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Abstract

The NP-hard problem of optimizing a shallow ReLU network can be characterized
as a combinatorial search over each training example’s activation pattern followed
by a constrained convex problem given a fixed set of activation patterns. We explore
the implications of this combinatorial aspect of ReLU optimization in this work.
We show that it can be naturally modeled via a geometric and combinatoric object
known as a zonotope with its vertex set isomorphic to the set of feasible activation
patterns. This assists in analysis and provides a foundation for further research. We
demonstrate its usefulness when we explore the sensitivity of the optimal loss to
perturbations of the training data. Later we discuss methods of zonotope vertex
selection and its relevance to optimization. Overparameterization assists in training
by making a randomly chosen vertex more likely to contain a good solution. We
then introduce a novel polynomial-time vertex selection procedure that provably
picks a vertex containing the global optimum using only double the minimum
number of parameters required to fit the data. We further introduce a local greedy
search heuristic over zonotope vertices and demonstrate that it outperforms gradient
descent on underparameterized problems.

1 Introduction

Neural networks have become commonplace in a variety of applications. They are typically trained to
minimize a loss on a given dataset of labeled examples using a variant of stochastic gradient descent.
However, our theoretical knowledge of neural networks and their training lags behind their practical
developments.

Single-layer ReLU networks are an appealing subject for theoretical study. The universal approx-
imation theorem guarantees their expressive power while their relative simplicity makes analysis
tractable (Hornik, 1991). We restrict ourselves in this paper to studying empirical risk minimization
(ERM) as was done in previous works (Du et al., 2018; Oymak & Soltanolkotabi, 2020), which is
justified since the train set performance tends to upper bound the test set performance. Furthermore,
modern neural networks achieve zero training loss but nevertheless generalize well (Kaplan et al.,
2020; Nakkiran et al., 2021). Minimizing the training loss of a shallow ReLU network is a nonconvex
optimization problem. Finding its global minima is difficult and can in fact be shown to be NP-hard
in general (Goel et al., 2020). Arora et al. (2016) provide an explicit algorithm for finding the global
minima by solving a set of convex optimization problems; however, the size of this set is exponential
in both the input dimension d and the number of hidden units m.

In this paper, we explore the combinatorial structure implicit in the global optimization algorithm of
Arora et al. (2016). We start by using tools from polyhedral geometry to characterize the set of convex
optimization problems and describe the relationships between the subproblems. Notably, we are
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able to create a special type of polytope called a zonotope (McMullen, 1971) whose vertices have a
one-to-one correspondence with the convex subproblems and whose faces represent information about
their relationships. We then explore the combinatorial optimization problem implicit in shallow ReLU
network empirical risk minimization using the zonotope formalism to help interpret our findings and
assist in some proofs.

Since the computational complexity of optimization problems shapes our approach to solving them,
we examine the reductions of NP-hard problems introduced in Goel et al. (2020). The datasets
produced have examples that are not in general position (i.e. they have nontrivial affine dependencies),
which differs from most real-world datasets. We prove that the global optimum of the loss of a shallow
ReLU network over such a dataset can have a discontinuous jump for arbitrarily small perturbations
of the data, which has a very natural interpretation in our zonotope formalism. This means that a
proof of the NP-hardness of ReLU optimization given training examples in general position does not
follow from the results Goel et al. (2020) via a simple continuity argument. We therefore present a
modification of their proof that uses a dataset in general position.

In contrast to the NP-hardness of general ReLU optimization, sufficient overparameterization allows
gradient descent to provably converge to a global optimum in polynomial time, as demonstrated by
(Du et al., 2018; Oymak & Soltanolkotabi, 2020). We interpret the proof methods generally used in
these works as asserting that sufficient overparameterization allows gradient descent to bypass much
of the combinatorial search over zonotope vertices by having a randomly chosen vertex be close to
one with a good solution with high probability. We then introduce a novel algorithm that finds a good
zonotope vertex in polynomial time requiring only about twice the minimum number of hidden units
required to fit the dataset.

Finally, we explore how gradient descent interacts with this combinatorial structure. We provide
empirical evidence that it can perform some aspects of combinatorial search but present an informal
argument that it is suboptimal. We reinforce this claim by showing that a greedy local search heuristic
over the vertices of the zonotope outperforms gradient descent on some toy synthetic problems and
simplifications of real-world tasks. In contrast to the NP-hard worst case, these results suggest that
the combinatorial searches encountered in practice might be relatively tractable.

We summarize our contributions as follows.

• We are the first to provide an in-depth exposition of the combinatorial structure arising from
the set of feasible activation patterns that is implicit in shallow ReLU network optimization. In
particular, we show that this structure can be characterized exactly as a Cartesian power of the
zonotope generated by the set of training examples.

• We use this formalism to prove necessary conditions for the global optimum of a shallow ReLU
network to be discontinuous with respect to the training dataset. We show that this implies
that previous NP-hardness proofs of ReLU optimization do not automatically apply to datasets
satisfying realistic assumptions, which we rectify by presenting a modification that uses a dataset
in general position.

• We explore the role that combinatorial considerations play in the relationship between overpa-
rameterization and optimization difficulty. In particular, we introduce a novel polynomial-time
algorithm fitting a generic dataset using twice the minimum number of parameters needed.

• We introduce a novel heuristic algorithm that performs a greedy search along edges of a zonotope
and show that it outperforms gradient descent on some toy datasets.

We hope that the tools we introduce are generally useful in furthering our understanding of ReLU
networks. Notably, they have deep connections to several well-established areas of mathematics
(McMullen, 1971; Richter-Gebert & Ziegler, 2017; Ziegler, 2012), which might allow researchers to
quickly make new insights by drawing upon existing results in those fields.

2 Empirical Risk Minimization for ReLU Networks

A single ReLU layer consists of an affine transformation followed by a coordinate-wise application
of the ReLU nonlinearity ϕ(x) = max{x, 0}. We can represent an affine transformation from
Rd → Rm by an m × (d + 1) matrix by representing its inputs in homogeneous coordinates, i.e.
by appending a (d + 1)-th coordinate to network inputs that is always equal to 1. Hence a single
ReLU layer with parameters W can be written as fW (x) = ϕ(W x̄), where x̄ denotes x expressed
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in homogeneous coordinates. A single hidden layer ReLU network consists of a single ReLU layer
followed by an affine transformation. We focus on the case of a network with scalar output, so the
second layer can be represented by a vector v ∈ Rm+1. Although the second layer parameters are
trained jointly with the first layer in practice, we assume that they are fixed for our analysis. This
parallels simplifying assumptions made in previous work (Du et al., 2018).

Let ℓ : R× R→ R be a convex loss function such as MSE or cross-entropy. Since the second layer
parameters are fixed, we can incorporate them into a modified loss function ℓ̃ : Rm × R→ R given
by ℓ̃(z, y) = ℓ(vT z̄, y) that operates directly on the first layer’s activations z. This modified loss
function is convex since it is the composition of a convex function with an affine function.

Suppose we are given D = {(xi, yi)}Ni=1 as the training dataset with xi ∈ Rd and yi ∈ R for all
i = 1, . . . , N . Throughout this paper, we assume that N > d+ 1. Sometimes we will represent a
dataset by a matrix X ∈ R(d+1)×N with each column corresponding to an example and its labels as
the vector y ∈ RN . We say thatD is in general position if there exist no nontrivial affine dependencies
between the columns of X . The empirical loss L(W ), also known as the empirical risk, is defined as
the mean per-example loss

L(W ) =
1

N

N∑
i=1

ℓ̃(fW (xi), yi). (1)

The goal of ERM is to find a set of parameters W that minimizes this loss. Arora et al. (2016)
were the first to introduce an algorithm for exact ERM. We adapt their algorithm for the case of
fixed second layer weights in algorithm 1, which has a running time of O(Nmd poly(N,m, d)). The
algorithm works by iterating over all feasible activation patterns

A =
{
I{WX̄ > 0} ∈ {0, 1}m×N |W ∈ Rm×(d+1)

}
. (2)

The subset of parameters corresponding to an activation pattern, which we call an activation region,
can be expressed via a set of linear inequalities. Within a single activation region, the map from
parameter values to ReLU layer activations over the training dataset is linear. Hence we can solve
a constrained convex optimization problem to get the optimal parameters in each activation region.
Namely for a given A ∈ A, we solve for W ∈ Rm×(d+1) in the following

minimize
1

N

N∑
i=1

ℓ̃(ai ⊙ (W x̄i), yi)

subject to (2ai − 1)⊙ (W x̄i) ≥ 0

(3)

where ⊙ denotes the Hadamard product and ai denotes the i-th column of A. The global optimum
then becomes the best optimum found over the entire set of activation regions. Thus single-layer
ReLU network ERM can be expressed as a combinatorial search over activation patterns with a
convex optimization step per pattern.

3 Zonotope Formalism

While Arora et al. (2016) mention that A arises from a set of hyperplanes induced by the training ex-
amples, they only use this connection to bound its cardinality |A| = O(Nmd). However, hyperplane
arrangements are well-studied geometric and combinatoric objects (Richter-Gebert & Ziegler, 2017;
Stanley et al., 2004). As such, we will see that we can use this connection to better characterize the
combinatorial aspects of ReLU optimization.

Our mathematical tools for describing the combinatorial structure of shallow ReLU network op-
timization include oriented hyperplane arrangements, polyhedral sets, polyhedral complexes, and
zonotopes. Appendix A provides an approachable overview of these topics for unfamiliar readers.

Single Hidden Unit We start by considering a single ReLU unit fw(x) = ϕ(wT x̄) parameterized
by the vector w ∈ Rd+1. Looking at its behavior as w ranges over Rd+1 on a single training
example xi, we see that there are two linear regimes depending on the sign of wT x̄. They are
separated by the hyperplane in parameter space satisfying wT x̄ = 0. We can describe such behavior
mathematically as an oriented hyperplane with the sign of wT x̄ providing its orientation. The
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Figure 1: Left: A set of 5 training examples in R2. Center: A two dimensional slice of parameter
space R3 along the w3 = 1 plane reflecting the polyhedral complexR. The lines correspond to the
set of hyperplanes H0

1 , . . . ,H
0
5 . The different shaded chambers correspond to different activation

regions. Each chamber can be thought of as the base of cone whose apex is the origin. Right: The
zonotope Z for this dataset. The corresponding activation region for a vertex is indicated by the
colored circles. Note how the edges and faces of Z capture the incidence structure of the activation
regions. Each of the red lines is a translation of a (homogenized) training example. Exactly these 3
training examples are active in the yellow activation region.

collection of oriented hyperplanes associated to each training example {x̄i}Ni=1 is known as an
oriented hyperplane arrangement (Richter-Gebert & Ziegler, 2017).

Algorithm 1 Exact ERM (Arora et al., 2016)
Input: data D = {xi, yi}Ni=1, 2nd layer v ∈ Rm+1

A ⊆ {0, 1}m×N {feasible activation patterns (2)}
W ∗ ∈ Rm×(d+1) {random initialization}
for A ∈ A do
W ← solution of (3)
if L(W̃ ) < L(W ∗) then

W ∗ ←W
end if

end for
return W ∗

The structure imposed on parameter space
Rd+1 by this oriented hyperplane arrange-
ment can be described as a polyhedral com-
plex (Ziegler, 2012), which is a collection
of polyhedral sets and their faces that fit
together in a “nice” way. The polyhedral
complexR induced by the training set will
contain codimension 0 sets called cham-
bers. These correspond exactly to acti-
vation regions. Activation patterns have
a one-to-one correspondence with the tu-
ple of hyperplane orientations associated
to each chamber. The center panel of fig. 1
provides an illustration of R for an exam-
ple dataset.

The dual zonotope of a polyhedral complex
is a single polytope providing an alternate representation of its combinatorial structure (Ziegler, 2012).
Each dimension k member of the polyhedral complex has a corresponding codimension k face in
the dual zonotope. Incidence relations between the members of the complex are preserved in the
dual zonotope. Generally, a zonotope can be described as the image of an N -dimensional hypercube
under a linear map whose columns are known as its generators (McMullen, 1971). Each vertex of the
zonotope thus is a weighted sum of its generators with coefficients belonging to {0, 1}.
The dual zonotopeZ of our polyhedral complexR has the training examples {x̄i}Ni=1 as its generators.
The vertices of Z have a one-to-one correspondence to the activation regions of our network. When a
vertex is expressed as a weighted sum over the generators, the coefficient {0, 1} of each generator
equals its corresponding example’s value in the region’s activation pattern. The right panel of fig. 1
shows an example zonotope Z and its duality with the polyhedral complexR.

These correspondences allow us to assign additional structure to the set of activation patternsA rather
than just treating it as an unstructured set. For example, the 1-skeleton of the zonotope Z , which is the
graph formed by its vertices and edges, provides a means of traversing the set of activation patterns.
Furthermore, we can directly make connections between the training dataset and the activation pattern
structure by making use of the fact that Z is generated by the training examples.

Multiple Hidden Units In the multiple hidden unit setting, i.e. m > 1, note that parameter space
becomes an m-fold Cartesian product of single-unit parameter spaces. Furthermore, we are free to
set the activation pattern for each unit independently of the others. As the combinatorial structure for
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each hidden unit can be described using the zonotope Z , the combinatorial structure for a multiple
hidden unit network is described by the m-fold Cartesian product Zm =

∏m
i=1Z . As noted in

appendix A.3.1, Zm is also a zonotope. Each vertex of Zm corresponds to a product of m vertices of
Z . As in the single unit case, there is a one-to-one correspondence between the vertices of Zm and
the set of activation patterns A.

4 ReLU Optimization

4.1 NP-Hardness

Given the additional structure we have imposed on the set of activation patterns in algorithm 1,
it is natural to ask whether we can use it to develop a global optimization algorithm that is more
efficient than a brute-force search over activation patterns. Unfortunately, several works (Goel et al.,
2020; Froese et al., 2021) have demonstrated that global optimization of a shallow ReLU network is
NP-hard. Nevertheless, this does not preclude the existence of an efficient combinatorial optimizer
given certain conditions on the input dataset. Since the zonotope Zm encapsulates the combinatorial
structure of the optimization problem, we look to see if properties of Zm can be related to the
difficulty of combinatorial optimization.

Nontrivial affine dependencies between training examples influence the combinatorial structure of
the Zm. Since the reductions of NP-hard problems to ReLU optimization done in Goel et al. (2020);
Froese et al. (2021) create datasets with such nontrivial dependencies, it is natural to ask whether it is
NP-hard to optimize a shallow ReLU network over a training dataset in general position.

4.1.1 Discontinuity of the Global Optimum

If the global minimum of the loss is always continuous with respect to the input dataset, then the
NP-hardness of optimization over arbitrary datasets in general position would follow from continuity
since every set of points is arbitrarily close to a set in general position. However, we can prove that
such continuity holds unconditionally for ReLU optimization only in the case where the training
dataset is in general position. We give a sketch of the proof here along with some analysis of the
failure cases that can happen when the data are not in general positions. We provide a full proof in
appendix C.
Theorem 4.1. Suppose we are given a dataset D = {(xi, yi)}Ni=1 in general position and some
m ∈ N. Let L∗(D) denote the global minimum of the loss (1) over the dataset D for a shallow ReLU
network with m units. Given any ϵ > 0, some δ > 0 exists such |L∗(D) − L∗(Dϵ)| < δ for any
dataset Dϵ = {(x′

i, yi)}Ni=1 satisfying ∥xi − x′
i∥2 ≤ ϵ.

Proof sketch. For a small enough perturbation, we can prove that the datasets’ zonotopes are combi-
natorially equivalent. Hence their sets of feasible activation patterns will be exactly the same. Using
the fact that any subset of a set in general position is also in general position, we can then show that
the constrained convex optimization problem associated with each vertex is continuous with respect
to the input dataset. Since the global minimum of the loss is just the minimum of the optimal loss for
each vertex, its continuity follows from the fact that the composition of two continuous functions is
continuous.

When the dataset D is not in general position, there are two possible ways in which breaking of
nontrivial affine dependencies between examples can cause the global minimum of the loss to become
discontinuous. The first is that the globally optimal vertex in the perturbed zonotope exists in the
original zonotope, but its associated constrained convex optimization problem is discontinuous with
respect to the dataset. This can happen when there are nontrivial affine dependencies that get broken
amongst the active examples in the vertex. The second way is that the globally optimal vertex of the
perturbed zonotope does not exist in the original zonotope. Geometrically, we can think of such a
vertex as resulting from the breakdown of a non-parallelepiped higher dimension face (Gover, 2014).
See appendix D for examples of these phenomena.

Analysis of Reductions We can use this characterization of the instabilities of the global optimum
to perturbations in the training data to analyze the reductions of NP-hard problems used in Goel
et al. (2020). We focus on the reduction of the NP-hard set cover problem to the optimization of
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Figure 2: Comparison between gradient descent and optimization with a fixed random activation
pattern. Left: Results for MSE on synthetic data for d = 8 and mgen = 8. The overparameterization
factor times mgen equals the number of units in the trained network. Right: Results for accuracy on
Fashion MNIST coat/pullover binary classification for d = 16 and N = 700.

a single bias-free ReLU. In appendix E.2, we provide an explicit example of an arbitrarily small
perturbation that results in the global minimum of the loss being independent of the solution to the
set cover problem.

To the best of our knowledge, existing reductions of NP-hard problems to ReLU optimization all
create datasets that are not in general position (Goel et al., 2020; Froese et al., 2021). Therefore,
we present a modification of the set cover reduction that produces a dataset in general position. See
appendix E.3 for details of this modification along with a proof that it is indeed a reduction of the set
cover problem. We thus have the following statement.
Theorem 4.2. Optimizing a ReLU is NP-hard even when restricted to datasets in general position.

4.2 Polynomial Time Optimization via Overparameterization

Even though ReLU network optimization is NP-hard in general, it can be shown that overparame-
terization allows for gradient descent to converge to the global minimum in polynomial time (Du
et al., 2018; Zou & Gu, 2019; Oymak & Soltanolkotabi, 2020; Allen-Zhu et al., 2019). This is not a
contradiction since optimization of overparameterized ReLU networks is a strict subset of the set of
all ReLU optimization problems.

The general proof method of these works usually involves demonstrating that overparameterization
results in activation patterns not changing much throughout training. This allows gradient descent
to effectively bypass the combinatorial search of the outer loop in algorithm 1. The remaining
optimization problem can then be shown to be similar to the constrained convex optimization problem
(3) by assuming that the second layer is frozen. Using the zonotope formalism, we can interpret
these results as saying that a sufficiently large number of hidden units m guarantees with high
probability that a randomly chosen vertex corresponds to a region of parameter space containing a
global minimum of the loss. Parameter initialization selects the random vertex in practice.

This can be justified theoretically through a connection to random feature models. Here we assume
that the first layer is frozen, and the second layer forms a linear model over the random first layer
features. As the number of units m increases past the number of training examples N , the set of first
layer activations can become linearly independent. The probability of this approaches 1 as m→∞.
Whether all of the parameters within an activation region produce linearly dependent activations can
be shown to depend solely on its activation pattern when the dataset is in general position.

To test this, we ran experiments comparing batch gradient descent to solving (3) for a randomly chosen
vertex on some toy datasets. We created synthetic datasets by first choosing the input dimension d
and a positive integer mgen. To get the training examples, we sampled N = (d+ 1)mgen points in
Rd i.i.d. from the standard Gaussian distribution. We then sampled the weights of a shallow ReLU
network with mgen units i.i.d. from the standard Gaussian distribution. We used this network to create
the labels for our synthetic dataset. See appendix H.1.1 for details on the data generation process.

We also created toy binary classification datasets from MNIST (LeCun et al., 2010) and Fashion
MNIST (Xiao et al., 2017) by choosing two classes, 5/9 and coat/pullover, respectively, to differentiate.
We used the first d ∈ {8, 16} components of the PCA whitened data and selected N ∈ {350, 700}
examples for our training sets. See appendix H.2 for details.

We present some of our results in fig. 2. See appendix H for details of the training procedures and
for results on more d,mgen and d,N pairs. On synthetic data, we see that the random vertex method
finds a good solution for overparameterization factors of 4 and up. However, gradient descent tends
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to arrive at reasonably good solutions for lower levels of overparameterization while the random
vertex method fails. This was a general trend that we observed across different d,mgen pairs on the
synthetic datasets and d,N pairs on the binary classification datasets. Note that the Fashion MNIST
networks represented in fig. 2 were relatively underparameterized with the maximal size of 64 units
being overparameterized by only a factor of about 1.5.

This demonstrates that gradient descent can perform some aspects of the combinatorial search over
zonotope vertices. We hypothesize that the gradient tends to be smaller within activation regions
with a good optimum and thus gradient descent is more likely to stay within a good activation region.
Conversely, the larger gradients within activation regions with poor optima make it more likely
that a gradient descent step will move the parameters out of those regions. We can thus think of
gradient descent as performing a pseudo-annealing process over the vertices of the zonotope since
the likelihood of moving from one vertex to another decreases as the parameters settle into better
activation regions.

4.2.1 Tighter Bounds

We now introduce a novel vertex selection scheme that runs in polynomial time and requires minimal
overparameterization. Suppose D = {(xi, yi)}Ni=1 is a dataset in general position. Assume that the
examples are ordered by the value of their last coordinate, which we suppose is unique WLOG (i.e.
eTd xi < eTd xj for i < j). If not provided in this format, this can be accomplished in O(N logN)

time. We now split the dataset into ⌈ N
d+1⌉ chunks containing at most d+ 1 examples. We write each

chunk as Dk = {(xi, yi)}min(N,k(d+1))
i=(k−1)(d+1)+1. Since each Dk contains a contiguous chunk of examples

sorted along an axis in coordinate space, we see that we can always find a hyperplane separating Dk

and Dk′ for k ̸= k′. For each k = 1, . . . , ⌈ N
d+1⌉, we add two units to our ReLU network and assign

them the activation pattern of 0 for examples belong to a Dk′ with k′ < k and 1 for the remaining
examples. One of the units will be multiplied by +1 in the second layer while the other will be
multiplied by -1. Hence the network contains a total of 2⌈ N

d+1⌉ hidden units. We prove in appendix F
that a set of weights with that activation pattern exists such that the output of the network on training
examples exactly matches their labels. The key idea in the proof is that we can sequentially fit the
examples in the k-th chunk without undoing our progress in fitting the chunks before it.

Theorem 4.3. Given a dataset in Rd containing N examples in general position, a shallow ReLU
network containing 2⌈ N

d+1⌉ hidden units can be found in polynomial time exactly fitting the dataset.

To the best of our knowledge, this is the tightest known bound on the amount of overparameterization
needed to find the global optimum of a ReLU network in polynomial time. A simple argument
comparing the number of unknowns and the number of equations demonstrates that we need at least
N

d+1 hidden units to exactly fit an arbitrary dataset with a shallow ReLU network. Hence our method
uses only about twice as many hidden units as is necessary to fit the data. However, we emphasize
that this ReLU optimization scheme is primarily of theoretical interest since we find in practice that
the resulting ReLU network tends to be a very ill-conditioned function.

4.3 Relevance to Optimization in Practice

Practically all optimization of ReLU networks in practice uses some variant of gradient descent with
an overparameterized network. As the degree of overparameterization goes down, gradient descent
begins to arrive at increasingly suboptimal solutions (Nakkiran et al., 2021).

In section 4.2, we hypothesized how gradient descent can find activation regions containing good
optima. However, the gradient of the loss is inherently a local property in parameter space while
the space’s decomposition into activation regions is inherently global. Boundaries between regions
correspond to discontinuities in the gradient of the loss. We hypothesize that these properties lead
to little direct information about the optimization problem being used to inform gradient descent’s
traversal over zonotope vertices. Hence we suspect that algorithms that explicitly traverse zonotope
vertices using some loss-based criteria can outperform gradient descent in the underparameterized- to
mildly-overparameterized regimes.

7



Algorithm 2 Greedy Local Search (GLS)
Heuristic

Input: data D = {xi, yi}Ni=1, 2nd layer
v ∈ Rm+1, max steps T ∈ N
A0 ∈ vert(Zm)
for t ∈ {0, . . . , T} do
At+1 ← At

for A′ ∈ neighbors(At) do
if L∗(A′;D) < L∗(At+1;D) then
At+1 ← A′

end if
end for
if At+1 = At then

return At

end if
end for
return AT

Figure 3: Comparison between gradient descent
and our GLS heuristics. Top: Results for MSE on
synthetic data for d = 4 and mgen = 2. The overpa-
rameterization factor times mgen equals the number
of units in the trained network. Bottom: Results
for accuracy on Fashion MNIST coat/pullover bi-
nary classification for d = 8 and N = 350.

4.3.1 Difficulty of Combinatorial Search

Unless P = NP , we are unlikely to find an efficient algorithm to perform the combinatorial search
in algorithm 1 for arbitrary datasets (Goel et al., 2020). However, this does not preclude the existence
of heuristics that tend to work well on problems encountered in practice. We investigated this by
using a greedy local search (GLS) over the graph formed by the zonotope’s 1-skeleton. We start by
selecting a vertex at random and find its corresponding optimal loss by solving a convex program.
We iterate over its neighboring vertices and compute their optimal losses as well. We then move to
the neighboring vertex with the lowest loss and repeat the process until we arrive at a vertex with
lower loss than its neighbors. We then take that vertex’s optimal parameters as our approximation to
the global minimization problem. This algorithm is defined in detail in algorithm 2.

We also experimented with some additional heuristics that help the GLS converge faster by reducing
the number of convex problems solved at each step. For example, we can greedily move to the first
neighboring vertex encountered with a lower loss, which significantly decreases the time per step
in the early stages of training. We can further improve this by using geometric information about a
solution’s relative location in its activation region to try certain vertices first. We call the algorithm
with these heuristics modified greedy local search (mGLS) and define it in detail in appendix G.

Note that these heuristics are not guaranteed to return a global minimizer of the loss. Furthermore,
there are an exponential number of vertices in the zonotope, so there are no immediate guarantees
of them taking less than exponential time to run. However, each step takes polynomial time since
each vertex has O(mN) neighbors, so each step solves a polynomial number of convex optimization
problems.

We ran experiments comparing these heuristics to gradient descent on toy datasets generated in the
same way as in section 4.2. We used GLS on the synthetic data and mGLS on the MNIST and
Fashion MNIST derived data. We present some of our results in fig. 3. See appendix H for details of
the training procedures and for results for more values of d,mgen and d,N pairs. On synthetic data,
the GLS heuristics significantly outperformed gradient descent. On binary classification tasks, mGLS
outperformed gradient descent for networks with moderate levels of underparameterization and
performed similarly otherwise. We observed a similar trend across the rest of the d,mgen and d,N
pairs. These results support our hypothesis that gradient descent is suboptimal in the combinatorial
search over activation patterns. Furthermore, they suggest that this combinatorial optimization might
tend to be tractable in practice.
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5 Related Work

Some of the concepts in this work also arise in Zhang et al. (2018). A key difference is that they
analyze the activation regions in input space given a ReLU network with fixed parameters. We can, in
fact, use their tropical geometric approach to derive our zonotope formalism for a single ReLU unit.
To do so, the roles of the weights and data must be swapped; we instead use a fixed data matrix and
varying vector of weights while they use a fixed weight matrix and varying vector of data. Our use of
a zonotope generated by the training examples, however, is novel. Misiakos et al. (2021) show that
the approximation error between two shallow ReLU networks depends on the the Hausdorff distance
between the zonotopes generated by the each network’s units. Bach (2017) also use a Hausdorff
distance between zonotopes in the context of neural network optimization.

Goel et al. (2020) provide proofs of the NP-hardness of optimization of shallow ReLU networks
and the hardness of even finding an approximate solution. Froese et al. (2021) extend these results
and show that the brute force search in Arora et al. (2016) cannot be avoided in the worst case. Du
et al. (2018) was one of the first works to prove that overparameterization in shallow ReLU networks
allows gradient descent to converge to a global optimum in polynomial time. Their bound of Ω(N6)
on the number of hidden units needed for convergence was improved upon by subsequent work (Ji &
Telgarsky, 2019; Daniely, 2019). For example, Oymak & Soltanolkotabi (2020) proved a bound of
Ω(N2/d).

Pilanci & Ergen (2020) and Wang et al. (2021) represent global optimization of shallow ReLU
networks with ℓ2 regularization using a convex optimization problem that operates simultaneously
over all activation patterns for a single unit. Multiple units are handled by summing over the
activations with different activation patterns. This leads to exponential complexity in the data
dimension d but avoids exponential complexity in the number of units m. Dey et al. (2020) provide
an example of a heuristic algorithm that searches over activation patterns for a single ReLU unit.
Their algorithm operates on the principle that examples with large positive labels are more likely to
belong to the active set in good solutions.

6 Conclusion

We introduced a novel characterization of the combinatorial structure of activation patterns implicit
in the optimization of shallow ReLU networks. We showed that it can be described as a Cartesian
product of zonotopes generated by the training examples. We used this zonotope formalism to
explore aspects of the optimization of shallow ReLU networks. It provides a natural way to describe
instabilities of the global minimum to perturbations of the dataset. We then related this to work on
the NP-hardness of global ReLU optimization. In particular, we demonstrated that this optimization
problem is still NP-hard even when restricted to datasets in general position, which is commonly
assumed of data in practice.

We then explored how combinatorial considerations play into the relationship between overparame-
terization and polynomial-time optimization of shallow ReLU networks. Namely we interpret known
results for gradient descent as stating that a randomly chosen zonotope vertex will be close to one
whose activation region contains a good local optimum. We then provide empirical evidence that
sufficient overparameterization makes it highly likely that a randomly chosen vertex has a good local
optimum. We also provide a polynomial-time algorithm that can find a vertex containing the global
optimum using approximately twice the minimum number of hidden units needed to fit the dataset
exactly. Finally, we provide a GLS heuristic over zonotope vertices that outperforms gradient descent
on some toy problems.

In future work we plan to theoretically and empirically explore heuristics and algorithms that perform
well on real-world datasets. We hope to analyze how vertex choice impacts generalization. Further
insights might be derived by exploring the connections of hyperplane arrangements to tropical
geometry and oriented matroids (Stanley et al., 2004; Oxley, 2006; Maclagan & Sturmfels, 2015).
One caveat of our theory is that it applies to only a shallow ReLU network. However, the concepts of
activation patterns are still meaningful for deep ReLU networks but require real algebraic geometry
for analysis (Basu, 2014; Bochnak et al., 2013). We hope that further research along these avenues
will deepen our understanding of neural network training and enable improvements to training in
practice.
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