, 1]. Note that we reinitialize ∆ in each inner optimization as we need to relearn the
adversarial perturbation based on the current m⊙ θ. We also on purposely set T > 1 for ensuring
sufficient optimization during each update in order to reach better convergence.

5 Experiments

In this section, we conduct thorough experiments to verify the effectiveness of our proposed AWM
method and analyze the sensitivity on hyper-parameters via ablation studies.

5



Datasets and Networks. We conduct experiments on two datasets: CIFAR-10 [26] and GTSRB
[20]. CIFAR-10 contains 50000 training data and 10000 test data of 10 classes. GTSRB is a dataset
of traffic signal images, which contains 39209 training data and 12630 test data of 43 classes. The
poisoned model is trained with full training data with 5% poison rate on Resnet-18 [18], ShuffleNet
V2 [34], MobileNet V2 [42], or a small VGG [46] network with three simplified blocks, containing
six convolution layers followered by BN layers. See Appendix A for more experimental setting
details and Appendix B for results on GTSRB.

Attacks and Defenses. For the backdoor attack baselines, we consider 1) BadNets with square
trigger (BadNets) [15]; 2) Trojan-Watermark (WM) and Trojan-Square (SQ) [32]; 3) l0-inv and l2-inv
[27], two invisible attack methods with different optimization constraints; 4) Blended attack (BLD)
[6]; 5) Clean-label attack (CLB) [51]; 6) WaNet [38] with both single target and all-to-all (a2a)
target settings. We mainly compare our method with two latest state-of-the-art methods of backdoor
removal: Implicit Backdoor Adversarial Unlearning (IBAU) [60], Adversarial Neuron Pruning (ANP)
[57].

Evaluations. We adopt two metrics: ACC and ASR. ACC is the test accuracy on clean dataset, while
ASR is calculated as the ratio of those triggered samples that are still predicted as the adversary’s
target labels. Note that usually a benign classifier is not assciated with a specific trigger, thus its
prediction on poisoned data mainly follows its prediction on clean data. Under such case, suppose we
have c classes in total, we can expect the ASR should be around 1/c, that is, 10% for CIFAR-10 and
2.3% for GTSRB. Therefore, once the backdoor removal method achieves an ASR close to 1/c (less
than 1.5/c), we consider it as successfully remove the backdoor (rather than achieving ASR= 0%).

5.1 Backdoor Removal with Various Available Data Size

Table 1: Backdoor removal performance comparison with various available data sizes on CIFAR-10
dataset with Resnet-18 and VGG Net. Numbers represent percentages. Bold numbers indicate the

best ACC after backdoor removal and blue numbers indicate successful backdoor removal.

Attack
Available Resnet-18 VGG Net
Data Size Origin ANP IBAU AWM(Ours) Origin ANP IBAU AWM(Ours)

n ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

B
ad

N
et

s 5000 ACC 85.56 10.18 86.41 11.26 86.94 10.46 ACC 77.34 8.64 81.06 12.25 83.58 13.98
500 87.83 83.39 11.15 84.88 35.61 83.56 12.11 85.98 73.17 13.76 77.30 13.52 78.20 11.93
200 ASR 83.52 11.53 82.38 83.89 84.26 10.90 ASR 64.59 13.35 75.88 14.75 76.42 12.82
100 97.90 81.48 11.42 78.80 97.82 83.57 11.10 97.96 51.19 15.86 75.53 33.62 75.69 10.64
50 81.09 11.21 73.84 98.92 80.46 11.42 49.81 17.66 68.72 45.23 73.20 12.22

Tr
oj

an
-S

Q 5000 ACC 87.30 10.66 86.34 9.38 87.08 11.21 ACC 67.70 8.68 82.38 14.20 83.82 12.76
500 88.27 85.34 9.34 81.08 10.38 86.30 10.34 85.86 63.21 35.77 76.42 11.53 79.40 10.08
200 ASR 82.72 10.51 75.72 99.94 85.38 9.41 ASR 63.84 36.31 73.81 10.69 75.50 14.40
100 99.61 80.28 7.42 66.38 93.82 85.68 10.32 99.36 40.23 7.14 74.32 55.68 74.49 12.08
50 69.68 9.29 39.83 98.80 80.78 8.48 40.06 6.41 73.20 84.32 72.23 5.01

Tr
oj

an
-W

M 5000 ACC 85.72 38.48 84.68 14.32 87.12 12.92 ACC 58.14 31.70 83.03 8.26 82.78 13.64
500 88.00 82.82 34.06 80.63 10.22 85.17 8.36 86.08 55.64 9.76 82.89 7.33 82.61 12.15
200 ASR 83.43 66.30 80.32 20.68 84.88 11.10 ASR 52.58 8.45 80.27 10.36 81.96 17.88
100 99.96 75.99 61.64 78.75 38.82 83.31 12.51 99.80 42.95 21.20 81.02 30.25 81.56 12.82
50 70.52 9.33 69.42 99.78 80.14 3.43 46.84 6.15 78.33 35.06 79.97 8.88

l 0
in

v

5000 ACC 86.08 15.20 85.32 10.72 86.38 11.74 ACC 66.90 10.21 82.90 12.68 82.26 12.88
500 88.23 83.71 15.08 80.83 14.48 84.97 11.81 86.56 67.70 30.20 80.42 10.11 75.01 20.54
200 ASR 83.47 18.18 75.83 28.90 82.83 17.79 ASR 69.47 73.10 76.26 95.50 76.20 33.74
100 100.0 77.32 16.44 73.49 70.18 82.04 12.68 100.0 60.31 59.14 67.40 93.56 62.31 24.58
50 69.21 25.26 69.83 85.34 77.68 25.73 54.95 58.08 59.13 78.20 60.73 45.36

l 2
in

v

5000 ACC 85.04 12.14 86.46 7.28 87.22 10.76 ACC 70.70 7.58 81.51 6.23 82.74 12.94
500 88.51 82.25 31.99 78.66 9.32 85.76 10.26 86.22 74.80 0.44 78.09 7.64 81.33 4.39
200 ASR 82.21 30.68 77.38 50.46 85.16 11.45 ASR 66.38 0.92 73.28 6.42 80.36 6.39
100 99.86 81.80 21.68 73.26 90.48 82.26 8.85 99.84 53.07 1.12 72.91 18.86 81.67 7.55
50 72.65 8.90 63.21 93.46 75.60 10.86 47.87 0.15 75.41 30.27 80.36 9.93

We first study the backdoor removal performances of AWM on various available data sizes and
compare with other state-of-the-art defense baselines. Table 1 presents the defense results on
the CIFAR-10 dataset. Specifically, among the entire CIFAR-10 training data, 2500 images are
backdoored. We test with varying size of available data samples ranging from 5000 to 10 for each
defense. A fixed number of 5000 remaining samples are used to evaluate the defense result.

6



The left column depicts five single-target attack methods, and the first row represents two different
adopted network structures. Note that each attack’s poison rates are set to be 5%. We present the
ACC and ASR under each backdoor removal setting in the table. All single-target attacks are capable
of achieving an ASR close to 100% and an ACC around 88% with no defenses. For Resnet-18, the
performance of the baselines are comparable with AWM when there are sufficient available training
data (n = 5000): all methods effectively remove the backdoors. With the decreasing size of clean
data, IBAU suffers from huge performance degradation and fails to remove the backdoor under
several settings. The major reason is that its fine-tuning procedure can actually hurt the original
information stored in the parameters that are crucial to its clean accuracy, especially when fine-tuning
on small sample set. On the other hand, ANP shows better robustness as it prunes the neurons which
reduces the negative effect of insufficient data, but still fails on more challenging cases. On the right
part of Table 1, we can observe that ANP losses more accuracy on the small VGG network, which
backup our analysis in Section 3. AWM shows state-of-the-art backdoor removal performances with
various available data sizes, network structures and successfully erase the neuron backdoors in most
cases.

Table 2: An Extreme Case: One-Shot Backdoor Removal Comparison on CIFAR-10 Data. Numbers
represent percentages. Bold numbers indicate the best ACC after backdoor removal and blue numbers
indicate successful backdoor removal.

Method BadNets Trojan-SQ Trojan-WM l0 inv l2 inv
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

Origin 87.83 97.90 88.27 99.61 88.00 99.96 88.23 100.0 88.51 99.86
ANP 60.35 32.83 68.32 13.88 50.42 35.50 63.42 22.46 67.08 76.16
IBAU 60.18 97.33 45.38 96.27 57.76 99.93 69.26 95.81 63.48 89.42

AWM (Ours) 76.46 8.98 78.26 10.68 74.28 8.66 69.94 10.18 76.60 10.64

We further conduct experiments in an extreme one-shot setting, i.e., we only provide one image per
class as the available data for backdoor removal tasks (total size as 10 for CIFAR-10 dataset). Table 2
shows the result of ACC and ASR under such a one-shot setting. In this case, we randomly sample
one image for each of the ten classes and use the basic data-augmentation method, such as random
horizontal flip and random crop. As a result, our AWM successfully removes all those backdoors
with minimal performance drop (10% higher than other baselines on average). In contrast, other
baselines failed in removing the existing backdoor triggers for most cases (as suggested by the large
ASR values).

5.2 Reliability of AWM under Different Attack Types and Network Architectures

Table 3: Backdoor removal performance comparison with
lightweight architectures and universal or all-to-all attacks.

ShuffleNet V2
BLEND CLB WaNet WaNet(a2a)

ACC ASR ACC ASR ACC ASR ACC ASR

No Defense 84.37 99.93 83.41 99.78 89.85 99.22 89.57 84.25
ANP 44.15 32.51 62.47 6.53 64.39 4.77 72.58 10.03
AWM 69.75 2.69 70.33 2.19 76.35 7.49 75.81 9.73

MobileNet V2

No 88.83 99.78 87.70 100.0 93.78 91.01 94.08 92.72
ANP 51.95 85.33 57.65 22.09 75.31 18.97 79.28 10.33
AWM 67.87 2.10 66.68 9.70 74.29 8.92 80.97 13.38

To comprehensively show our
performance on different network
structures and attack types, we
select two more lightweight net-
works and four more backdoor
attacks to conduct experiments
under the one-shot setting. We
summarize the ACC and ASR on
CIFAR-10 in Table 3.

Robustness on Network Archi-
tectures. Different from the
VGG we adopted to illustrate "a
small network", ShuffleNet and
MobileNet contain more convolu-
tional and BN layers while their
parameters are fewer. Although the performance gap between ANP and AWM closes up a little
bit, AWM still consistently cleans up all the backdoors with better clean task performances. This
phenomenon also gives us insights that the performance of neuron pruning methods may be related
to network depth more than the amount of parameters. To sum up, AWM works well on various
structures of small neural networks with limited resources.

7



Robustness on Trigger Types. AWM accommodates different types of triggers as it does not make
an assumption on the formulation of triggers. Although we used the adversarial trigger recovery and
sparsity regularization as parts of techniques, they do not put a constraint on the triggers to be fixed
or sparse but help remove the non-robust features in the poisoned network from the root.

The results on Blend, CLB, and WaNet also support the reasoning. The Blend attack uses gaussian
noise (poison rate = 1%) that covers the whole image. We adopted the CLB attack with adversarial
perturbations and triggers on four corners. WaNet warps the image with a determined warping field
as poisoned data, so there does not exist a fixed trigger pattern. As it uses a noisy warping field to
generate noisy data with actual labels, it is difficult to train a backdoored model with a poison rate of
1%. We set the poison rate as 10%. These three attacks cover scenarios that triggers are dynamic
and natural. Thus the experimental results verify that AWM does not rely on universal and sparse
triggers. The above-mentioned attacks are mostly all-to-one, except for the CLB. To fill the blank of
all-to-all attacks, we perform all-to-all attacks with WaNet on CIFAR-10 and the all-to-all attack with
Trojan-SQ pattern on GTSRB in Appendix B. In conclusion, AWM performs well on fixed, universal,
dynamic triggers and all clean label, all-to-one, and all-to-all attack settings.

5.3 Ablation Study on Each Component of AWM

Table 4: The Effect of Each Component: From ANP to AWM. + and − indicate an increase or
decrease in accuracy. ↓ indicates large improvements in lowering ASR. R denotes Resnet-18.

Attack&Network Avail. ANP ANP+SWM ANP+SWM+ATR Full AWM
Data Size ACC ASR ACC ASR ACC ASR ACC ASR

BadNets (R)
500 83.39 11.15 83.25 (-0.14) 12.62 84.78 (+1.53) 12.08 85.33 (+0.55) 11.76
100 81.48 11.42 82.25 (+0.77) 13.04 83.83 (+1.58) 9.55 83.57 (-0.26) 11.10
10 53.26 34.38 73.34 (+19.9) 10.16 ↓ 80.38 (+7.04) 10.41 76.46 (-3.92) 8.98

Trojan-SQ (R)
500 85.34 9.34 85.27 (-0.07) 12.00 84.06 (-1.19) 9.02 84.91 (-0.85) 10.20
100 80.28 7.42 82.01 (+1.73) 10.35 83.23 (+1.22) 11.95 85.07 (+1.84) 11.34
10 68.32 13.88 73.12 (+4.80) 11.42 82.04 (+8.92) 10.72 78.26 (-3.78) 10.68

Trojan-WM (R)
500 82.82 34.06 83.07 (+0.25) 9.34 ↓ 85.23 (+2.16) 7.79 84.88 (-0.35) 10.12
100 75.99 31.64 78.23 (+2.24) 15.02 ↓ 82.99 (+4.76) 4.61 ↓ 84.21 (+1.22) 11.18
10 50.42 35.50 61.64 (+11.2) 17.88 ↓ 75.66 (+14.0) 7.54 ↓ 74.28 (-1.38) 8.66

l0 inv (R)
500 83.71 15.08 83.31 (-0.40) 11.67 84.14 (+0.83) 13.91 84.83 (0.69) 12.15
100 77.32 16.44 81.16 (+3.84) 13.11 84.39 (+3.23) 17.87 82.44 (+1.95) 11.97
10 63.42 22.46 65.46 (+2.04) 10.40 73.66 (+8.20) 14.70 69.94 (+3.72) 10.18

l2 inv (R)
500 82.25 31.99 82.59 (+0.34) 13.94 ↓ 82.15 (-0.45) 6.26 85.22 (+3.07) 13.13
100 81.80 21.68 80.51 (-1.29) 10.47 ↓ 81.08 (+0.57) 11.24 79.79 (+1.29) 11.77
10 67.08 76.16 60.36 (-6.72) 12.20 ↓ 66.78 (+6.42) 15.80 76.60 (+9.82) 10.64

l2 inv (VGG)
500 74.80 0.44 76.35 (+1.55) 3.17 82.08 (+5.73) 5.81 81.33 (-0.75) 4.39
100 66.38 0.92 75.63 (+9.25) 7.89 79.42 (+3.79) 6.46 80.36 (+0.94) 6.39
10 47.08 30.15 70.82 (+23.7) 19.17 78.34 (+7.52) 14.73 80.32 (+1.98) 12.52

We further perform an ablation study on each component of AWM. For notational simplicity, we refer
the soft weight masking as SWM, and adversarial trigger recovery as ATR. From left to right in Table
4, we demonstrate the performance of the original ANP method, ANP + SWM (as in Eq. (4.1)), ANP
+ SWM + ATR (as in Eq. (4.3), and our full AWM method.

Table 4 shows that each component in AWM is non-trivial and necessary since adding each component
would enhance the performance on average. Previous analysis in Section 3 suggests two of the ANP’s
weaknesses: when the network is small and when the available training data size is small. The first
weakness motivates us to adopt soft label masking. As expected, SWM contributes more with the
small VGG net and verifies that it overcomes the drawback of neuron pruning in a smaller network’s
BN layer. The second weakness motivates us to perform adversarial trigger recovery. From Table
4 we can easily observe ATR’s improvements in lowering the ASR and significantly improving the
ACC. The effect of L1 regularization is comparably small but indeed forces the mask m to be sparser
and thus further lowering the influence of weights associated with the recovered trigger patterns.

8



5.4 Additional Ablation Studies

In this section, we perform additional empirical studies on the necessity of regularization and AWM’s
robustness on the hyper-parameters. We compare our AWM with the following modified models: 1)
No Clip: AWM with no ∆ clipping; 2) No Shrink: AWM with no L1 regularization on m; 3) NC-NS:
AWM with no ∆ clipping and m regularization; 4) L2 Reg: AWM with ∆’s L2 regularization; 5) L2

Reg NC: AWM with ∆’s L2 regularization and no clipping.

Table 5: Ablation Study on AWM. ↓ indicates significant performance drop; ↑ indicates negative
effect on backdoor removal. The base for comparison is Full AWM.

Avail. Method BadNets Trojan-SQ Trojan-WM l0 inv l2 inv
Data Size ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

200

No Clip 82.86 ↓ 19.36 ↑ 79.21 ↓ 20.58 ↑ 84.82 32.16 ↑ 80.17 ↓ 46.85 ↑ 81.76 ↓ 17.28 ↑
No Shrink 84.52 10.31 83.06 ↓ 9.20 84.33 9.96 83.34 16.52 84.66 10.43

NC-NS 82.33 ↓ 15.78 ↑ 78.41 ↓ 26.93 ↑ 84.40 37.81 ↑ 77.84 ↓ 36.37 ↑ 81.80 ↓ 12.39
L2 Reg 81.46 ↓ 13.29 83.60 ↓ 8.81 83.93 14.63 83.04 18.52 85.30 9.48

L2 Reg NC 83.72 11.64 83.49 ↓ 30.13 ↑ 83.55 ↓ 7.56 81.27 ↓ 29.61 ↑ 83.45 ↓ 21.54 ↑
Full AWM 84.26 10.90 85.38 9.41 84.88 11.10 82.83 17.79 85.16 11.44

one-shot

No Clip 66.03 ↓ 16.28 ↑ 62.14 ↓ 20.68 ↑ 55.32 ↓ 12.28 61.68 ↓ 37.38 ↑ 72.71 16.15 ↑
No Shrink 66.32 ↓ 9.97 76.62 12.83 73.50 9.26 70.69 21.36 ↑ 75.57 14.86

NC NS 65.32 ↓ 9.77 68.17 ↓ 26.14 ↑ 73.62 59.52 ↑ 70.22 24.87 ↑ 71.52 29.84 ↑
L2 Reg 72.71 8.98 75.21 8.06 71.32 8.48 72.42 14.73 76.96 12.35

L2 Reg NC 73.96 14.38 72.50 ↓ 13.74 73.39 10.61 68.94 31.53 ↑ 72.06 20.87 ↑
Full AWM 76.46 8.98 78.26 10.68 74.28 8.66 69.94 10.18 76.60 10.64

(a) Coefficient α (b) Coefficient γ (c) Clipping bound τ

Figure 2: Sensitivity on hyper-parameters. Performance (±std) over 5 random runs is reported.

Constraints on ∆ and m. In Table 5, we compare the results of different modifications of AWM.
On the one hand, the clipping of the virtual trigger ∆ is necessary as No Clip and L2 Reg NC either
remove the backdoor incompletely or sacrifice the accuracy too much. L2 Reg changes the form of
regularization and achieves comparable results on several settings but is less stable than AWM. The
comparison between AWM and L2 Reg also shows that both L1 and L2 norm regularization work for
∆. On the other hand, the regularization of m helps better learn the soft mask. NC-NS differs from
No Clip only in the m but successfully unlearns more backdoors. This is also reasonable since: by
punishing the L1 norm, the soft masks are forced to reach smaller values and thus be more aggressive
on suspicious trigger-related features.

Hyper-parameters. We first use one single defend task to test AWM’s sensitivity to hyper-parameters:
the coefficient α, γ, and the clipping bound τ for ∆. Concretely, α controls the trade-off between the
clean accuracy and backdoor removal effect, γ controls the sparsity of weight masks, and τ controls
the maximum L1 norm of the recovered trigger pattern. We test with α ∈ [0.5, 0.8], β = 1− α, γ ∈
[10−8, 10−5], τ ∈ [10, 3000] and shows the performance changes under the Trojan-SQ attack with
500 training data. When varying the value of one specific hyper-parameter, we fix the others to the
default value as α0 = 0.9, γ0 = 10−7, τ0 = 1000. As shown in Figure 2, γ is quite robust within the
selected range. However, if we choose an overly large γ, the mask would shrink its value and hurt the
accuracy. α works best around 0.8 to 0.9. If α is too close to 1, the major goal of AWM will shift
to maintain clean accuracy while paying less attention to backdoor removal. The clipping bound τ
should also be selected within a moderate range, as the adversarial perturbation should neither be too
small to fail in capturing the real trigger nor be too large to lead to difficulties in finding the optimal

9



soft mask m. In addition, considering the data dimension for CIFAR-10, further increasing τ after
3000 is the same as no constraint and thus meaningless.

As observed, the impacts of α and γ on the performance has a single decrease or increase, while the
clipping bound τ needs a moderate value. To verify the difficulty of selecting τ , we then conduct
experiments to compare the τs from 10 to 3000 for four attacks, keeping α and γ to be 0.9 and 10−7.

(a) ACC

(b) ASR

Figure 3: Sensitivity on τ over different
defend tasks. Performance (±std) over
5 random runs is reported.

Observing the ACC and ASR curves with Trojan-SQ,
Trojan-WM, BadNets, and L0-inv in Figure 3, the ACC
decreases with the increase of τ while ASR first decreases
fastly and then slightly increases again or keeps flat. The
reasons behind this are easy to interpret. In terms of
ACC, since we are using a larger τ , the model weights
are masked to adapt to triggered data points that are far
different from the original data distribution. As a result,
this will unavoidably hurt the original task ACC. On the
other hand, in an ideal condition, ASR should decrease
since the solution space of the optimization problem with
larger τ actually contains the solution of the same problem
with a smaller τ . Thus in terms of backdoor removal, it
should be at least as good as that of a smaller τ . However,
in practice, since we use PGD for solving the inner max-
imization problem, setting a large τ will simply make the
L1 norm of the recovered trigger too large. Thus the recov-
ered trigger will be further away from the actual trigger
and negatively affects the backdoor removal performances,
especially on the variance.

Fortunately, the workable range of τ is indeed vast for var-
ious attacks, and it is pretty safe to select a value between
50 and 1000 for a 32 × 32 image, which can be easily
extended to other image sizes by the ratio τ/image size.
On the one hand, even if we falsely select an overly-large
τ , such as 3000 for BadNets, the resulting ACC and ASR
are still acceptable. On the other hand, we recommend
selecting small τ because it tends to outperform the default
setting. It is also reasonable to assume that the adversary
tends to make a trigger invisible and small in the norm.
For example, the L1 norm of Trojan-WM’s actual trigger is around 115, which is way smaller than our
default value of τ = 1000. In fact, τ = 1000 roughly means that we allow the trigger to significantly
change the clean image over 16× 16 pixels in a 32× 32 image which has been fairly large.

6 Conclusions and Future Works

In this work, we propose a novel Adversarial Weight Masking method which adversarially recovers
the potential trigger patterns and then lower the parameter weights associated to the recovered patterns.
One major advantage of our method is its ability to consistently erasing neuron backdoors even in
the extreme one-shot settings while the current state-of-the-art defenses cannot. Under scenarios
with a few hundred clean data, AWM still outperforms other backdoor removal baselines. Extensive
empirical studies show that AWM relies less on the network structure and the available data size than
neuron pruning based methods.

Note that currently, our AWM method still needs at least one image per class in order to erase the
neuron backdoors properly. In some cases, the defender may have no clue what the training data is.
Under such settings, it would be wonderful if the model owner could also remove the backdoors in
a data-free setting. In addition, it is still under-explored how the weight masks in different layers
contribute to the results. It would also be interesting to explore whether an attacker could break the
backdoor defense method with the knowledge of the optimization details. We leave these problems
as future works.

10



References
[1] Mauro Barni, Kassem Kallas, and Benedetta Tondi. A new backdoor attack in cnns by training

set corruption without label poisoning. In 2019 IEEE International Conference on Image
Processing (ICIP), pages 101–105. IEEE, 2019.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[3] Jinghui Chen, Yu Cheng, Zhe Gan, Quanquan Gu, and Jingjing Liu. Efficient robust training via
backward smoothing. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
2022.

[4] Jinghui Chen and Quanquan Gu. Rays: A ray searching method for hard-label adversarial attack.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 1739–1747, 2020.

[5] Jinghui Chen, Dongruo Zhou, Jinfeng Yi, and Quanquan Gu. A frank-wolfe framework for
efficient and effective adversarial attacks. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2020.

[6] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on
deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

[7] Xinyun Chen, Wenxiao Wang, Chris Bender, Yiming Ding, Ruoxi Jia, Bo Li, and Dawn Song.
Refit: a unified watermark removal framework for deep learning systems with limited data. In
Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security,
pages 321–335, 2021.

[8] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks. In International conference on machine learning,
pages 2206–2216. PMLR, 2020.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[10] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Jacob Steinhardt, and Alistair Stew-
art. Sever: A robust meta-algorithm for stochastic optimization. In International Conference on
Machine Learning, pages 1596–1606. PMLR, 2019.

[11] Ji Feng, Qi-Zhi Cai, and Zhi-Hua Zhou. Learning to confuse: generating training time ad-
versarial data with auto-encoder. Advances in Neural Information Processing Systems, 32,
2019.

[12] Chao Gao, Yuan Yao, and Weizhi Zhu. Generative adversarial nets for robust scatter estimation:
A proper scoring rule perspective. J. Mach. Learn. Res., 21:160–1, 2020.

[13] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[14] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789–1819, 2021.

[15] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in
the machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

[16] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn Song. Tabor: A highly accu-
rate approach to inspecting and restoring trojan backdoors in ai systems. arXiv preprint
arXiv:1908.01763, 2019.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

11



[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[19] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural
networks for acoustic modeling in speech recognition: The shared views of four research groups.
IEEE Signal processing magazine, 29(6):82–97, 2012.

[20] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel.
Detection of traffic signs in real-world images: The german traffic sign detection benchmark. In
The 2013 international joint conference on neural networks (IJCNN), pages 1–8. Ieee, 2013.

[21] W Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein. Metapoi-
son: Practical general-purpose clean-label data poisoning. Advances in Neural Information
Processing Systems, 33:12080–12091, 2020.

[22] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks
with limited queries and information. In International Conference on Machine Learning, pages
2137–2146. PMLR, 2018.

[23] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and
Aleksander Madry. Adversarial examples are not bugs, they are features. Advances in neural
information processing systems, 32, 2019.

[24] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. PMLR, 2015.

[25] Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. Certified robustness of nearest neighbors
against data poisoning attacks. arXiv preprint arXiv:2012.03765, 2020.

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[27] Shaofeng Li, Benjamin Zi Hao Zhao, Jiahao Yu, Minhui Xue, Dali Kaafar, and Haojin Zhu.
Invisible backdoor attacks against deep neural networks. arXiv preprint arXiv:1909.02742,
2019.

[28] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural attention
distillation: Erasing backdoor triggers from deep neural networks. In International Conference
on Learning Representations, 2020.

[29] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor
attack with sample-specific triggers. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 16463–16472, 2021.

[30] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. Composite backdoor attack for deep
neural network by mixing existing benign features. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pages 113–131, 2020.

[31] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against
backdooring attacks on deep neural networks. In International Symposium on Research in
Attacks, Intrusions, and Defenses, pages 273–294. Springer, 2018.

[32] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and
Xiangyu Zhang. Trojaning attack on neural networks. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-221, 2018.
The Internet Society, 2018.

[33] Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflection backdoor: A natural backdoor
attack on deep neural networks. In European Conference on Computer Vision, pages 182–199.
Springer, 2020.

12



[34] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines
for efficient cnn architecture design. In Proceedings of the European conference on computer
vision (ECCV), pages 116–131, 2018.

[35] Shiqing Ma and Yingqi Liu. Nic: Detecting adversarial samples with neural network invariant
checking. In Proceedings of the 26th network and distributed system security symposium (NDSS
2019), 2019.

[36] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

[37] Tuan Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. Advances in Neural
Information Processing Systems, 33:3454–3464, 2020.

[38] Tuan Anh Nguyen and Anh Tuan Tran. Wanet - imperceptible warping-based backdoor attack.
In International Conference on Learning Representations, 2021.

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[40] Weiqi Peng and Jinghui Chen. Learnability lock: Authorized learnability control through
adversarial invertible transformations. In International Conference on Learning Representations,
2022.

[41] Han Qiu, Yi Zeng, Shangwei Guo, Tianwei Zhang, Meikang Qiu, and Bhavani Thuraisingham.
Deepsweep: An evaluation framework for mitigating dnn backdoor attacks using data augmen-
tation. In Proceedings of the 2021 ACM Asia Conference on Computer and Communications
Security, pages 363–377, 2021.

[42] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[43] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Du-
mitras, and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural
networks. Advances in neural information processing systems, 31, 2018.

[44] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! Advances
in Neural Information Processing Systems, 32, 2019.

[45] Reza Shokri et al. Bypassing backdoor detection algorithms in deep learning. In 2020 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 175–183. IEEE, 2020.

[46] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[47] Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses for data poisoning
attacks. Advances in neural information processing systems, 30, 2017.

[48] Christian Szegedy, Alexander Toshev, and Dumitru Erhan. Deep neural networks for object
detection. Advances in neural information processing systems, 26, 2013.

[49] Guanhong Tao, Guangyu Shen, Yingqi Liu, Shengwei An, Qiuling Xu, Shiqing Ma, Pan Li, and
Xiangyu Zhang. Better trigger inversion optimization in backdoor scanning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13368–13378,
2022.

[50] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-
Daniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204,
2017.

13



[51] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks.
arXiv preprint arXiv:1912.02771, 2019.

[52] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and
Ben Y Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks.
In 2019 IEEE Symposium on Security and Privacy (SP), pages 707–723. IEEE, 2019.

[53] Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong, and Meng Wang. Practical
detection of trojan neural networks: Data-limited and data-free cases. In European Conference
on Computer Vision, pages 222–238. Springer, 2020.

[54] Maurice Weber, Xiaojun Xu, Bojan Karlaš, Ce Zhang, and Bo Li. Rab: Provable robustness
against backdoor attacks. arXiv preprint arXiv:2003.08904, 2020.

[55] Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial
training. In International Conference on Learning Representations, 2020.

[56] Boxi Wu, Jinghui Chen, Deng Cai, Xiaofei He, and Quanquan Gu. Do wider neural networks
really help adversarial robustness? Advances in Neural Information Processing Systems, 34,
2021.

[57] Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored deep models.
Advances in Neural Information Processing Systems, 34, 2021.

[58] Kaidi Xu, Sijia Liu, Pin-Yu Chen, Pu Zhao, and Xue Lin. Defending against backdoor attack
on deep neural networks. arXiv preprint arXiv:2002.12162, 2020.

[59] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A Gunter, and Bo Li. Detecting ai
trojans using meta neural analysis. In 2021 IEEE Symposium on Security and Privacy (SP),
pages 103–120. IEEE, 2021.

[60] Yi Zeng, Si Chen, Won Park, Z Morley Mao, Ming Jin, and Ruoxi Jia. Adversarial unlearning
of backdoors via implicit hypergradient. arXiv preprint arXiv:2110.03735, 2021.

[61] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International conference
on machine learning, pages 7472–7482. PMLR, 2019.

[62] Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, and Mohan
Kankanhalli. Attacks which do not kill training make adversarial learning stronger. In Interna-
tional conference on machine learning, pages 11278–11287. PMLR, 2020.

[63] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. Object detection with deep
learning: A review. IEEE transactions on neural networks and learning systems, 30(11):3212–
3232, 2019.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A] This

work aims at making machine learning models safer against malicious attacks.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

14



(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15


