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Abstract

We study a class of generalized linear programs (GLP) in a large-scale setting,
which includes a simple, possibly nonsmooth convex regularizer and simple convex
set constraints. By reformulating (GLP) as an equivalent convex-concave min-max
problem, we show that the linear structure in the problem can be used to design
an efficient, scalable first-order algorithm, to which we give the name Coordinate
Linear Variance Reduction (CLVR; pronounced “clever”). CLVR yields improved
complexity results for (GLP) that depend on the max row norm of the linear
constraint matrix in (GLP) rather than the spectral norm. When the regularization
terms and constraints are separable, CLVR admits an efficient lazy update strategy
that makes its complexity bounds scale with the number of nonzero elements of
the linear constraint matrix in (GLP) rather than the matrix dimensions. Further,
for the special case of linear programs and by exploiting sharpness, we propose
a restart scheme for CLVR to obtain empirical linear convergence. Finally, we
show that Distributionally Robust Optimization (DRO) problems with ambiguity
sets based on both f -divergence and Wasserstein metrics can be reformulated as
(GLPs) by introducing sparsely connected auxiliary variables. We complement
our theoretical guarantees with numerical experiments that verify our algorithm’s
practical effectiveness in terms of wall-clock time and number of data passes.

1 Introduction

We study the following generalized linear program (GLP):

min
x

{
cTx+ r(x) : Ax = b, x ∈ X

}
, (GLP)

where x, c ∈ Rd,A ∈ Rn×d, b ∈ Rn, r : Rd → R is a convex regularizer, and X ⊆ Rd is a closed
convex set, such that a proximal/projection operator involving r and X can be computed efficiently.
When X is the nonnegative orthant {x : xi ≥ 0, i ∈ [d]} and r ≡ 0, (GLP) reduces to the standard
form of a linear program (LP). When X is a convex cone and r ≡ 0, (GLP) reduces to a conic linear
program. (GLP) is an important paradigm in traditional engineering disciplines such as transportation,
energy, telecommunications, and manufacturing. In modern data science, we note the renaissance of
(GLP) due to its modeling power in such areas as reinforcement learning [19], optimal transport [57],
and neural network verification [39]. For traditional engineering disciplines with moderate scale or
exploitable sparsity, off-the-shelf interior point methods that form and factorize matrices in each
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iteration are often good choices as practical solvers [26]. In data science applications, however, where
the data are often dense or of extreme scale, the amount of computation and/or memory required
by matrix factorization is prohibitive. Thus, first-order methods that avoid matrix factorizations are
potentially appealing options. In this context, because the presence of the linear equality constraint
in (GLP) may complicate projection operations onto the feasible set, we consider an equivalent
reformulation of (GLP) as a min-max problem involving the Lagrangian:

min
x∈X⊂Rd

max
y∈Rn

{
L(x,y) := cTx+ r(x) + yTAx− yT b

}
. (PD-GLP)

In data science applications, both n and d can be very large. (PD-GLP) can be viewed as a structured
bilinearly coupled min-max problem, where the linearity of L(x,y) in the dual variable vector y is
vital to our algorithmic development.

1.1 Background

While there have been few papers that directly address (PD-GLP) — some special cases have been
considered in [14, 25, 41–43, 60, 62, 63] — there has been significant recent work on first-order
methods for general bilinearly coupled convex-concave min-max problems. Deterministic first-
order methods include the proximal point method (PPM) [51], the extragradient/mirror-prox method
(EGM) [34, 45], the primal-dual hybrid gradient (PDHG) method [15], and the alternating direction
method of multipliers (ADMM) [20]. All these methods have per-iteration cost Θ(nnz(A)) and
convergence rate 1/k, where nnz(A) denotes the number of nonzero elements of A and k is the
number of iterations.

For better scalability, stochastic counterparts of these methods have been proposed. [11, 33, 47, 49]
have used “vanilla” stochastic gradients to replace the full gradients of their deterministic counterparts.
[2, 13, 27] have exploited the finite-sum structure of the interaction term 〈y,Ax〉 involving both
primal and dual variables to perform variance reduction. With a separability assumption for the dual
variables, [3] and [16] have combined incremental coordinate approaches on the dual variables with an
implicit variance reduction strategy on the primal variables. Recently, under a separability assumption
for dual variables, [55] proposed a new incremental coordinate method with an initialization step that
requires a single access to the full data. This approach, known as variance reduction via primal-dual
accelerated dual averaging (VRPDA2), obtains the first theoretical bounds that are better than their
deterministic counterparts in the class of incremental coordinate approaches. The VRPDA2 algorithm
serves as the main motivation for our approach.

It is of particular interest to design algorithms that scale with the number of nonzero elements in
A for at least two reasons: (i) the data matrix can be sparse; and (ii) when we consider simplified
reformulations of certain complicated models, we often need to introduce sparsely connected auxiliary
variables. Nevertheless, the randomized coordinate algorithms of [3, 16, 55] have O(d) per-iteration
cost regardless of the sparsity ofA. To address this issue, [24, 35] have proposed incremental primal-
dual coordinate methods with per-iteration cost that scales with the number of nonzero elements in
the row ofA used in each iteration, at the price of needing to take a smaller step than for denseA.
Moreover, [5] has proposed a random extrapolation approach that admits both low per-iteration cost
and larger step size. Despite these developments, all these algorithms produce less accurate iterates
than the methods with O(d) per-iteration cost, thus degrading their worst-case complexity. 2

Finally, for the special case of LP, based on the positive Hoffman constant [30], [10] proved that
the primal-dual formulation of LP exhibits a sharpness property that lower-bounds the growth of a
normalized primal-dual gap from the same work. Leveraging this sharpness property, [10] proposed a
restart scheme for the deterministic first-order methods discussed above to obtain linear convergence.
[9] further extended this restart strategy using various heuristics to improve practical performance.

1.2 Motivation

We sharpen the focus from general bilinearly coupled convex-concave min-max problems to (GLP)
and its primal-dual formulation (PD-GLP), because many complicated models can be reformulated as
(GLP) and because this formulation possesses additional structure that can be exploited in algorithm

2Subsequent to this paper, a version of the PURE-CD algorithm of [5] that exploits sparsity in A was
developed and analyzed in [6].
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design. Our motivation for focusing on (GLP) is to bridge the large gap between the well-studied
stochastic variance reduced first-order methods [7, 32, 54, 55] and the increasingly popular and
complicated, yet highly structured large-scale problems arising in distributionally robust optimization
(DRO) [21–23, 31, 38, 44, 52, 58, 61]; see also a recent survey by [50] and references therein.

For DRO problems with ambiguity sets defined by f -divergence [31, 37, 44], the original formulation
is a nonbilinearly coupled convex-concave min-max problem. Even the well constructed reformulation
in [37] does not admit unbiased stochastic gradients, leading to complicated algorithms and analysis.
For DRO problems with ambiguity sets defined by Wasserstein metric [23, 29, 38, 52, 61], the original
formulation is in general infinite-dimensional. (Finite-dimensional reformulations [23, 52] exist for
special cases of logistic regression and smooth convex losses.) Solvers that have been proposed for
DRO with Wasserstein metric are either multiple-loop deterministic ADMM [38] or are designed for
general convex-concave problems [61].

By introducing auxiliary variables with sparse connections,3 we show that DRO with ambiguity
sets based on both f -divergence and the Wasserstein metric can be reformulated as (GLP). Thus,
complicated DRO problems can be addressed by a simple, efficient, and scalable algorithm for (GLP).
Our algorithm for solving (GLP) and the proposed reformulations of DRO are our main contributions.

1.3 Contributions

Algorithm. Motivated by VRPDA2 [55], we propose a simple, efficient, and scalable algorithm
for (PD-GLP). Our algorithm combines an incremental coordinate method with exploitation of the
linear structure for the dual variables in (PD-GLP) and the implicit variance reduction effect in
the algorithm, so we name it coordinate linear variance reduction (CLVR, pronounced “clever”).
CLVR is inspired by VRPDA2 but customized to the particular structure of (PD-GLP). In particular,
by exploiting the fact that the max problem is linear and unconstrained in the dual variable vector
y ∈ Rn, we find that the expensive initialization step used in VRPDA2 is not needed and we can
take simpler and larger steps. Further, in the structured case in which A is sparse and the convex
constraint set X and the regularizer r(x) are fully separable4, we show that the dual averaging update
in CLVR enables us to design an efficient lazy update strategy for which the per-iteration cost of
CLVR scales with the number of nonzero elements of the selected row fromA in each iteration, which
is potentially much lower than the order-d cost in VRPDA2. Finally, CLVR uses extrapolation on
dual variables rather than on primal variables considered in VRPDA2, which significantly reduces
implementation complexity of our lazy update strategy for structured variants of (PD-GLP). On
the technical side, although both CLVR and VRPDA2 are randomized algorithms that bound the
primal-dual gap in expectation, the guarantee provided by CLVR is stronger as it allows bounding the
expectation of the supremum gap as opposed to the supremum of expected gap in VRPDA2.

To state our complexity results, we make the following scaling assumption.

Assumption 1. L := ‖A‖ and each row ofA in (GLP) is normalized with Euclidean norm R.

Preprocessing in modern LP solvers [26] often ensures normalized rows/columns for the data matrix.
Observe that R ≤ L ≤

√
nR, the upper bound being achieved when all elements ofA have identical

value. Although the latter case is extreme, there exist ill-conditioned practical datasets where we
can expect significant performance gains if the complexity can be reduced from O(L) to O(R). (We
provide empirical comparison between the values of L and R in practical problems in Section 5.)

In Table 1, we give the overall complexity bounds (total number of arithmetic operations) and the
per-iteration cost of a representative set of existing algorithms, including our CLVR algorithm, for
solving a structured form of (PD-GLP) in which the set X and the function r have separable structure:
X = X1 × · · · × Xd with Xi ∈ R (i ∈ [d]) and r(x) :=

∑d
i=1 r(x

i). To make the complexity results
comparable, we assume further that for the stochastic algorithms [2, 16, 55] and our CLVR algorithm,
we draw one row ofA per iteration uniformly at random. The general convex setting corresponds
to r(x) being general convex (σ = 0), while the strongly convex setting corresponds to r(x) being
σ-strongly convex (σ > 0).

3“Sparse connections” here means that even though the newly introduced variables may substantially increase
the problem dimensions, the number of nonzero entries in the constraint matrix remains of the same order.

4We state the results here for the fully separable setting for convenience of comparison; however, our results
are also applicable to the block separable setting.
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Table 1: Overall complexity and per-iteration cost for solving structured (PD-GLP). (“—”
indicates that the corresponding result does not exist or is unknown.)

Algorithm General Convex Strongly Convex Per-Iteration
(Primal-Dual Gap) (Distance to Solution) Cost

PDHG
O
(nnz(A)L

ε

)
O
( (nnz(A)+n+d)L

σ
√
ε

)
O(nnz(A))CP(2011)

SPDHG
O
(
ndL
ε

)
O
(
ndL
σ
√
ε

)
O(d)CERS(2018)

EVR
O
(
nnz(A) +

√
nnz(A)(n+d)nR

ε

) — O(n+ d)AM (2022)
VRPDA2

O(nd logmin{ 1
ε
, n}+ ndR

ε
) O(nd logmin{ 1

ε
, n}+ ndR

σ
√
ε
) O(d)SWD(2021)

CLVR
O(nnz(A)R

ε
) O(nnz(A)R

σ
√
ε

) O(nnz(row(A)))(This Paper)

As shown in Table 1, all the algorithms have optimal dependence on ε [48], while the dependence
on the ambient dimensions n, d, the number of nonzero elements ofA (nnz(A)), and the constants
L and R are quite different. For both the general convex and strongly convex settings and among
coordinate-type methods, CLVR is the first algorithm that reduces the runtime dependence on the
input matrix size from nd to nnz(A). Moreover, the complexity of CLVR depends on the max row
norm R rather than the spectral norm L, and the per-iteration cost of CLVR depends only on the
nonzero elements of the selected row fromA in each iteration, which can be far less than d.

By exploiting the linear structure again, we provide explicit guarantees for both the objective value
and the constraint satisfaction of (GLP). Further, the analysis of CLVR applies to the more general
block-coordinate update setting, which is better suited to modern parallel computing platforms.
Finally, following the restart strategy based on the normalized duality gap for LP introduced in
[10], we propose a more straightforward strategy to restart our CLVR algorithm (as well as other
iterative algorithms for (PD-GLP)): Restart the algorithm every time a widely known metric for LP
optimality [8] halves. Compared with the normalized duality gap, the LPMetric can be computed
more efficiently and in a more straightforward fashion.

DRO reformulations. When the loss function is convex, DRO problems with ambiguity sets based
on f -divergence [44] or Wasserstein metric [23] are convex. However, because both problems either
have complicated constraints or are infinite-dimensional, vanilla first-order methods are inapplicable.

For DRO with f -divergence, we show that by using convex conjugates and introducing auxiliary
variables, the problem can be reformulated as a (GLP). As a result, the issue of biased stochastic
gradients encountered in [37] does not arise, and CLVR can be applied. Even though the resulting
problem has larger dimensions, due to the sparseness of the introduced auxiliary variables and the
lazy update strategy of CLVR, it can be solved with complexity scaling only with the number of
nonzero elements of the data matrix. Due to being cast as a (GLP), the DRO problem can be solved
with O(1/ε) iteration complexity with CLVR, while existing methods such as [37] have O(1/ε2)
iteration complexity, with higher iteration cost because of the batch of samples needed to reduce bias.
This improvement is enabled in part by considering the primal-dual gap (rather than the primal gap
considered in [37]) and by allowing the constraints to be approximately satisfied (see Corollary 1).

For DRO with Wasserstein metric, following the reformulation of [52, Theorem 1], we show further
that the problem can be cast in the form of (GLP). Compared with the existing reformulations [23, 38,
52, 61], our reformulation can handle both smooth and nonsmooth convex loss functions. In fact, our
reformulation can provide a more compact form for nonsmooth piecewise-linear convex loss functions
(such as hinge loss). Moreover, compared with algorithms customized to this problem [38] and
extragradient methods [34, 45, 61] for general convex-concave min-max problems, our CLVR method
attains the best-known iteration complexity and per-iteration cost, as shown in Table 1.

2 Notation and preliminaries

For any positive integer p, we use [p] to denote {1, 2, . . . , p}. We assume that there is a given partition
of the set [n] into sets Sj , j ∈ [m],where |Sj | = nj > 0 and

∑m
j=1 n

j = n. For j ∈ [m], we useASj
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to denote the submatrix ofA with rows indexed by Sj and yS
j

to denote the subvector of y indexed
by Sj . We use 0d and 1d to denote the vectors with all ones and all zeros in d dimensions, respectively.
Unless otherwise specified, we use ‖·‖ to denote the Euclidean norm for vectors and the spectral norm
for matrices. For a given proper convex lower semi-continuous function f : R→ R ∪ {+∞}, we
define the convex conjugate in the standard way as f∗(y) = supx∈R{yx− f(x)} (so that f∗∗ = f).
For a vector u, the inequality u ≥ 0 is applied entry-wise. For a convex function r(x), we use r′(x)
to denote an element of the subdifferential set ∂r(x). The proximal operator of r(x) over X is

proxr(x̂) = arg min
x∈X

{1

2
‖x− x̂‖2 + r(x)

}
. (1)

Further, we make the following assumptions, which apply throughout the convergence analysis.
Assumption 2. (PD-GLP) attains at least one primal-dual solution (x∗,y∗). W∗ denotes the set of
all primal-dual solutions.

Due to the convex-concave property of (PD-GLP),W∗ is a convex set in X × Rn.
Assumption 3. L̂ = maxj∈[m] ‖ASj‖ is given at the input, where ‖ASj‖ = max‖x‖≤1 ‖ASjx‖.

Note that L̂ can be obtained either via preprocessing of the data or by parameter tuning. By combining
Assumptions 1 and 3, it follows that R ≤ L̂ ≤

√
maxj∈[m] |Sj |R.

Assumption 4. r(x) is σ-strongly convex (σ ≥ 0); that is, for all x1 and x2 in X and all r′(x2) ∈
∂r(x2), we have r(x1) ≥ r(x2) + 〈r′(x2),x1 − x2〉+ σ

2 ‖x1 − x2‖2.

For convex-concave min-max problems, a common metric for measuring solution quality is the
primal-dual gap, which, for a feasible solution (x,y) of (PD-GLP), is defined by

sup
(u,v)∈X×Rn

{L(x,v)− L(u,y)}. (2)

However, as the domain of v is unbounded, the primal-dual gap can be infinite, which makes it a
poor metric for measuring the progress of algorithms. As a result, for measuring the progress of our
algorithm, we consider the following restricted primal-dual gap instead:

sup
(u,v)∈W

{L(x,v)− L(u,y)}, (3)

where W ⊂ X × Rn is a compact (i.e., closed and bounded) convex set. The use of a restricted
version of primal-dual gap is standard in the existing literature; see, e.g., [15, 46].

3 The CLVR algorithm

3.1 Algorithm and analysis for general formulation

Algorithm 1 specifies CLVR for (PD-GLP) in the general setting. The algorithm alternates the full
update for xk in Step 4 (O(d) cost) with an incremental block coordinate update for yk in Steps 5 and
6 (with O(|Sjk |d) cost for denseA). The auxiliary variables zk and qk accumulate the cancellation
terms in the estimation sequence and give a pathway to a straightforward development of the lazified
CLVR, which appears as Algorithm 2 in the appendix. The cost of updating auxiliary vectors zk and
qk is O(|Sjk |d) and O(d), respectively. In essence, CLVR is a primal-dual coordinate method that
uses a dual averaging update for xk, then updates the state variables {qk} by a linear recursion, and
computes xk from qk−1 via a proximal step without direct dependence on xk−1. The output x̃K
is a convex combination of the iterates {xk}Kk=1, as is standard for primal-dual methods. However,
ỹK is only an affine (not convex) combination of {yk}Kk=0, as it involves the term −(m − 1)y0

(whose coefficient is negative) and some of the coefficients mak − (m − 1)ak+1 multiplying yk
for k ∈ {1, . . .K − 1} may also be negative. An affine combination still provides valid bounds
because the dual variable vector y appears linearly in (PD-GLP). Moreover, in Step 9, the term
mak(zk − zk−1) serves to cancel certain errors from the randomization of the update w.r.t. yk, thus
playing a key role in implicit variance reduction.

Theorem 1 provides the convergence results for Algorithm 1. The proof is provided in Appendix B.
In the theorem (as in the algorithm), γ is a positive parameter that can be tuned.
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Algorithm 1 Coordinate Linear Variance Reduction (CLVR)

1: Input: x0 ∈ X ,y0 ∈ Rn, z0 = ATy0, γ > 0, L̂ > 0, σ ≥ 0,K,m, {S1, S2, . . . , Sm}.
2: a1 = A1 = 1

2L̂m
, q0 = a1(z0 + c).

3: for k = 1, 2, . . . ,K do
4: xk = prox 1

γAkr
(x0 − 1

γ qk−1).

5: Pick jk uniformly at random in [m].

6: yS
i

k =

{
yS

i

k−1, i 6= jk
yS

i

k−1 + γmak
(
ASixk − bS

i)
, i = jk

.

7: ak+1 =

√
1+σAk/γ

2L̂m
, Ak+1 = Ak + ak+1.

8: zk = zk−1 +ASjk ,T (yS
jk

k − ySjkk−1).

9: qk = qk−1 + ak+1

(
zk + c

)
+mak(zk − zk−1).

10: end for
11: return x̃K = 1

AK

∑K
k=1 akxk, ỹK = 1

AK

∑K
k=1(akyk + (m− 1)ak(yk − yk−1)).

Theorem 1. Let xk, yk, k ∈ [K], be the iterates of Algorithm 1 and let x̃k, ỹk be defined by

x̃k =
1

Ak

k∑
i=1

aixi, ỹk =
1

Ak

k∑
i=1

(aiyi + (m− 1)ai(yi − yi−1)), (4)

for k ∈ [K]. Let Wk ⊂ X × Rn, k ∈ [K], be a sequence of compact convex sets such that
(x̃k, ỹk) ∈ Wk ⊂ W ⊂ X × Rn, whereW is also convex and compact. Then:

E
[

sup
(u,v)∈Wk

{L(x̃k,v)− L(u, ỹk)}
]

≤ 1

Ak

(
E
[γ

2
‖û− x0‖2 +

1

γ
‖v̂ − y0‖2

]
+
γ

2
‖x∗ − x0‖2 +

1

2γ
‖y∗ − y0‖2

)
,

(5)

where (û, v̂) = arg sup(u,v)∈Wk
{L(x̃k,v)− L(u, ỹk)}. Furthermore,

E
[γ + σAk

4
‖xk − x∗‖2 +

1

2γ
‖yk − y∗‖2

]
≤ γ

2
‖x∗ − x0‖2 +

1

2γ
‖y∗ − y0‖2. (6)

Define K0 =
⌈

σ
18L̂mγ

⌉
. Then in the bounds above:

Ak ≥ max

{
k

2L̂m
,

σ

(6L̂m)2γ

(
k −K0 + max

{
3

√
2L̂mγ/σ, 1

})2
}
.

Observe that (û, v̂) in the theorem statement exists because of compactness ofWk and our assump-
tions on r(·). The parameter γ can be tuned to balance the relative weights of primal and dual
initial quantities ‖x∗ − x0‖ and ‖y∗ − y0‖ (or estimates of these quantities), which can significantly
influence practical performance of the method.

In addition to the guarantee on the variational form, due to the linear structure, we also provide explicit
guarantees for both the objective and the constraints in (GLP), stated in the following corollary.
Corollary 1. In Algorithm 1, for all k ≥ 1, x̃k satisfies

E[‖y∗‖ · ‖Ax̃k − b‖] ≤
γ‖x∗ − x0‖2 + 1

2γ ‖y
∗ − y0‖2 + 1

γE[‖v − y0‖2]

Ak
,

|E[(cT x̃k + r(x̃k))− (cTx∗ + r(x∗))]| ≤
γ‖x∗ − x0‖2 + 1

2γ ‖y
∗ − y0‖2 + 1

γE[‖v − y0‖2]

Ak
,

where v = 2 ‖y∗‖
‖Ax̃k−b‖ (Ax̃k − b).

In CLVR, we allow for arbitrary (x0,y0) ∈ X × Rn. Nevertheless, by setting y = 0n, we can
obtain z0 = 0d at no cost — a useful strategy for large-scale problems since it avoids the (potentially
expensive) single matrix-vector multiplication w.r.t.A.
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3.2 Lazy update for sparse and structured (PD-GLP)

In Algorithm 1, direct computation of the iterates (xk,yk) and the output points (x̃k, ỹk) can be
expensive. However, [18] showed that it is possible to only update the averaged vector in the
coordinate block chosen for that iteration. This strategy requires us to record the most recent update
for each coordinate block and update it only when it is selected again, which is tricky and needs to
be implemented carefully. For sparse and block coordinate-separable instances of (PD-GLP), we
show that by introducing auxiliary variables that are sparsely connected, we can significantly simplify
CLVR and make its complexity scale independently of the ambient dimension n · d, instead scaling
with nnz(A). Due to space constraints, we defer technical details, including the lazy version of
CLVR and associated proofs, to Appendix A.

3.3 Restart scheme
We now propose a fixed restart strategy with a fixed number of iterations per each restart epoch and
discuss an adaptive restart strategy for the special case of standard-form LP, which corresponds to
(GLP) with r(x) ≡ 0 and X = {x : xi ≥ 0, i ∈ [d]}. We write

min
x
cTx s. t. Ax = b, x ≥ 0d, (LP)

and the primal-dual form

min
x≥0d

max
y∈Rn

{
L(x,y) = cTx+ yTAx− yT b

}
. (PD-LP)

This problem has a sharpness property that can be used to obtain linear convergence in first-order
methods [10]. For convenience, in the following, we define w = (x,y), ŵ = (x̂, ŷ), w̃ = (x̃, ỹ)
and w∗ = (x∗,y∗). Meanwhile, for γ > 0, we denote the weighted norm ‖w‖(γ) :=√
γ‖x− x∗‖22 + 1

γ ‖y − y∗‖
2
2. Further, we use W∗ to denote the optimal solution set of the LP

and define the distance toW∗ by dist(w,W∗)(γ) = minw∗∈W∗ ‖w−w∗‖(γ). When γ = 1, ‖ · ‖(γ)

is the standard Euclidean norm. Then based on (PD-LP), we can use the following classical LPMetric5

to measure the progress of iterative algorithms for LP:

LPMetric(x,y)

=
√
‖max{−x,0}‖22 + ‖Ax− b‖22 + ‖max{−ATy − c,0}‖22 + |max{cTx+ bTy, 0}|2, (7)

which can be explicitly and directly computed. For the Euclidean case (γ = 1), it is well-known [30]
that there exists a Hoffman constant H1 such that

LPMetric(w) ≥ H1dist(w,W∗)(1). (8)

Using the equivalence of norms in finite dimensions, for general γ > 0, we can conclude that there
exists another constant Hγ (to which we refer as the generalized Hoffman’s constant) such that

LPMetric(w) ≥ Hγdist(w,W∗)(γ). (9)

Using Eq. (9) and Theorem 1, we then obtain the following bounds for distance and LPMetric.

Theorem 2. Consider the CLVR algorithm applied to the standard-form LP problem (PD-LP), with
input w0 and output w̃k. Given γ > 0, define w∗ = arg minw∈W∗ ‖w0 − w‖(γ), and define
C0 = γ + 1/γ + (

√
2 + 1)‖w0 −w∗‖(γ) + ‖w∗‖(γ). Then for Hγ defined as in (9), we have

E
[√

dist(w̃k,W∗)(γ)

]
≤ 5

√
L̂mC0

Hγk

√
dist(w0,W∗)(γ),

E
[√

LPMetric(w̃k)
]
≤ 5

√
L̂mC0

Hγk

√
LPMetric(w0).

5In (PD-LP), we dualize the constraint Ax = b by yT (Ax−b) instead of yT (b−Ax), so in our LPMetric,
there exist a sign difference for y from the more common representation such as the one in [10].
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As a result, by Theorem 2, if we know the values of L̂, ‖w∗‖(γ) andHγ , then by setting k = 100L̂mC0

Hγk
,

we can halve the square root of the distance and the LPMetric in expectation. Thus we can obtain
linear convergence if we restart the CLVR algorithm after a fixed number of iterations. However, the
values of ‖w∗‖(γ) and Hγ are often unknown and thus make this strategy unrealistic in practice.

Compared with the above fixed restart strategy, a natural strategy is to restart whenever the LPMetric
halves (summarized in Algorithm 4 in the appendix). Since LPMetric is easy to monitor and update,
implementation of this strategy is straightforward. However, bounding the number of iterations
required to halve the metric (in expectation or with high probability) seems nontrivial. What can be
said (based on Theorem 2 and denoting byK the number of iterations on CLVR between restarts) is that
P[K > 50L̂mC0

δ2Hγ
] ≤ δ. This follows by Markov inequality, as P[K > k] = P

[√
LPMetric(w̃k) >√

LPMetric(w0)
2

]
≤ 5

√
2 L̂mC0

Hγk
. We provide a comparison between the adaptive restart scheme

proposed in [10] and our proposed adaptive restart scheme in Section D.1 to demonstrate its practical
competitiveness. Although we use adaptive restart in our experiments, we defer its convergence
analysis to future work. Finally, as an independent and parallel work to ours, [40] proposed a high
probability guarantee for scheduled restart for stochastic extragradient-type methods.

4 Application: DRO

Consider sample vectors {a1,a2, . . . ,an}with labels {b1, b2, . . . , bn}, where bi ∈ {1,−1} (i ∈ [n]).
The DRO problem with f -divergence based ambiguity set is

min
x∈X

sup
p∈Pρ,n

n∑
i=1

pig(bia
T
i x), (10)

where Pρ,n =
{
p ∈ Rn :

∑n
i=1 pi = 1, pi ≥ 0 (i ∈ [n]), Df (p‖1/n) ≤ ρ

n

}
is the ambiguity set, g

is a convex loss function and Df is an f -divergence defined by Df (p‖q) =
∑
i=1 qif(pi/qi) with

p, q ∈
{
p ∈ Rn :

∑n
i=1 pi = 1, pi ≥ 0

}
and f being a convex function [44]. The formulation

(10) is a nonbilinearly coupled convex-concave min-max problem with constraint set Pρ,n for which
efficient projections are not available in general. When g is a nonsmooth loss (e.g., the hinge loss),
many well-known methods such as the extragradient [34, 45] cannot be used even if we could project
onto Pρ,n efficiently. However, by introducing auxiliary variables, additional linear constraints, and
simple convex constraints, we can make the interacting term between primal and dual variables
bilinear, as shown next. (See Appendix C for a proof.)

Theorem 3. Let X be a compact convex set. Then the DRO problem in Eq. (10) is equivalent to

min
x,u,v,w,µ,q,γ

{
γ +

ρµ1

n
+

1

n

n∑
i=1

µif
∗
( qi
µi

)}
s. t. w + v − q

n
− γ1n = 0n,

ui = bia
T
i x, i ∈ [n]

µ1 = µ2 = · · · = µn,

g(ui) ≤ wi, i ∈ [n]

qi ∈ µi dom(f∗), i ∈ [n]

vi ≥ 0, µi ≥ 0, i ∈ [n]

x ∈ X .

In Theorem 3, the domain of the one-dimensional convex function f∗(·) is an interval such as [a, b],
so that qi ∈ µi dom(f∗) denotes the inequality µia ≤ qi ≤ µib. Since the perspective function
µf∗

(
q
µ

)
is a simple convex function of two variables, we can assume that the proximal operator

for this function on the domain {(µ, q) : q ∈ µdom(f∗), µ > 0} can be computed efficiently [12].
Similarly, we can assume that the constraint g(u) ≤ w admits an efficiently computable projection
operator. As a result, the formulation (10) can be solved by CLVR. When expressing (10) in the
form of (PD-GLP), the primal and dual variable vectors have dimensions d + 1 + 4n and 3n − 1,
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respectively. However, according to Table 1, provided that X is coordinate separable, the overall
complexity of CLVR will only be O

( (nnz(A)+n)(R+1)
ε

)
.

The original DRO problem with Wasserstein metric based ambiguity set is an infinite-dimensional
nonbilinearly coupled convex-concave min-max problem defined by

min
w∈Rd

sup
P∈Pρ,κ

EP[g(baTw)], (11)

where a ∈ Rd, b ∈ {1,−1}, P is a distribution on Rd×{1,−1}, g is a convex loss function and Pρ,κ
is the Wasserstein metric-based ambiguity set [52]. Our reformulation for Eq. (11) is in Appendix C.2.

5 Numerical experiments

We provide experimental evaluations of our algorithm for the reformulation of the DRO with Wasser-
stein metric based on the `1-norm (with κ = 0.1 and ρ = 10) and hinge loss. For its LP formulation
(see Theorem 4 in the Appendix), we compare our CLVR method with three representative methods:
PDHG [15], SPDHG [16] and PURE-CD [5]. For all algorithms we use LPMetric (7) as the performance
measure and use a restart strategy based on successive halving of LPMetric (Section 3.3) to obtain
linear convergence. We implemented CLVR and other algorithms in Julia, optimizing all implementa-
tions to the extent possible. Full details of the experimental setup can be found in Appendix D. Our
code is available at https://github.com/ericlincc/Efficient-GLP.

Comparison between values of L andR. As described in Section 1, a major advantage of CLVR is
that the complexity of CLVR depends on the max row norm R instead of the spectral norm L, which
in the worst case for ill-conditioned problems can lead to a factor of

√
n improvement. In practical

problems where the problem instances are highly structured (e.g., reformulated DRO problems),
R can be much smaller than L. Table 2 provides empirical evidence for this claim. In all our
experiments, we normalize each rows ofA to R = 1 as stated in Assumption 1, so the values of L
demonstrate the theoretical improvements for the experiments described in Section 5.

Table 2: Values of the spectral norm L in the reformulated DRO problems with Wasserstein metric
after each row is normalized to R = 1.

Reformulated a9a Reformulated gisette Reformulated rcv1 Reformulated news20
d = 130738, n = 97929 d = 44002, n = 28000 d = 269914, n = 155198 d = 5500750, n = 2770370

117.3 65.9 196.4 1041.6

Figure 1: Comparison of numerical results in terms of number of data passes and wall-clock time.
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Comparison with primal-dual algorithms. Figure 1 provides a comparison between algorithms
in terms of the number of data passes and wall-clock time. The spikes in all the plots are due to
restarts: At the beginning of each restart cycle, the value of LPMetric increases significantly, then
decreases rapidly. For the number of data passes (top row), CLVR with block size 1 and PURE-CD
perform best on all three datasets, CLVR with block size 10 and SPDHG with block size 50 have
second-tier performance, and PDHG is worst. For the CLVR algorithm, smaller block size corresponds
to smaller L̂ in Assumption 3, which corresponds to better complexity in terms of data passes by
Theorem 1. Nevertheless, the gap between empirical performance and theoretical guarantee for
SPDHG and PURE-CD deserves further research because, to date, they have only been shown to have
the same iteration complexity as PDHG. 6 Empirically, on a9a, CLVR with block size 1 performs
better than PURE-CD in terms of data passes.

In terms of wall-clock time (bottom row of Figure 1), because of different per-iteration costs of each
algorithm and instruction-level parallelism in modern processors [28], the plots differ significantly
from the plots for number of data passes. Even with block size 50, SPDHG spends the most wall-clock
time for one data pass and is the slowest on sparse datasets a9a and rcv1, but is faster than PDHG
on the dense dataset gisette. Meanwhile, while CLVR with block size 10 is not best in terms of
data passes, it remains fastest in terms of wall-clock time on all datasets due to cheaper per-iteration
cost and instruction-level parallelism. On rcv1, the per-iteration cost of PURE-CD is about 60% of
that of CLVR with block size 1. Hence, despite having similar performance in terms of data passes,
PURE-CD is faster than CLVR with block size 1, but is still slower than CLVR with block size 10.

Comparison with production linear programming solvers. Table 3 shows that CLVR is com-
petitive against production-quality linear programming solvers such as GLPK [1] and Gurobi [26].
We observe that CLVR reached accurate solutions significantly faster than GLPK and Gurobi in
the reformulated problems with gisette and rcv1 datasets. Although CLVR is much slower than
Gurobi(barrier) on a9a dataset, we believe that much of the performance gap in this case is due to the
redundancy in the problem formulation with the a9a dataset, much of which is removed by Gurobi
presolver7. We leave presolving and other heuristic speedups of CLVR for future work.

Table 3: Comparison of numerical results between CLVR and three production solvers for linear
programming, showing time required (in seconds) for each solver to reach accuracy 10−8.

Time (seconds) Reformulated a9a Reformulated gisette Reformulated rcv1
d = 130738, n = 97929 d = 44002, n = 28000 d = 269914, n = 155198

JuMP+GLPK 899 > 4× 104 > 4× 104

JuMP+Gurobi(simplex) 893 2482 7008
JuMP+Gurobi(barrier) 26 1039.7 1039.5

CLVR 962 697 582

Conclusion. Our preliminary numerical experiments show that CLVR is fastest in both the number
of data passes and wall-clock time on considered datasets, among all primal-dual algorithms that we
implemented. It is also competitive with production-quality linear programming solvers. Since it has
a theoretical guarantee that matches or improves the state of the art among primal-dual methods, we
believe that CLVR could be a method of choice.
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Appendix
Outline. The appendix of this paper is organized as follows:

• Section A contains details and the pseudo code for CLVR with lazy update.

• Section B provides the proofs for Section 3.

• Section C provides the proofs for Section 4.

• Section D provides the complementary details for Section 5.

A Lazy update for sparse and structured instances of (PD-GLP)

In Algorithm 1, for denseA, the O(|Sjk |d) cost of Steps 6 and 8 dominates the O(d) cost of Steps 4
and 9. However, whenA is sparse and |Sjk | is small, the cost of Steps 6 and 8 will beO(nnz(ASjk )),
which may be less than theO(d) cost of Steps 4 and 9. Using this observation, we show that the nature
of the dual averaging update enables us to propose an efficient implementation whose complexity
depends on nnz(A) rather than n · d.

Recall that we partition [n] into subsets {S1, S2, . . . , Sm} and useASj (j ∈ [m]) to denote the jth

row block ofA. For each blockASj , we use Cj ⊂ [d] to denote the indices of those columns ofASj

that contain at least one nonzero element. (Of course, {C1, . . . , Cm} is not in general a partition of
[d] as different subsets Sj may have nonzeros in the same columns.) We assume further that X and r
are coordinate separable, that is, X = X1 × · · · × Xd with Xi ⊂ R for all i and r(x) :=

∑d
i=1 r(x

i)
with xi ∈ Xi.
In Step 4 of Algorithm 1, the separability of X and r means that an update to one coordinate block of
x— say the Cjk block in the update from xk−1 to xk, which requires a projection and an application
of the proximal operator — does not influence other coordinates xik for i /∈ Cjk . Moreover, we
can efficiently maintain an implicit representation of qk, in terms of a newly introduced auxiliary
vector rk; see Lemma 8 of Appendix B.2. Similarly, to update ỹk efficiently, we maintain an implicit
representation of ỹk via an auxiliary vector sk, as shown in Lemma 9 of Appendix B.2.

It is generally not possible to maintain x̃k efficiently since, in principle, all components of xk can
change on every iteration, and we wish to avoid the O(d) cost of evaluating every full xk. We seek
instead to output a proxy x̂K for x̃K from Algorithm 1 such that E[x̂K ] = x̃K . One possible choice
is to pick an index k′ ∈ [K] from the weighted discrete distribution ( a1AK ,

a2
AK

, . . . , aKAK ) (computing
the scalar quantities ak and Ak for k ∈ [K] in advance), then setting x̂K = xk′ . A slightly more
sophisticated strategy is to sample a predetermined number K̂ of vectors xk, k ∈ [K], and define
x̂K to be the simple average of these vectors. Once again, the indices are chosen from the weighted
discrete distribution ( a1AK ,

a2
AK

, . . . , aKAK ). Note that the total expected cost of the K iterations of the
algorithm (excluding the full-vector updates) is O(Knnz(A)/m), while the total cost of evaluating
the K̂ full vectors xk and accumulating them into x̂K is O(K̂d). Thus, for the full-step iterations
not to dominate the total cost, we can choose K̂ to be O(Knnz(A)/(md)). Finally, we note that
Theorem 1 is for x̃k, not x̂K . However, since E[x̂k] = x̃k, we expect the convergence rates from the
theorem to hold for x̂K in practice.

An implementation of Algorithm 1 that exploits the form of qk in Lemma 8 and ỹk in Lemma 9, and
evaluates explicitly only those components of xk needed to perform the rest of the iteration is given
as Algorithm 2. This version also incorporates the strategy for obtaining x̂K by sampling K̂ iterates
on which to evaluate the full vector xk.

Due to the efficient implementation in Algorithm 2, to attain an ε-accurate solution in terms of the
primal-dual gap in Theorem 1, we need O( nnz(A)L̂

ε ) FLOPS, which corresponds to O( L̂ε ) data passes.
As a result, because a smaller batch size leads to a smaller L̂, we attain the best performance in
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terms of number of data passes when the batch size is set to one. However, as modern computer
architecture has particular design for vectorized operations, lower runtime is obtained for a small
batch size strictly larger than one (see Section 5).
Remark 1. While we consider the case of fully coordinate separable r and X for simplicity, our
lazy update approach is also applicable to the coordinate block partitioning case in which X =
X1 × · · · Xm with Xi ∈ Rdi (i ∈ [m],

∑m
i=1 di = d) and r(x) :=

∑m
i=1 r(x

i) with xi ∈ Xi. The
difference is that for each coordinate blockASj (j ∈ [m]), we overload Cj ⊂ [m] to denote the set
of blocks inASj where each coordinate block contains at least one nonzero element.

Remark 2. Dual averaging has been shown to have significant advantage in producing sparser
iterates than mirror descent in the context of online learning [36, 59]. It further leads to better
bounds in well-conditioned finite-sum optimization [54]. In this work, we show that dual averaging
offers better flexibility with sparse matrices than does mirror descent.

Algorithm 2 Coordinate Linear Variance Reduction with Lazy Update (Lazy CLVR)

1: Input: x̃0 = x0 = x−1 ∈ X ,y0 ∈ Rn, z0 = ATy0, γ > 0, L̂ > 0, K, K̂, m,
{S1, S2, . . . , Sm}, {C1, C2, . . . , Cm}.

2: a0 = A0 = 0, a1 = A1 = 1
2L̂m

, q0 = a1(z0 + c), r0 = 0d, s0 = 0n.
3: for k = 1, 2, . . . ,K − 1 do

4: ak+1 =

√
1+σAk/γ

2L̂m
, Ak+1 = Ak + ak+1.

5: end for
6: Choose indices {`1, . . . , `K̂} i.i.d. from [K] according to the distribution

{
a1
AK

, a2AK , . . . ,
aK
AK

}
.

7: for k = 1, 2, . . . ,K do
8: Pick jk uniformly at random in [m].

9: if k = `i for some i = 1, 2, . . . , K̂ then
10: qk−1 = Ak(c+ zk−1) + rk−1.
11: xk = prox 1

γAkr
(x0 − 1

γ qk−1).

12: else
13: qC

jk

k−1 = Ak(cC
jk + zC

jk

k−1) + rC
jk

k−1.

14: xC
jk

k = prox 1
γAkr

(xC
jk

0 − 1
γ q

Cjk
k−1).

15: end if
16: yS

jk

k = yS
jk

k−1 + γmak
(
ASjk ,CjkxC

jk

k − bSjk
)
,yS

i

k−1 for all i 6= jk.

17: zC
jk

k = zC
jk

k−1 + (ASjk ,Cjk )T (yS
jk

k − ySjkk−1), zik = zik−1 for all i /∈ Cjk ;
18: rC

jk

k = rC
jk

k−1 + (mak −Ak)(zC
jk

k − zCjkk−1), rik = rik−1 for all i /∈ Cjk ;
19: sS

jk

k = sS
jk

k−1 + ((m− 1)ak −Ak−1)(yS
jk

k − ySjkk−1), sik = sik−1 for all i /∈ Sjk ;
20: end for
21: x̂K = 1

K̂

∑K̂
i=1 x`i .

22: ỹK = yK + 1
AK
sK .

23: return x̂K and ỹK .

B Omitted proofs from Section 3

B.1 Omitted proofs from Section 3.1

We state a version of CLVR in Algorithm 3 that is convenient for the analysis, and is equivalent to
Algorithm 1 in the main body of the paper. Before analyzing the convergence of CLVR, we justify our
claim of equivalence in Proposition 1.
Proposition 1. The iterates of Algorithm 1 and 3 are equivalent.

Proof. To argue equivalence, we show that the iterates of Algorithm 1 and 3 solve the same opti-
mization problems. To avoid ambiguity, here we will use x̂k, ŷk to denote the iterates xk,yk in
Algorithm 3, while we retain the notation xk,yk for the iterates of Algorithm 1.
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Let us first start by writing an equivalent definition of xk in Algorithm 1. To do so, we first unroll the
recursive definitions of zk and qk. We can observe that, since by definition yk and yk−1 only differ
over the coordinate block Sjk , we have

zk = z0 +

k∑
i=1

AT (yi − yi−1) = ATyk. (12)

On the other hand, using Eq. (12), the definition of qk implies

qk = Ak+1c+ a1A
Ty0 +

k∑
i=1

AT
[
ai+1yi +mai(yi − yi−1)

]
(13)

Using the definition of the proximal operator (see Eq. (1)) and the definition of xk in Step 4 of
Algorithm 1, we have

xk = arg min
x∈X

{
Ak
γ
r(x) +

1

2

∥∥∥x− x0 +
1

γ
qk−1

∥∥∥2
}

= arg min
x∈X

{
Akr(x) +

γ

2

∥∥∥x− x0 +
1

γ
qk−1

∥∥∥2
}
.

(14)

Now let us consider the optimization problem that defines x̂k. Assume for now that the definitions of
yk and ŷk agree (we justify this claim below). Observe first that the minimization problem defining
x̂k is independent of u, so by unrolling the recursion for φk, we have

x̂k = arg min
x∈X

{
γ

2
‖x− x0‖2 +Akr(x) + a1

〈
x, c+AT ȳ0

〉
+

k∑
i=2

ai

〈
x, c+AT

(
yi−1 +

mai−1

ai
(yi−1 − yi−2)

)〉}

= arg min
x∈X

{
γ

2
‖x− x0‖2 +Akr(x)

+

〈
x, Akc+ a1A

Ty0 +AT
( k∑
i=2

[
aiyi−1 +mai−1(yi−1 − yi−2)

])〉}
= arg min

x∈X

{γ
2
‖x− x0‖2 +Akr(x) + 〈x, qk−1〉

}
= arg min

x∈X

{
Akr(x) +

γ

2

∥∥∥x− x0 +
1

γ
qk−1

∥∥∥2
}

= xk.

It remains to argue that the definitions of yk and ŷk agree. First, observe that since the definitions of
ψk and ψk−1 differ only over block Sjk , we have ŷS

j

k = ŷS
j

k−1 for all j 6= jk. For j = jk, we have
by unrolling the recursive definition of ψk that

ŷS
jk

k = arg min
yS

jk∈Rnjk

{ 1

2γ
‖yS

jk − yS
jk

0 ‖2 −
k∑
i=1

1{Sji=Sjk}mai

〈
yS

ji
,ASjixi − bS

ji
〉}

= yS
jk

0 + γ

k∑
i=1

1{Sji=Sjk}mai(A
Sjixi − bS

ji
)

= ŷS
jk

k−1 + γmak(ASjkxk − bS
jk

)

= yS
jk

k ,

as claimed.

In the following three lemmas, we bound φk(xk) and ψk(yk) below and above, which is then
subsequently used to bound the primal-dual gap in Theorem 1.
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Algorithm 3 Coordinate Linear Variance Reduction (Analysis Version)

1: Input: x0 = x−1 ∈ X ,y0 = ȳ0 ∈ Rn, m, {S1, S2, . . . , Sm},K, γ > 0, L̂ > 0.
2: φ0(·) = γ

2 ‖ · −x0‖2, ψ0(·) = 1
2γ ‖ · −y0‖2.

3: a1 = A1 = 1
2L̂m

.

4: for k = 1, 2, 3, . . . ,K do
5: xk = arg minx∈X {φk(x) = φk−1(x) + ak(〈x− u,AT ȳk−1 + c〉+ r(x)− r(u))}.
6: Pick jk uniformly at random in [m].

7: yk = arg miny∈Rn{ψk(y) = ψk−1(y) +mak(−〈ySjk − vSjk ,ASjkxk − bS
jk 〉)}.

8: ak+1 =

√
1+σAk/γ

2L̂m
, Ak+1 = Ak + ak+1.

9: ȳk = yk + mak
ak+1

(yk − yk−1).

10: end for
11: return x̃K := 1

AK

∑K
k=1 akxk, ỹK = 1

AK

∑K
k=1(akyk + (m− 1)ak(yk − yk−1)).

Lemma 1. For all steps of Algorithm 3 with k ≥ 1, we have, ∀(u,v) ∈ X × Rn,

φk(xk) ≤ γ

2
‖u− x0‖2 −

γ + σAk
2

‖u− xk‖2,

ψk(yk) ≤ 1

2γ
‖v − y0‖2 −

1

2γ
‖v − yk‖2.

Proof. By the definitions of ψk(y) and φk(x) in Algorithm 3, it follows that, ∀k ≥ 1,

φk(x) =

k∑
i=1

ai(〈x− u,AT ȳi−1 + c〉+ r(x)− r(u)) +
γ

2
‖x− x0‖2, (15)

and

ψk(y) =

k∑
i=1

mai

(
−
〈
yS

ji − vS
ji
,ASjixi − bS

ji
〉)

+
1

2γ
‖y − y0‖2. (16)

Observe that, as function of x, φk(x) is (γ + σAk)-strongly convex. As, by definition, xk =
arg minx∈X φk(x), it follows that

φk(u) ≥ φk(xk) +
γ + σAk

2
‖u− xk‖2. (17)

Now, writing φk(u) explicitly and rearranging the last inequality, the stated bound on φk(xk) follows.

As a function of y, ψk(y) is 1/γ-strongly convex. The proof for the bound on ψk uses the same
argument and is omitted.

In the following proof, for k ≥ 1, let Fk denote the natural filtration, containing all the randomness

in the algorithm up to and including iteration k. Recall that A =

 AS
1

...
AS

m

, and let AS̄j (j ∈ [m])

denote the matrixA with its Sj block of rows replaced by a zero block.

For convenience, for k = 1, 2, . . . , we define

ŷk = yk−1 + γmak(Axk − b). (18)

Then from the definition of yk in Algorithm 1, we have E[yk − yk−1|Fk−1] = 1
m (ŷk − yk−1).

Motivated by [4], we have the following result.
Lemma 2. Given the sequences {yk} in Algorithm 3 and {ŷk} in Eq. (18), we define the sequence
{v̌k} by

v̌k = (yk − yk−1)− 1

m
(ŷk − yk−1).
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Then for any v ∈ Rd that may be correlated with the randomness in {v̌i}ki=1, we have

E
[
−

k∑
i=1

〈v, v̌i〉
]
≤ E

[1

2
‖y0 − v‖2 +

1

2

k∑
i=1

‖yi − yi−1‖2
]
, (19)

where the expectation is taken over all the randomness in the history.

Proof. First, we prove a bound for E
[∑k

i=1 ‖v̌i‖2
]
. By the fact that E[yi − yi−1|Fi−1] = 1

m (ŷi −
yi−1), for each v̌i, we have

E[‖v̌i‖2|Fi−1] = E
[
‖yi−yi−1‖2|Fi−1

]
−E

[∥∥ 1

m

(
ŷi−yi−1

)∥∥2|Fi−1

]
≤ E[‖yi−yi−1‖2|Fi−1].

Taking expectation on all the randomness in the history, for E
[∑k

i=1 ‖v̌i‖2
]
, we have

E
[ k∑
i=1

‖v̌i‖2
]

= E
[ k∑
i=1

E[‖v̌i‖2|Fi−1]
]
≤ E

[ k∑
i=1

E[‖yi−yi−1‖2|Fi−1]
]

= E
[ k∑
i=1

‖yi−yi−1‖2
]
.

(20)
Then to prove (19), we define the sequence {y̌k}∞k=0 by y̌0 = y0 and y̌k = y̌k−1 − v̌k for
k = 1, 2, . . . . By expanding 1

2‖y̌k − v‖
2,

1

2
‖y̌k − v‖2 =

1

2
‖y̌k−1 − v‖2 − 〈v̌k, y̌k−1 − v〉+

1

2
‖v̌k‖2

=⇒ 〈v̌k, y̌k−1 − v〉 =
1

2
‖y̌k−1 − v‖2 −

1

2
‖y̌k − v‖2 +

1

2
‖v̌k‖2.

By summing this expression and telescoping, we obtain

k∑
i=1

〈y̌i−1 − v, v̌i〉 =
1

2
‖y̌0 − v‖2 −

1

2
‖y̌k − v‖2 +

k∑
i=1

1

2
‖v̌i‖2

≤ 1

2
‖y̌0 − v‖2 +

k∑
i=1

1

2
‖v̌i‖2

=
1

2
‖y0 − v‖2 +

k∑
i=1

1

2
‖v̌i‖2, (21)

It follows that

E
[
−

k∑
i=1

〈v, v̌i〉
]

= E
[ k∑
i=1

〈y̌i−1 − v, v̌i〉 −
k∑
i=1

〈y̌i−1, v̌i〉
]

≤ E
[1

2
‖y0 − v‖2 +

k∑
i=1

1

2
‖v̌i‖2 −

k∑
i=1

〈y̌i−1, v̌i〉
]

≤ E
[1

2
‖y0 − v‖2 +

1

2

k∑
i=1

‖yi − yi−1‖2 −
k∑
i=1

〈y̌i−1, v̌i〉
]
. (22)

where the first inequality is by Eq. (21) and the second inequality is by Eq. (20). To obtain the result
(19), we use the facts that E[v̌i | Fi−1] = 0 and that y̌i−1 ∈ Fi−1 to obtain E

[∑k
i=1 〈y̌i−1, v̌i〉

]
=

0.

We emphasize that Lemma 2 holds for any v that may be even correlated with the randomness in the
algorithm.
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Lemma 3. For all steps of Algorithm 3 with k ≥ 1, we have for all (u,v) ∈ X × Rn that

φk(xk) ≥ φk−1(xk−1) +
γ + σAk−1

2
‖xk − xk−1‖2 + ak(r(xk)− r(u))

− ak
〈
xk − u,AT (yk − yk−1)

〉
+ ak

〈
xk − u,ATyk + c

〉
+mak−1

( 〈
xk−1 − u,AT (yk−1 − yk−2)

〉
+
〈
xk − xk−1,A

T (yk−1 − yk−2)
〉 )
,

ψk(yk) ≥ ψk−1(yk−1) +
1

2γ
‖yk − yk−1‖2 − ak〈Axk − b,yk − v〉

− (m− 1)ak〈Axk − b,yk − yk−1〉+
1

γ

〈
yk−1 − v,−(yk − yk−1) +

1

m
(ŷk − yk−1)

〉
.

Proof. For the first claim, we have from the definition of φk(xk), using that φk−1(xk−1) is (γ +
σAk−1)-strongly convex and minimized at xk−1, that

φk(xk) ≥ φk−1(xk−1) +
γ + σAk−1

2
‖xk − xk−1‖2

+ ak
(
〈xk − u,AT ȳk−1 + c〉+ r(xk)− r(u)

)
.

(23)

Meanwhile, by the definition of {ȳk} (using y−1 = y0 for the case of k = 1), we have that

ak
〈
xk − u,AT ȳk−1

〉
= ak

〈
xk − u,AT

(
yk−1 +

mak−1

ak
(yk−1 − yk−2)

)〉
= − ak

〈
xk − u,AT (yk − yk−1)

〉
+ ak

〈
xk − u,ATyk

〉
+mak−1

( 〈
xk−1 − u,AT (yk−1 − yk−2)

〉
+
〈
xk − xk−1,A

T (yk−1 − yk−2)
〉 )
. (24)

The claimed lower bound on φk(xk) follows when we combine (23) and (24).

For the second claim, we have by the definition of ψk that

ψk(yk)−ψk−1(yk−1) = ψk−1(yk)−ψk−1(yk−1)−mak
〈
yS

jk

k − vS
jk
,ASjkxk − bS

jk
〉
. (25)

To obtain the claimed lower bound on ψk, we proceed to bound the terms on the right-hand side in
(25). First, since ψk−1 is (1/γ)-strongly convex and minimized at yk−1, we have

ψk−1(yk)− ψk−1(yk−1) ≥ 1

2γ
‖yk − yk−1‖2. (26)

Second, by using the definition of ASjk and AS̄jk , and by using several times that yk−1 and yk
differ only in their Sjk components, we have
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−
〈
yS

jk

k − vS
jk
,ASjkxk − bS

jk
〉

= −〈yk − v,Axk − b〉+
〈
yk − v,AS̄jkxk − bS̄

jk
〉

= −〈yk − v,Axk − b〉+
〈
yk−1 − v,AS̄jkxk − bS̄

jk
〉

= −〈yk − v,Axk − b〉+
m− 1

m
〈yk−1 − v,Axk − b〉

+

〈
yk−1 − v,AS̄jkxk − bS̄

jk − m− 1

m
(Axk − b)

〉
= − 1

m
〈yk − v,Axk − b〉+

m− 1

m
〈yk−1 − yk,Axk − b〉

+
〈
yS

jk

k−1 − vS
jk
,−(ASjkxk − bS

jk
)
〉

+
1

m
〈yk−1 − v,Axk − b)〉

= − 1

m
〈yk − v,Axk − b〉+

m− 1

m
〈yk−1 − yk,Axk − b〉

+

〈
yk−1 − v,−

1

γmak
(yk − yk−1) +

1

γm2ak
(ŷk − yk−1)

〉
, (27)

where in the last equality we used yS
jk

k − ySjkk−1 = γmak(ASjkxk − bS
jk ) and ŷk − yk−1 =

γmak(Axk − b), which both hold by definitions of ŷk and yk.

Finally, combining (25)–(27), we have the bound on ψk(yk) from the statement of the lemma.

By combining the two lower bounds in Lemma 3, we obtain the following result.
Lemma 4. For any (u,v) ∈ X × Rn, the sum of ψk(yk) + φk(xk) can be bounded as follows: for
all k ≥ 1,

φk(xk) + ψk(yk)

≥ φk−1(xk−1) + ψk−1(yk−1)

−mak
〈
xk − u,AT (yk − yk−1)

〉
+mak−1

〈
xk−1 − u,AT (yk−1 − yk−2)

〉
+

1

2γ
‖yk − yk−1‖2 −

1

4γ
‖yk−1 − yk−2‖2 +Qk,

(28)

where

Qk :=ak

(
r(xk)− r(u)− 〈Au,yk〉+ 〈xk,ATv〉+ 〈xk − u, c〉+ 〈b,yk − v〉

− (m− 1)〈Au− b,yk − yk−1〉
)

+
1

γ

〈
yk−1 − v,−(yk − yk−1) +

1

m
(ŷk − yk−1)

〉
.

(29)

Proof. Before our proof, as A−1 and A0 are not used in Algorithm 3, without loss of generality, we
set A−1 = A0 = 0. Fix any (u,v) ∈ X × Rn. By combining the bounds on φk(xk) and ψk(yk)
from Lemma 3, we have ∀k ≥ 1 that

φk(xk) + ψk(yk)

≥ φk−1(xk−1) + ψk−1(yk−1)

−mak
〈
xk − u,AT (yk − yk−1)

〉
+mak−1

〈
xk−1 − u,AT (yk−1 − yk−2)

〉
+ Pk +Qk,

(30)

where

Pk =
γ + σAk−1

2
‖xk − xk−1‖2 +

1

2γ
‖yk − yk−1‖2 +mak−1

〈
xk − xk−1,A

T (yk−1 − yk−2)
〉

(31)
and Qk is defined in Eq. (29).
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To find a lower bound on Pk we start by bounding the magnitude of the inner product term in (31).
Recall that yk−2 and yk−1 differ only on the coordinate block Sjk−1 . We thus have:

|mak−1〈xk − xk−1,A
T (yk−1 − yk−2)〉|

= |mak−1 〈ASjk−1
(xk − xk−1),yS

jk−1

k−1 − yS
jk−1

k−2 〉|

≤ mak−1‖ASjk−1
(xk − xk−1)‖‖yS

jk−1

k−1 − yS
jk−1

k−2 ‖

≤ (mak−1)2γ‖ASjk−1
(xk − xk−1)‖2 +

1

4γ
‖yS

jk−1

k−1 − yS
jk−1

k−2 ‖2

≤ (mL̂ak−1)2γ‖xk − xk−1‖2 +
1

4γ
‖yS

jk−1

k−1 − yS
jk−1

k−2 ‖2

= (mL̂ak−1)2γ‖xk − xk−1‖2 +
1

4γ
‖yk−1 − yk−2‖2 (32)

where the second inequality is by Young’s inequality, and the third inequality is by Assumption 3

where ‖ASjk−1
(xk − xk−1)‖ ≤ L̂‖xk − xk−1‖. With our setting ak−1 =

√
1+σAk−2/γ

2mL̂
≤√

1+σAk−1/γ

2mL̂
, for all k ≥ 1, we have

(mL̂ak−1)2γ =
γ + σAk−1

4
.

By substituting this equality into (32) and then combining with (31), we obtain

Pk ≥
γ + σAk−1

4
‖xk − xk−1‖2 +

1

2γ
‖yk − yk−1‖2 −

1

4γ
‖yk−1 − yk−2‖2

≥ 1

2γ
‖yk − yk−1‖2 −

1

4γ
‖yk−1 − yk−2‖2. (33)

We complete the proof by combining Eqs. (30), (31) and the bound Eq. (33) for Pk.

By telescoping the inequality in Lemma 4, and using Lemmas 1 and 2, we obtain the next result.

Lemma 5. For all (u,v) ∈ X × Rn, we have

Ak(L(x̃k,v)− L(u, ỹk)) +
γ + σAk

4
‖u− xk‖2 +

1

2γ
‖v − yk‖2

≤ γ

2
‖u− x0‖2 +

1

2γ
‖v − y0‖2 −

1

4γ

k∑
i=1

‖yi − yi−1‖2 +
1

γ

k∑
i=1

〈yi−1, v̌i〉 −
1

γ

k∑
i=1

〈v, v̌i〉 ,

(34)
where v̌i is defined in Lemma 2.

Proof. Telescoping the inequality in Lemma 4, we have

φk(xk) + ψk(yk) ≥ φ0(x0) + ψ0(y0)

−mak
〈
xk − u,AT (yk − yk−1)

〉
+ma0

〈
x0 − u,AT (y0 − y−1)

〉
+

1

2γ
‖yk − yk−1‖2 −

1

4γ
‖y0 − y−1‖2 +

1

4γ

k−1∑
i=1

‖yi − yi−1‖2 +

k∑
i=1

Qi

= −mak
〈
xk − u,AT (yk − yk−1)

〉
+

1

4γ
‖yk − yk−1‖2

+
1

4γ

k∑
i=1

‖yi − yi−1‖2 +

k∑
i=1

Qi, (35)

where the last equality is by the fact that ψ0(y0) = φ0(x0) = 0, a0 = 0, and our convention that
y−1 := y0.
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Then by the convexity of r(·) and the definition of {Qi}, we have

k∑
i=1

Qi ≥ Ak(r(x̃k)− r(u)− 〈Au, ỹk〉+ 〈x̃k,ATv〉+ 〈x̃k − u, c〉+ 〈b, ỹk − v〉)

+
1

γ

k∑
i=1

〈
yi−1 − v,−(yi − yi−1) +

1

m
(ŷi − yi−1)

〉

= Ak(L(x̃k,v)− L(u, ỹk)) +
1

γ

k∑
i=1

〈yi−1 − v,−v̌i〉 . (36)

where x̃k = 1
Ak

∑k
i=1 aixi, ỹk = 1

Ak

∑k
i=1(aiyi + (m− 1)ai(yi − yi−1)) (as defined in (4)) and

the last equality is by the definition of the Lagrangian L(·, ·) and {v̌i} in Lemma 2.

Then by combining Eqs. (35)-(36) and Lemma 1, we have

Ak(L(x̃k,v)− L(u, ỹk))

≤
(
ψk(yk) + φk(xk) +mak

〈
xk − u,AT (yk − yk−1)

〉 )
− 1

4γ
‖yk − yk−1‖2

− 1

4γ

k∑
i=1

‖yi − yi−1‖2 +
1

γ

k∑
i=1

〈yi−1, v̌i〉 −
1

γ

k∑
i=1

〈v, v̌i〉

≤
( 1

2γ
‖v − y0‖2 −

1

2γ
‖v − yk‖2 +

γ

2
‖u− x0‖2 −

γ + σAk
2

‖u− xk‖2
)

+mak
〈
xk − u,AT (yk − yk−1)

〉
− 1

4γ
‖yk − yk−1‖2 −

1

4γ

k∑
i=1

‖yi − yi−1‖2

+
1

γ

k∑
i=1

〈yi−1, v̌i〉 −
1

γ

k∑
i=1

〈v, v̌i〉 .

Finally, we have from the fact that yk and yk−1 differ in only the Sjk components, Young’s inequality,
and the definition of ak that

|mak〈xk − u,AT (yk − yk−1)〉|

= |mak 〈ASjk (xk − u),yS
jk

k − yS
jk

k−1〉|

≤ mak‖ASjk (xk − u)‖‖yS
jk

k − yS
jk

k−1‖

≤ (mak)2γ‖ASjk (xk − u)‖2 +
1

4γ
‖yS

jk

k − yS
jk

k−1‖2

≤ (mL̂ak)2γ‖xk − u‖2 +
1

4γ
‖yS

jk

k − yS
jk

k−1‖2

= (mL̂ak)2γ‖xk − u‖2 +
1

4γ
‖yk − yk−1‖2

=
γ + σAk−1

4
‖xk − u‖2 +

1

4γ
‖yk − yk−1‖2

≤ γ + σAk
4

‖xk − u‖2 +
1

4γ
‖yk − yk−1‖2
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leading to

Ak(L(x̃k,v)− L(u, ỹk)) +
1

2γ
‖v − yk‖2 +

γ + σAk
4

‖u− xk‖2

≤ γ

2
‖u− x0‖2 +

1

2γ
‖v − y0‖2 −

1

4γ

k∑
i=1

‖yi − yi−1‖2

+
1

γ

k∑
i=1

〈yi−1, v̌i〉 −
1

γ

k∑
i=1

〈v, v̌i〉

and completing the proof.

Lemma 6. Suppose that (x∗,y∗) is a Nash point for (PD-GLP). Then the iterates xk,yk from
Algorithm 1 satisfy

E
[γ + σAk

4
‖x∗ − xk‖2 +

1

2γ
‖y∗ − yk‖2 +

1

4γ

k∑
i=1

‖yi − yi−1‖2
]

≤ γ

2
‖x∗ − x0‖2 +

1

2γ
‖y∗ − y0‖2,

(37)

where the expectation is w.r.t. all the randomness in the algorithm.

Proof. Note that the existence of a Nash point is assumed in Assumption 2. With (u,v) = (x∗,y∗),
by the definition of Nash equilibrium, we have

L(x̃k,y
∗)− L(x∗, ỹk) = (L(x̃k,y

∗)− L(x∗,y∗))− (L(x∗, ỹk)− L(x∗,y∗)) ≥ 0. (38)

By setting (u,v) = (x∗,y∗) in the result of Lemma 5, using (38) to eliminate the first term on the
left-hand side of the inequality, and rearranging, we obtain

γ + σAk
4

‖x∗ − xk‖2 +
1

2γ
‖y∗ − yk‖2 +

1

4γ

k∑
i=1

‖yi − yi−1‖2

≤ γ

2
‖x∗ − x0‖2 +

1

2γ
‖y∗ − y0‖2 +

1

γ

k∑
i=1

〈yi−1, v̌i〉 −
1

γ

k∑
i=1

〈v, v̌i〉 .

The result will follow when we show that the expectation (with respect to all the randomness) of the
last two terms on the right-hand side is zero. Since yi−1 ∈ Fi−1, we have

E

[
k∑
i=1

〈yi−1, v̌i〉

]
= E

[
E

[
k∑
i=1

〈yi−1, v̌i〉
∣∣∣Fi−1

]]
= E

[
k∑
i=1

〈yi−1,E [v̌i|Fi−1]〉

]
= 0, (39)

which takes care of the second-last term. For any fixed v ∈ Rn, we also have

E
[

1

γ

k∑
i=1

〈v, v̌i〉
]

= 0, (40)

which takes care of the last term, and completes the proof.

Next we state a technical lemma, proved in an earlier paper, which provides the final ingredient for
the proof of Theorem 1.
Lemma 7. [[55]] Let {Ak}k≥0 be a sequence of nonnegative real numbers such that A0 = 0 and
Ak is defined recursively via Ak = Ak−1 +

√
c21 + c2Ak−1, where c1 > 0, and c2 ≥ 0. Define

K0 = d c29c1
e. Then

Ak ≥

 c2
9

(
k −K0 + max

{
3
√

c1
c2
, 1
})2

, if c2 > 0 and k > K0,

c1k, otherwise.
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We are now ready to prove our main result, which we restate here.
Theorem 1. Let xk, yk, k ∈ [K], be the iterates of Algorithm 1 and let x̃k, ỹk be defined by

x̃k =
1

Ak

k∑
i=1

aixi, ỹk =
1

Ak

k∑
i=1

(aiyi + (m− 1)ai(yi − yi−1)), (4)

for k ∈ [K]. Let Wk ⊂ X × Rn, k ∈ [K], be a sequence of compact convex sets such that
(x̃k, ỹk) ∈ Wk ⊂ W ⊂ X × Rn, whereW is also convex and compact. Then:

E
[

sup
(u,v)∈Wk

{L(x̃k,v)− L(u, ỹk)}
]

≤ 1

Ak

(
E
[γ

2
‖û− x0‖2 +

1

γ
‖v̂ − y0‖2

]
+
γ

2
‖x∗ − x0‖2 +

1

2γ
‖y∗ − y0‖2

)
,

(5)

where (û, v̂) = arg sup(u,v)∈Wk
{L(x̃k,v)− L(u, ỹk)}. Furthermore,

E
[γ + σAk

4
‖xk − x∗‖2 +

1

2γ
‖yk − y∗‖2

]
≤ γ

2
‖x∗ − x0‖2 +

1

2γ
‖y∗ − y0‖2. (6)

Define K0 =
⌈

σ
18L̂mγ

⌉
. Then in the bounds above:

Ak ≥ max

{
k

2L̂m
,

σ

(6L̂m)2γ

(
k −K0 + max

{
3

√
2L̂mγ/σ, 1

})2
}
.

Proof. To provide a guarantee in terms of primal-dual gap, we need to take the supremum on u,v
of {L(x̃k,v) − L(u, ỹk))} over Wk; we denote the arg sup by (û, v̂). When we subsequently
take the expectation, we have to account for the fact that v̂ will be correlated with the randomness
in the iteration history. We can however, use Lemmas 2 and 6 to give the upper bound on E

[
−∑k

i=1 〈v̂, v̌i〉
]
.

From (34), using the fact that 1
2γ ‖v − yk‖

2 + γ+σAk
4 ‖u− xk‖2 ≥ 0, we have

E
[
Ak sup

(u,v)∈Wk

{L(x̃k,v)− L(u, ỹk)})
]

≤ E
[γ

2
‖û− x0‖2 +

1

2γ
‖y0 − v̂‖2

]
− 1

4γ
E
[ k∑
i=1

‖yi − yi−1‖2
]

+
1

γ
E
[ k∑
i=1

〈yi−1, v̌i〉
]

+
1

γ
E
[
−

k∑
i=1

〈v̂, v̌i〉
]

≤ E
[γ

2
‖û− x0‖2 +

1

2γ
‖y0 − v̂‖2

]
− 1

4γ
E
[ k∑
i=1

‖yi − yi−1‖2
]

+
1

γ
E
[1

2
‖y0 − v̂‖2 +

1

2

k∑
i=1

‖yi − yi−1‖2
]

= E
[γ

2
‖û− x0‖2 +

1

γ
‖y0 − v̂‖2

]
+

1

4γ
E
[ k∑
i=1

‖yi − yi−1‖2
]

≤ E
[γ

2
‖û− x0‖2 +

1

γ
‖y0 − v̂‖2

]
+
γ

2
‖x∗ − x0‖2 +

1

2γ
‖y∗ − y0‖2. (41)

where the first inequality is by Eq. (34), the second inequality is by Lemma 2 and (39), and the last
inequality is by Lemma 6. This proves the first claim (5). The second claim (6) follows from Lemma
6 with the fact that 1

4γE
[∑k

i=1 ‖yi − yi−1‖2
]
≥ 0. The final claim concerning Ak follows from

Lemma 7 when we set
c1 =

1

2L̂m
, c2 =

σ

(2L̂m)2γ
.
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Corollary 1. In Algorithm 1, for all k ≥ 1, x̃k satisfies

E[‖y∗‖ · ‖Ax̃k − b‖] ≤
γ‖x∗ − x0‖2 + 1

2γ ‖y
∗ − y0‖2 + 1

γE[‖v − y0‖2]

Ak
,

|E[(cT x̃k + r(x̃k))− (cTx∗ + r(x∗))]| ≤
γ‖x∗ − x0‖2 + 1

2γ ‖y
∗ − y0‖2 + 1

γE[‖v − y0‖2]

Ak
,

where v = 2 ‖y∗‖
‖Ax̃k−b‖ (Ax̃k − b).

Proof. Assume that ‖Ax̃k − b‖ 6= 0, as otherwise the first bound follows trivially. Let u = x∗ and
v = 2‖y∗‖(Ax̃k−b)

‖Ax̃k−b‖ . Then we have

L(x̃k,v)− L(u, ỹk)

= (cT x̃k + r(x̃k) + 2‖y∗‖‖Ax̃k − b‖)− (cTx∗ + r(x∗) + ỹTk (Ax∗ − b))
= (cT (x̃k − x∗) + r(x̃k)− r(x∗)) + 2‖y∗‖‖Ax̃k − b‖. (42)

For any fixed u, and any v ∈ Rn possibly depending on the randomness in the algorithm, we have
from Lemma 5, taking expectation over all the randomness, that

AkE[L(x̃k,v)− L(u, ỹk)]

≤ E
[
Ak(L(x̃k,v)− L(u, ỹk)) +

1

2γ
‖v − yk‖2 +

γ + σAk
4

‖u− xk‖2
]

≤ γ

2
‖u− x0‖2 +

1

2γ
E[‖v − y0‖2]− E

[ 1

4γ

k∑
i=1

‖yi − yi−1‖2
]

+
1

γ
E
[ k∑
i=1

〈yi−1, v̌i〉
]
− 1

γ
E
[ k∑
i=1

〈v, v̌i〉
]
. (43)

Meanwhile, we have

− 1

4γ
E
[ k∑
i=1

‖yi − yi−1‖2
]
− 1

γ
E
[ k∑
i=1

〈v, v̌i〉
]

≤ 1

2γ
E
[
‖y0 − v‖2

]
+

1

4γ
E
[ k∑
i=1

‖yi − yi−1‖2
]

≤ 1

2γ
E[‖y0 − v‖2] +

γ

2
‖x∗ − x0‖2 +

1

2γ
‖y∗ − y0‖2,

where the first inequality is by Lemma 2 and the second inequality is by Lemma 6. Since yi−1 ∈
Fi−1, we have as in (39) that

1

γ
E
[ k∑
i=1

〈yi−1, v̌i〉
]

= 0. (44)

By combining Eq. (42)-(44) with u = x∗, we have
E
[
(cT (x̃k − x∗) + r(x̃k)− r(x∗)) + 2‖y∗‖‖Ax̃k − b‖

]
≤
γ‖x∗ − x0‖2 + 1

γE[‖v − y0‖2] + 1
2γ ‖y

∗ − y0‖2

Ak
. (45)

By the KKT condition of (PD-GLP) and the optimality of (x∗,y∗), we have for all x ∈ X that
(cTx+ r(x))− (cTx∗ + r(x∗))− 〈y∗,Ax− b〉 ≥ 0, (46)

and thus
(cTx+ r(x))− (cTx∗ + r(x∗)) ≥ −‖y∗‖‖Ax− b‖. (47)

By combining Eq. (45) and Eq. (47), we have

E[‖y∗‖ · ‖Ax̃k − b‖] ≤
γ‖x∗ − x0‖2 + 1

γE[‖v − y0‖2] + 1
2γ ‖y

∗ − y0‖2

Ak
, (48)

proving our first claim. The second claim is obtained by combining Eqs. (45), (47), and (48).
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B.2 Omitted proofs from Section 3.2

We need to compute explicitly only those components of qk−1 and xk that are needed to update yk.
Lemma 8. For {qk} defined in Algorithm 1, we have

qk = Ak+1(c+ zk) + rk, k = 0, 1, 2, . . . ,

where r0 = 0 and for all k = 1, 2, . . .

rk = rk−1 + (mak −Ak)(zk − zk−1).

Proof. The proof is by induction. For k = 0, we have q0 = A1(c+ z0) which is true by definition.
Assuming that the result holds for some index k, we show that it continues to hold for k + 1. We
have from Step 9 of Algorithm 1, then using the inductive assumption, that

qk+1 = ak+2(zk+1 + c) +mak+1(zk+1 − zk) + qk
= ak+2(zk+1 + c) +mak+1(zk+1 − zk) +Ak+1(c+ zk) + rk
= Ak+2c+ (Ak+2 −Ak+1)zk+1 +mak+1(zk+1 − zk) +Ak+1zk + rk
= Ak+2(c+ zk+1) + (mak+1 −Ak+1)(zk+1 − zk) + rk
= Ak+2(c+ zk+1) + rk+1,

as required.

This lemma indicates that we can reconstruct qk (or any subvector of qk that we need, on demand),
provided we maintain zk and rk. Note that the update from zk to zk+1 is sparse; these two vectors
differ only in the components corresponding to the block Cjk . To obtain rk+1 from rk, we need to
add a scalar times the sparse vector zk+1 − zk, so this update is also efficient.

We can also maintain an implicit representation of the averaged vector ỹk efficiently, as shown in the
following lemma. We defer the proofs of Lemmas 8 and 9 to Appendix B.
Lemma 9. For {ỹk} defined in (4), we have

ỹk = yk +
1

Ak
sk, k = 1, 2, . . . ,

where s0 = 0 and for all k = 1, 2, . . . ,

sk = sk−1 + ((m− 1)ak −Ak−1)(yk − yk−1).

Proof. Recall that ỹK (K ≥ 1) is defined in Step 11 of Algorithm 1. The proof is by induction. For
k = 1, ỹ1 = y1 + 1

A1
(m− 1)a1(y1 − y0) = y1 + 1

A1
s1 which is true by the definition of s1 and

A0. Next, we assume that the result holds for some k ≥ 2 and show that it continues to hold for
k + 1. We have

Ak+1ỹk+1 =
k+1∑
i=1

(aiyi + (m− 1)ai(yi − yi−1))

= Akỹk + ak+1yk+1 + (m− 1)ak+1(yk+1 − yk)

= Akyk + sk + ak+1yk+1 + (m− 1)ak+1(yk+1 − yk)

= Ak(yk − yk+1 + yk+1) + sk + ak+1yk+1 + (m− 1)ak+1(yk+1 − yk)

= Ak+1yk+1 + sk + ((m− 1)ak+1 −Ak)(yk+1 − yk)

= Ak+1yk+1 + sk+1.

as required.

B.3 Omitted proofs from Section 3.3

The standard-form LP (PD-LP) is derived by setting r(x) ≡ 0 and X = {x ∈ Rd : xi ≥ 0, i ∈ [d]}
in (PD-GLP). Given any w ∈ X × Rn, we define a compact convex subsetWζ,γ(w) of X × Rn as
follows:

Wζ,γ(w) = {ŵ ∈ X × Rn : ‖ŵ −w‖(γ) ≤ ζ, ζ > 0, γ > 0}, (49)

where we have defined ‖ · ‖(γ) by ‖w‖(γ) =
√
γ‖x‖2 + 1

γ ‖y‖2 in Section 3.3.
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Lemma 10. Consider the standard-form LP (LP). Given τ > 0 and w ∈ X × Rn, if ‖w‖(γ) ≤ τ
and ζ ≤ τ , then

sup
ŵ∈Wζ,γ(w)

{L(x, ŷ)− L(x̂,y)} ≥ ζ

γ + 1/γ + τ
LPMetric(w). (50)

Proof. Let F (w) =

[
ATy + c
b−Ax

]
. Then we have

ρζ,γ(w) := sup
ŵ∈Wζ,γ(w)

{L(x, ŷ)− L(x̂,y)} = sup
ŵ∈Wζ,γ(w)

F (w)T (w − ŵ) ≥ 0, (51)

where the inequality follows from w ∈ Wζ,γ(w).

First, we prove

ρζ,γ(w) ≥ ζ‖max{−ATy − c, 0}‖2
γ

. (52)

If ‖max{−ATy − c, 0}‖2 > 0, for ŵ1 = (x̂1, ŷ1), let x̂1 = x +
ζ

γ‖max{−ATy−c, 0}‖2 max{−ATy − c, 0} ∈ X and ŷ1 = y. Then we have ‖ŵ1 −w‖(γ) = ζ and
thus ŵ1 ∈ Wζ,γ(w). So, as ρζ,γ(w) ≥ F (w)T (w − ŵ1), with the definition of ŵ1, Eq. (52) holds.
If ‖max{−ATy − c, 0}‖2 = 0, then Eq. (52) holds trivially.

Second, we prove

ρζ,γ(w) ≥ ζγ‖Ax− b‖2. (53)

If ‖Ax− b‖2 > 0, for ŵ2 = (x̂2, ŷ2), let x̂2 = x and ŷ2 = y + ζγ
‖Ax−b‖ (Ax− b). Then we have

‖ŵ2 −w‖(γ) = ζ and thus ŵ2 ∈ Wζ,γ(w). Then as ρζ,γ(w) ≥ F (w)T (w − ŵ2), Eq. (53) holds.
If ‖Ax− b‖2 = 0, then Eq. (53) holds trivially.

Third, we prove that

ρζ,γ(w) ≥ ζ

τ
max{cTx+ bTy, 0}. (54)

Note that the inequality holds trivially if cTx + bTy ≤ 0, so we assume that cTx + bTy > 0,
and note that F (w)Tw = cTx + bTy > 0 in this case. This condition implies that w 6= 0, so
we can define ŵ3 = w −min

{
ζ

‖w‖(γ)
, 1
}
w. Then we have ‖ŵ3 −w‖(γ) ≤ ζ

‖w‖(γ)
‖w‖(γ) ≤ ζ.

Meanwhile, we also have x̂3 ≥ x3 −x3 = 0, so that ŵ3 ∈ X ×Rn. Thus, we have ŵ3 ∈ Wζ,γ(w).
Then, with the assumptions ζ ≤ τ and ‖w‖(γ) ≤ τ, together with F (w)Tw > 0, we have

ρζ,γ(w) ≥ min
{ ζ

‖w‖(γ)
, 1
}
F (w)Tw ≥ min

{ ζ
τ
, 1
}
F (w)Tw =

ζ

τ
F (w)Tw =

ζ

τ
(cTx+ bTy),

(55)

completing the proof of the claim (54).

By combining Eqs. (52), (53) and (54), we obtain

(γ + 1/γ + τ)2ρ2
ζ,γ(w) ≥ ζ2(‖max{−ATy − c, 0}‖22 + ‖Ax− b‖22 + max{cTx+ bTy, 0}2)

≥ ζ2(LPMetric(w))2, (56)

from which the result follows.

Lemma 11. Consider the standard-form LP (LP), and let w∗ = (x∗,y∗) be a Nash point (that is, a
solution of the primal-dual form (PD-LP)). For a starting point w0, define ζ = ‖w0 −w∗‖(γ) and
choose γ > 0. Then for all k = 1, 2, . . . , we have

E[‖w̃k −w∗‖(γ)] ≤
√

2‖w0 −w∗‖(γ),

where the expectation is taken w.r.t. all the randomness up to iteration k. Further, forWζ,γ(w̃k)
defined as in (49), we have

E
[

sup
w∈Wζ,γ(w̃k)

{L(x̃k,y)− L(y, ỹk)}
]
≤ 25L̂m

k
‖w0 −w∗‖2(γ). (57)
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Proof. By Theorem 1, we have

E
[γ

4
‖x∗ − xk‖2 +

1

2γ
‖y∗ − yk‖2

]
≤ γ

2
‖x∗ − x0‖2 +

1

2γ
‖y∗ − y0‖2 =

1

2
‖w0 −w∗‖2(γ),

by the definition of ‖ · ‖(γ). Using this definition again, we have that the left-hand side in this
expression is bounded below by 1

4‖wk −w
∗‖2(γ), so that

E
[
‖wk −w∗‖2(γ)] ≤ 2‖w0 −w∗‖2(γ), ∀k ≥ 1. (58)

By convexity of ‖ · ‖2, we obtain

E[‖w̃k −w∗‖2(γ)] = E
[∥∥∥1

k

k∑
i=1

(wi −w∗)
∥∥∥2

(γ)

]
≤ 1

k
E
[ k∑
i=1

‖wi −w∗‖2(γ)

]
≤ 2‖w0 −w∗‖2(γ).

(59)

The first claim of the lemma now follows by applying Jensen’s inequality to this bound.

For ŵ = (x̂, ŷ) ∈ Wζ,γ(w̃k), we have the following bound on E
[
γ‖x̂− x0‖2 + 1

γ ‖ŷ − y0‖2
]
:

E
[
γ‖x̂− x0‖2 +

1

γ
‖ŷ − y0‖2

]
= E

[
‖w0 − ŵ‖2(γ)

]
= E

[
‖w0 −w∗ +w∗ − w̃k + w̃k − ŵ‖2(γ)

]
≤ E

[
(‖w0 −w∗‖(γ) + ‖w∗ − w̃k‖(γ) + ‖w̃k − ŵ‖(γ))

2
]

≤ E
[
3(‖w0 −w∗‖2(γ) + ‖w∗ − w̃k‖2(γ) + ‖w̃k − ŵ‖2(γ))

]
≤ E

[
3(‖w0 −w∗‖2(γ) + 2‖w∗ −w0‖2(γ) + ‖w0 −w∗‖2(γ))

]
= 12‖w0 −w∗‖2(γ), (60)

where the first inequality is by the triangle inequality, the second inequality is by the arithmetic
inequality, the third inequality is by Eq. (59) and our assumption ŵ ∈ Wζ,γ(w̃k) with ζ = ‖w0 −
w∗‖(γ).

For the case of linear programming, the strong convexity constant is σ = 0, so that Ak =
k

2L̂m
in CLVR. Thus, by applying Theorem 1 with Wk = Wζ,γ(w̃k) and ŵ = (x̂, ŷ) =

arg supw=(x,y)∈Wζ,γ(w̃k){L(x̃k,y)− L(x, ỹk)}, and using the definition of ‖ · ‖(γ) and Eq. (60),
we have

E
[

sup
w∈Wζ,γ(w̃k)

{L(x̃k,y)− L(y, ỹk)}
]

≤ 2L̂m

k

(
E
[γ

2
‖x̂− x0‖2 +

1

γ
‖ŷ − y0‖2

]
+
γ

2
‖x∗ − x0‖2 +

1

2γ
‖y∗ − y0‖2

)
≤ 2L̂m

k

(
E
[
‖w0 − ŵ‖2(γ)

]
+

1

2
‖w0 −w∗‖2(γ)

)
≤ 2L̂m

k

(
12‖w0 −w∗‖2(γ) +

1

2
‖w0 −w∗‖2(γ)

)
≤ 25L̂m

k
‖w0 −w∗‖2(γ). (61)

Then with Theorem 1, Lemmas 10 and 11, we give our theorem for the fixed restart strategy.

Theorem 2. Consider the CLVR algorithm applied to the standard-form LP problem (PD-LP), with
input w0 and output w̃k. Given γ > 0, define w∗ = arg minw∈W∗ ‖w0 − w‖(γ), and define
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C0 = γ + 1/γ + (
√

2 + 1)‖w0 −w∗‖(γ) + ‖w∗‖(γ). Then for Hγ defined as in (9), we have

E
[√

dist(w̃k,W∗)(γ)

]
≤ 5

√
L̂mC0

Hγk

√
dist(w0,W∗)(γ),

E
[√

LPMetric(w̃k)
]
≤ 5

√
L̂mC0

Hγk

√
LPMetric(w0).

Proof. Applying Lemma 10 withw = w̃k, τ = ‖w̃k‖(γ) +‖w0−w∗‖(γ) and ζ = ‖w0−w∗‖(γ) ≤
τ , we have

sup
ŵ∈Wζ,γ(w)

{L(x̃k, ŷ)− L(x̂, ỹk)} ≥
‖w0 −w∗‖(γ)LPMetric(w̃k)

γ + 1/γ + ‖w̃k‖(γ) + ‖w0 −w∗‖(γ)
. (62)

As x2

y is jointly convex in x, y on the domain {(x, y) : x ∈ R, y > 0} [12, Example 3.18] using

Jensen’s inequality, we have that E[x
2

y ] ≥ (E[x])2

E[y] . (In our case, this simply follows as x, y depend on

the same source of randomness.) Applying this inequality to (62) with x =
√

LPMetric(w̃k) and
y = γ + 1/γ + ‖w̃k‖(γ) + ‖w0 −w∗‖(γ), we obtain

E
[

sup
ŵ∈Wζ,γ(w̃k)

{L(x̃k, ŷ)− L(x̂, ỹk)}
]
≥ E

[ ‖w0 −w∗‖(γ)(
√

LPMetric(w̃k))2

γ + 1/γ + ‖w̃k‖(γ) + ‖w0 −w∗‖(γ)

]

≥
‖w0 −w∗‖(γ)

(
E
[√

LPMetric(w̃k)
])2

E
[
γ + 1/γ + ‖w̃k‖(γ) + ‖w0 −w∗‖(γ)

] . (63)

Using Lemma 11, we have
E
[
γ + 1/γ + ‖w̃k‖(γ) + ‖w0 −w∗‖(γ)

]
= γ + 1/γ + ‖w0 −w∗‖(γ) + E[‖w̃k‖(γ)]

≤ γ + 1/γ + ‖w0 −w∗‖(γ) + E[‖w∗‖(γ) + ‖w̃k −w∗‖(γ)]

≤ γ + 1/γ + ‖w0 −w∗‖(γ) + ‖w∗‖(γ) +
√

2‖w0 −w∗‖(γ)

= γ + 1/γ + (
√

2 + 1)‖w0 −w∗‖(γ) + ‖w∗‖(γ). (64)
By combining Eqs. (63) and (64) and using the definition of C0, we have

E
[

sup
ŵ∈Wζ,γ(w̃k)

{L(x̃k, ŷ)− L(x̂, ỹk)}
]
≥
‖w0 −w∗‖(γ)

C0

(
E
[√

LPMetric(w̃k)
])2

≥
‖w0 −w∗‖(γ)

C0

(
E
[√

Hγdist(w̃k,W∗)(γ)

])2

, (65)

where the last inequality is by the definition of Hoffman constant in Eq. (9). Meanwhile, by Lemma
11, we have:

E
[

sup
ŵ∈Wζ,γ(w̃k)

{L(x̃k, ŷ)− L(x̂, ỹk)}
]
≤ 25L̂m

k
‖w0 −w∗‖2(γ). (66)

Now, recalling that w∗ = arg minw∈W∗ ‖w0 −w‖(γ) and using Eq. (9), we have

‖w0 −w∗‖(γ) = dist(w0,W∗)(γ) ≤
1

Hγ
LPMetric(w0). (67)

By combining Eqs. (65)-(67), we have
1

C0

(
E
[√

Hγdist(w̃k,W∗)(γ)

])2

≤ 1

C0

(
E
[√

LPMetric(w̃k)
])2

≤ 25L̂m

k
dist(w0,W∗)(γ)

≤ 25L̂m

Hγk
LPMetric(w0). (68)

Both bounds follow from this chain of inequalities.
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Finally, we summarize the adaptive restart strategy in Algorithm 4.

Algorithm 4 Lazy CLVR with Adaptive Restarts

1: Input: ε > 0, x0 ∈ X ,y0 ∈ Rn, γ > 0, L̂ > 0, K, K̂, m, {S1, S2, . . . , Sm},
{C1, C2, . . . , Cm}

2: t = 0, x
(0)
0 = x0, y(0)

0 = y0, w
(0) = (x

(0)
0 ,y

(0)
0 )

3: repeat
4: Run Lazy CLVR (Algorithm 2) until LPMetric(w(t+1)) ≤ 1

2LPMetric(w(t)) where,
w(t+1) = w̃

(t)
K = (x̃

(t)
K , ỹ

(t)
K ) and x̃(t)

K , ỹ
(t)
K are the output points of Lazy CLVR

5: t = t+ 1
6: until LPMetric(w(t)) ≤ ε
7: Return: w(t)

C Omitted proofs from Section 4

C.1 DRO with f -divergence-based ambiguity set

Theorem 3. Let X be a compact convex set. Then the DRO problem in Eq. (10) is equivalent to

min
x,u,v,w,µ,q,γ

{
γ +

ρµ1

n
+

1

n

n∑
i=1

µif
∗
( qi
µi

)}
s. t. w + v − q

n
− γ1n = 0n,

ui = bia
T
i x, i ∈ [n]

µ1 = µ2 = · · · = µn,

g(ui) ≤ wi, i ∈ [n]

qi ∈ µi dom(f∗), i ∈ [n]

vi ≥ 0, µi ≥ 0, i ∈ [n]

x ∈ X .

Proof. Since the context is clear, to simplify the notation, in the following we use P to denote Pρ,n.
First, using Sion’s minimax theorem, we have that

min
x∈X

sup
p∈P

n∑
i=1

pig(bia
T
i x) = sup

p∈P
min
x∈X

n∑
i=1

pig(bia
T
i x).

Introducing auxiliary variables w and u, the problem is further equivalent to

sup
p∈P

min
x∈X ,w,u:

ui=bia
T
i x,i∈[n],

g(ui)≤wi,i∈[n]

pTw ≡ min
x∈X ,w,u:

ui=bia
T
i x,i∈[n],

g(ui)≤wi,i∈[n]

sup
p∈P

pTw,

where the last equivalence is by applying minimax equality, which holds due to compactness of
P [56]. Hence, we can conclude that

min
x∈X

sup
p∈P

n∑
i=1

pig(bia
T
i x) = min

x∈X ,w,u:

ui=bia
T
i x,i∈[n],

g(ui)≤wi,i∈[n]

sup
p∈P

pTw. (69)
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For a fixed tuple (x,w,u), using Lagrange multipliers to enforce the constraints from P , we can
further write

sup
p∈P

pTw = − inf
p∈P
−pTw

= − inf
p∈Rn

(
− pTw + sup

v≥0,γ∈R,µ≥0

(
− pTv + γ

( n∑
i=1

pi − 1
)

+ µ
(
Df (p‖1/n)− ρ

n

)))
= sup

p∈Rn
inf

v≥0,γ∈R,µ≥0

(
pTw + pTv − γ

( n∑
i=1

pi − 1
)
− µ

(
Df (p‖1/n)− ρ

n

))
.

Now, using the definitions of Df and the convex conjugate of f , we have

Df (p‖1/n) =

n∑
i=1

1

n
f(npi) =

n∑
i=1

1

n
sup

νi∈dom(f∗)

(
npiνi − f∗(νi)

)
. (70)

As a result, we have

inf
µ≥0
−µ
(
Df (p‖1/n)− ρ

n

)
= inf

µ≥0
−µ
n

( n∑
i=1

sup
νi∈dom(f∗),i∈[n]

(
npiνi − f∗(νi)

)
− ρ
)

= inf
µ≥0,νi∈dom(f∗),i∈[n]

−µ
n

( n∑
i=1

(
npiνi − f∗(νi)

)
− ρ
)

= inf
µ≥0,qi∈µ dom(f∗),i∈[n]

1

n

n∑
i=1

(
− piqi + µf∗

( qi
nµ

))
+
µρ

n

= inf
µ1=µ2=···=µn≥0,
qi∈µi dom(f∗),i∈[n]

1

n

n∑
i=1

(
− piqi + µif

∗( qi
nµi

))
+
µ1ρ

n
,

where the first equality is by Eq. (70), the third one is by the variable substitution qi = nµνi, and
the last one is by introducing µ1, µ2, . . . , µn to replace µ. Then each nµif∗

(
qi
nµi

)
(i ∈ [n]) is a

perspective function of f∗ [12], which is jointly convex w.r.t. (µi, qi). Hence, we can conclude that

sup
p∈P

pTw

= sup
p∈Rn

inf
γ∈R,v≥0,

µ1=µ2=···=µn≥0,
qi∈µi dom(f∗),i∈[n]

(
pTw + pTv − γ

( n∑
i=1

pi − 1
)

+
1

n

n∑
i=1

(
− piqi + µif

∗( qi
nµi

))
+
µ1ρ

n

)

= inf
γ∈R,v≥0,

µ1=µ2=···=µn≥0,
qi∈µi dom(f∗),i∈[n]

sup
p∈Rn

(
pTw + pTv − γ

( n∑
i=1

pi − 1
)

+
1

n

n∑
i=1

(
− piqi + µif

∗( qi
nµi

))
+
µ1ρ

n

)
,

where the last line is by strong duality. Thus, combining with Eq. (69), we conclude that the original
DRO problem with f -divergence based ambiguity set is equivalent to the following problem:

min
x,u,v,w,µ,q,γ

max
p∈Rn

{
γ +

ρµ1

n
+

1

n

n∑
i=1

µif
∗
( qi
µi

)
+ pT

(
w + v − q

n
− γ1n

)}
s. t. ui = bia

T
i x, i ∈ [n]

µ1 = µ2 = · · · = µn,

g(ui) ≤ wi, i ∈ [n]

qi ∈ µi dom(f∗), i ∈ [n]

vi ≥ 0, µi ≥ 0, i ∈ [n]

x ∈ X .
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Finally, noticing that the maximization problem over p ∈ Rn enforces the equality constraint
w + v − q

n − γ1n = 0n, we obtain

min
x,u,v,µ,q,γ

{
γ +

ρµ1

n
+

1

n

n∑
i=1

µif
∗( qi
µi

)}
s. t. w + v − q

n
− γ1n = 0n,

ui = bia
T
i x, i ∈ [n]

µ1 = µ2 = · · · = µn,

g(ui) ≤ wi, i ∈ [n]

qi ∈ µi dom(f∗), i ∈ [n]

vi ≥ 0, µi ≥ 0, i ∈ [n]

x ∈ X ,
as claimed.

Example: Conditional Value at Risk (CVaR) with hinge loss. As a specific example of an
application of Theorem 3, we consider CVaR at level α ∈ (0, 1), which leads to the optimization
problem:

min
x∈Rd

sup
p≥0,1Tnp=1

pi≤ 1
αn (i∈[d])

n∑
i=1

pig(bia
T
i x), (71)

where g(ui) = max{0, 1− ui} is the hinge loss. Here the ambiguity set constraint reduces to simple
bounds pi ≤ 1

αn for i ∈ [n], so the reformulation based on the convex perspective function can be
avoided altogether and replaced by simple Lagrange multipliers for this linear constraint. In particular,
in the proof of Theorem 3, we can write

sup
p∈P

pTw = sup
p∈Rn

inf
v≥0,γ∈R,µ≥0

(
pTw + pTv − γ

( n∑
i=1

pi − 1
)
−

n∑
i=1

µi

(
pi −

1

αn

))
= sup
p∈Rn

inf
v≥0,γ∈R,µ≥0

(
γ + pT (w + v − γ1n − µ) +

1

αn
µT1n

))
= inf
v≥0,γ∈R,µ≥0

sup
p∈Rn

(
γ + pT (w + v − γ1n − µ) +

1

αn
µT1n

))
.

Following the argument from the proof of Theorem 3, and expressing wi ≥ g(ui) equivalently as the
pair of constraints wi ≥ 0 and wi ≥ 1− ui, the problem reduces to

min
x,u,v,w,µ,γ

{
γ +

1

αn
µT1n

}
s. t. w + v − γ1n − µ = 0n,

ui = bia
T
i x, i ∈ [n],

wi ≥ 0, wi ≥ 1− ui, i ∈ [n],

vi ≥ 0, µi ≥ 0, i ∈ [n],

(72)

which is a linear program. To write it in the standard form, we further introduce slack variables
s ∈ Rn, s ≥ 0, to replace inequality constraints wi ≥ 1 − ui by si − ui − wi = −1. For
implementation purposes, we define X to be the set of simple non-negativity constraints (wi ≥
0, si ≥ 0,, vi ≥ 0, µi,≥ 0, ∀i ∈ [n]) from Eq. (72). The problem then becomes

min
x,u,v,w,µ,s,γ

{
γ +

1

αn
µT1n

}
s. t. w + v − γ1n − µ = 0n,

ui − biaTi x = 0, i ∈ [n],

s− u−w = −1n,
w ≥ 0n, v ≥ 0n, µ ≥ 0n, s ≥ 0n.
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C.2 DRO with Wasserstein metric-based ambiguity set

Definition 1. Let µ and ν be two probability distributions supported on Θ = Rd × {1,−1} and
let Π(µ,ν) denote the set of all joint distributions between µ and ν. Then the Wasserstein metric
between µ and ν is defined by

W (µ,ν) = inf
π∈Π(µ,ν)

∫
Θ×Θ

ζ(ξ, ξ′)π(dξ, dξ′), (73)

where ξ, ξ′ ∈ Θ and ζ(·, ·) : Θ×Θ→ R+ is a convex cost function defined by

ζ((a, b), (a′, b′)) = ‖a− a′‖+ κ|b− b′|,

where ‖ · ‖ denotes a general norm and κ > 0 is used to balance the feature mismatch and label
uncertainty. Let Q = 1

n

∑n
i=1 δ(ai,bi), where δ(ai,bi) is the Dirac Delta function (or a point mass) at

point (ai, bi). Then, the Wasserstein metric based ambiguity set is defined as

Pρ,κ =
{
P : W (P,Q) ≤ ρ

}
. (74)

Assumption 5. R 3M = supθ∈dom(g∗) |θ|.

We first show the following auxiliary lemma which is used in the proof of Theorem 4. A similar
result for the special case of a logistic loss function can be found in [52].

Lemma 12. Let (a′, b′) ∈ Rd × {1,−1} be a given pair of data sample and label. Then, for every
λ > 0, we have

sup
a∈Rd

g(b′aTw)− λ‖a− a′‖ =

{
g(b′a′Tw), if ‖w‖∗ ≤ λ/M
+∞, otherwise

. (75)

Proof. Since g is assumed to be proper, convex, and lower semicontinuous, by the Fenchel-Moreau
theorem, it is equal to its biconjugate. Applying this property, we have

sup
a∈Rd

{g(b′aTw)− λ‖a− a′‖}

= sup
a∈Rd,

θ∈dom(g∗)

{
θb′aTw − g∗(θ)− λ‖a− a′‖

}
= sup

a∈Rd,
θ∈dom(g∗)

{
θb′(a− a′)Tw + θb′(a′)Tw − g∗(θ)− λ‖a− a′‖.

}
Applying the change of variable v := a− a′, we further have

sup
a∈Rd

{g(b′aTw)− λ‖a− a′‖}

= sup
v∈Rd,

θ∈dom(g∗)

{
θb′vTw + θb′(a′)Tw − g∗(θ)− λ‖v‖

}
= sup

θ∈dom(g∗)

{
1{‖θb′w‖∗≤λ} + θb′(a′)Tw − g∗(θ)

}
=

{
g(b′(a′)Tw), if supθ∈dom(g∗) ‖θb′w‖∗ ≤ λ
+∞, otherwise

,

where the second equality is by the convex conjugate of a norm ‖ · ‖ being equal to the convex
indicator of the unit ball w.r.t. the dual norm ‖ · ‖∗. Finally, it remains to use that, by Assumption 5,
supθ∈dom(g∗) |θ| = M.

Then following [52, Theorem 1], we provide reformulations of the problem from Eq. (11) that can be
addressed by computationally efficient solvers.
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Theorem 4. The optimization problem from Eq. (11) is equivalent to:

min
w,λ,u,v,s,t

ρλ+
1

n

n∑
i=1

si

s. t. ui = bia
T
i w, i ∈ [n],

vi = −ui, i ∈ [n],

ti = 2κλ+ si, i ∈ [n],

g(ui) ≤ si, i ∈ [n],

g(vi) ≤ ti, i ∈ [n],

‖w‖∗ ≤ λ/M.

(76)

Proof. Let z = (a, b) ∈ Θ := Rd × {1,−1} and let hw(z) := g(baTw). Then by the definition of
the Wasserstein metric,

sup
P∈Pρ,κ

EP[g(baTw)] =

{
supπ∈Π(P,P̂n)

∫
Θ
hw(z)π(dz,Θ)

s. t.
∫

Θ×Θ
ζ(z, z′)π(dz,dz′) ≤ ρ.

(77)

Assume that the conditional distribution of z given z′ = (ai, bi) is Pi, for all i ∈ [n]. Then, based on
the definition of Pn = 1

n

∑n
i=1 δ(ai,bi), we have

π(dz,dz′) =
1

n

n∑
i=1

δ(ai,bi)P
i(dz). (78)

As a result, the problem from Eq. (77) is equivalent to

sup
P∈Pρ,κ

EP[g(baTw)] =


supPi

1
n

∑n
i=1

∫
Θ
hw(z)Pi(dz)

s. t. 1
n

∑n
i=1

∫
Θ
ζ(z, z′)Pi(dz) ≤ ρ∫

Θ
Pi(dz) = 1.

(79)

Then substituting in z = (a, b), using that the domain of y is {1,−1}, and decomposing Pi into
unnormalized measures P±1(da) = Pi(da, {b = ±1}) supported on Rd, the RHS of Eq. (79) can
be simplified to

sup
Pi±

1

n

n∑
i=1

∫
Rd

(
hw(a, 1)Pi1(da) + hw(a,−1)Pi−1(da)

)
s. t.

1

n

n∑
i=1

∫
Rd

(
ζ((a, 1), (ai, bi))Pi1(da) + ζ((a,−1), (ai, bi))Pi−1(da)

)
≤ ρ∫

Rd

(
Pi1(da) + Pi−1(da)

)
= 1.

With the definition of the cost function ζ((a, b), (a′, b′)) = ‖a− a′‖+ κ|b− b′|, it follows that

1

n

n∑
i=1

∫
Rd
ζ((a, 1), (ai, bi))Pi1(da) + ζ((a,−1), (ai, bi))Pi−1(da)

=
1

n

∫
Rd

∑
bi=1

[‖a− ai‖Pi1(da) + ‖a− ai‖Pi−1(da) + 2κPi−1(da)]

+
1

n

∫
Rd

∑
bi=−1

[‖a− ai‖Pi−1(da) + ‖a− ai‖Pi1(da) + 2κPi1(da)]

=
2κ

n

∫
Rd

(∑
bi=1

Pi−1(da) +
∑
bi=−1

Pi1(da)
)

+
1

n

∫
Rd

n∑
i=1

‖a− ai‖(Pi−1(da) + Pi1(da)). (80)
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Thus, we have

sup
P∈Pρ,κ

EP[g(baTw)] =



sup
Pi±1

1

n

n∑
i=1

∫
Rd

(
hw(a, 1)Pi1(da) + hw(a,−1)Pi−1(da)

)
s. t.

2κ

n

∫
Rd

(∑
bi=1

Pi−1(da) +
∑
bi=−1

Pi1(da)

)

+
1

n

∫
Rd

n∑
i=1

‖a− ai‖(Pi−1(da) + Pi1(da)) ≤ ρ∫
Rd

(
Pi1(da) + Pi−1(da)

)
= 1.

The above problem w.r.t. Pi±1 is an infinite-dimensional linear program with a finite number of
constraints. By [53, Proposition 3.4], we get the following equivalent dual formulation:

sup
P∈Pρ,κ

EP[g(baTw)] =



min
λ,si

ρλ+
1

n

n∑
i=1

si

s. t. sup
a∈Rd

hw(a, 1)− λ‖a− ai‖ − λκ(1− bi) ≤ si, i ∈ [n]

sup
a∈Rd

hw(a,−1)− λ‖a− ai‖ − λκ(1 + bi) ≤ si, i ∈ [n]

λ ≥ 0.

Then, recalling that hw(a,±1) is short for g(±aTw), by Lemma 12, we have

sup
a∈Rd

hw(a,±1)− λ‖a− ai‖ =

{
g(±aTi w), if supθ∈dom(g∗) ‖θw‖∗ ≤ λ
+∞, otherwise.

Finally, the resulting reformulation is

min
w,λ,s

ρλ+
1

n

n∑
i=1

si

s. t. g(bia
T
i w) ≤ si, i ∈ [n],

g(−biaTi w)− 2λκ ≤ si, i ∈ [n],

sup
θ∈dom(g∗)

‖θw‖∗ ≤ λ.

Finally, recalling that, by assumption, supθ∈dom(g∗) |θ| = M, it follows that the constraint
supθ∈dom(g∗) ‖θw‖∗ ≤ λ is equivalent to ‖w‖∗ ≤ λ/M. Meanwhile, by introducing ui =

bia
T
i w, vi = −ui(i ∈ [n]) and si, ti(i ∈ [n], we obtain Theorem 4.

In Theorem 4, when we assume that the conic constraints g(u) ≤ s and ‖w‖∗ ≤ λ/M in Eq. (76)
admit efficient proximal operators, we can formulate this problem as (PD-GLP) and apply CLVR. The
resulting complexity bounds are similar to those discussed above for the f -divergence formulation.

D Experiment details

D.1 Comparison of adaptive restart schemes

We provide a brief empirical comparison between our adaptive restart scheme that uses LPMetric
and the adaptive restart scheme using the normalized duality gap proposed in [10]. We compared the
performance of PDHG on benchmark problem sets qap10, qap15, nug08, and nug20 used in [10],
using the two adaptive restart criteria. We ran PDHG until reaching accuracy as described in [10]
(that is, until normalized duality gap is at most 10−6 and primal and dual infeasibility is at most
10−8).

37



Table 4: Number of iterations required for the normalized duality
gap and primal and dual infeasibility to fall below 10−6 and 10−8,
respectively.

Problem Name Adaptive Normalized Duality Gap Adaptive LPMetric
qap10 13041 14521
qap15 12561 961
nug08 841 1481
nug20 22001 16281

Table 4 shows that the two restart criteria give similar performance in terms of iteration complexity.
Normalized gap is better on qap10 and nug08, while LPMetric is better on qap15 and nug20. For
further details, Figure 2 plots the normalized duality gap vs iteration count. The two adaptive restart
schemes lead to similar performance of PDHG over iterations. Comparisons based on wall-clock
time are shown in Figure 3; the behavior is similar. We conclude that our restart criterion based on
LPMetric seems comparable with normalized duality gap, in terms of iteration complexity.

Figure 2: Comparisons of restart schemes that use LPMetric and that use the normalized duality
gap against number of iterations. The plots from left to right and then top to bottom are for qap10,
qap15, nug08, and nug20.

D.2 Details of experiments in Section 5

When we consider the DRO problem with Wasserstein metric of `1-norm and with hinge loss, we
observe that the reformulation described in Theorem 4 can be further reformulated into an ordinary LP,
as the dual norm of `1 norm is `∞ norm and hinge loss can be decomposed linearly with additional
auxiliary variables. Thus in the following instances we consider, we apply our adaptive restart scheme
with respect to LPMetric as illustrated in Section 3.3 to achieve heuristic linear convergence rate in
terms of the number of data passes. We compare our CLVR method with three representative methods:
PDHG [15], SPDHG [16] and PURE-CD [5]. We implemented CLVR and other algorithms in Julia,
optimizing all implementations to the best of our ability.8 For SPDHG, whose per-iteration cost is at
least O(d), we consider a large batch size of 50 to balance the effect of the O(d) cost and improve

8Julia is particularly designed for high performance numerical computation.
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Figure 3: Comparisons of restart schemes that use LPMetric and that use the normalized duality gap
against wall clock time in terms of seconds. The plots from left to right and then top to bottom are
for qap10, qap15, nug08, and nug20.

the overall efficiency. Meanwhile, PURE-CD with block size 1 is already well suited to sparsity. For
CLVR, we experiment with block sizes 1 and 10.

We conducted our experiments on LibSVM [17] datasets a9a, gisette, and rcv1.binary, each
with different sparsity levels. We run each algorithm using one CPU core, on a Linux machine with a
second generation Intel Xeon Scalable Processor (Cascade Lake-SP) with 128 GB of RAM. Because
the weight parameter γ between primal and dual variables (see Theorem 1) strongly influences
empirical performance, we tune it for all datasets by trying the values {10−i} for i ∈ Z, for each of
the methods. We set the Lipschitz constant of PDHG to be the largest singular value of the constraint
matrix in the LP formulation. For PURE-CD and CLVR with block size 1, because the rows of the
matrix are normalized, we set the Lipschitz constant to 1. For CLVR with block size 10 and SPDHG
with block size 50, the Lipschitz constants are tuned to 3 and 9, respectively.

Remark 3 (Comparisons of using different block sizes). We conducted experiments to compare the
practical performance of CLVR against different choices of block sizes, with results shown in Figure 4.
We ran the DRO with Wasserstein metric using the same setup as described in Section 5, on the rcv1
dataset and using an early stopping criterion of LPMetric at 10−1. In the plot, we can see that
CLVR converges to an approximate solution fastest when the block size is set to 10, providing support
for our choice of 10 in Section 5. As illustrated in Figure 1, CLVR is most efficient in terms of the
number of data passes when the block size is 1, but in terms of the execution time, running CLVR with
larger block size yields better performance. We attribute this phenomenon to the instruction-level
parallelism [28] in modern processors, allowing more computations to be completed in the same
number of clock cycles.

In Table 5, we list information about the three datasets and the corresponding matrices in the
reformulations. As we see, due to the sparse connectivity of auxiliary variables, all the matrices in
reformulations are quite sparse. As a commonly adopted preprocessing step for LP, we normalize the
matrix in the standard-form LP so that each row has Euclidean norm 1.

Remark 4 (Performance comparison using multiple cores). We conducted further experiments to
examine the effects of allowing the algorithms to run on more computing cores. However, we did not
observe any meaningful difference in performances in terms of wall-clock time when we repeated the
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Figure 4: Comparison of the performance of CLVR with various choices of blocksizes.

Table 5: The dimension and sparsity of the original datasets and the corresponding matrices in
reformulations.

Dataset Original (d, n) #nonzeros / (d× n) Reformulated (d, n) #nonzeros / (d× n)
a9a (123, 32561) 0.11 (130738, 97929) 9.6× 10−5

gisette (5000, 6000) 0.99 (44002, 28000) 4.9× 10−2

rcv1 (47236, 20242) 1.5× 10−3 (269914, 155198) 8.8× 10−5

experiments described above and in Section 5 using 2 CPU cores per algorithm. Our interpretation of
this observation is that because most of the steps within CLVR and other algorithms we are comparing
against are simple and cheap, involving very few large matrix-vector multiplications and no matrix
factorization, the practical performance of algorithms becomes memory-bound, hence additional
cores do not make much difference.
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