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Abstract

The mixing time of the Markov chain induced by a policy limits performance in
real-world continual learning scenarios. Yet, the effect of mixing times on learning
in continual reinforcement learning (RL) remains underexplored. In this paper,
we characterize problems that are of long-term interest to the development of
continual RL, which we call scalable MDPs, through the lens of mixing times. In
particular, we theoretically establish that scalable MDPs have mixing times that
scale polynomially with the size of the problem. We go on to demonstrate that
polynomial mixing times present significant difficulties for existing approaches,
which suffer from myopic bias and stale bootstrapped estimates. To validate our
theory, we study the empirical scaling behavior of mixing times with respect to the
number of tasks and task duration for high performing policies deployed across
multiple Atari games. Our analysis demonstrates both that polynomial mixing
times do emerge in practice and how their existence may lead to unstable learning
behavior like catastrophic forgetting in continual learning settings.

1 Introduction

Continual reinforcement learning (RL) [1] is an aspirational field of research confronting the dif-
ficulties of long-term, real-world applications by studying problems of increasing scale, diversity,
and non-stationarity. The practical requirement for researchers to work on problems of reasonable
complexity in the short-term presents a meta-challenge: choosing the right small-scale problems
so that the approaches we develop scale up to the use cases of the future. Here, we address this
meta-challenge by formalizing RL problems that vary in size and by analyzing the scaling behavior
of popular RL algorithms. In particular, we analyze on the often ignored mixing time that expresses
the amount of time until the agent-environment dynamics converge to some stationary behaviour.

Towards this end, we specifically make the following contributions in this work:

1. Scalable MDPs: We propose the formalism of scalable MDPs in Definition 1 to characterize
an abstract class of MDPs where the MDPs within the class are differentiated based on a
changing scale parameter. Understanding the influence of this scale parameter on learning
can promote better understanding of the meta-challenge of extrapolating our results on small
scale problems to large scale problems of the same class.

2. Polynomial Mixing Times: Theorem 1 establishes the key result of this paper that as any
scalable MDP is scaled, its mixing time must grow polynomially as a function of the growing
state space. This has major implications for regret analysis in these MDPs.

3. Myopic Bias During Scaling: We demonstrate in Corollaries 2, 3, and 4 that Theorem
1 implies traditional approaches to RL cannot efficiently scale to problems of large size
without experiencing myopic bias in optimization that slows down learning.
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4. Empirical Analysis of Mixing for Continual RL: We back up our theory with empirical
analysis of mixing time scaling in continual RL settings based on the Atari and Mujoco
benchmarks. Our analysis provides insight into why agents experience significant catas-
trophic forgetting or other optimization instability when learning in these domains. We hope
that our analysis into the fundamental driver of these issues can open the door for more
successful and principled approaches to continual RL domains like these moving forward.

We refer readers to Appendix D for detailed proofs of all propositions and theorems in our paper.

2 Formalizing Our Continual RL Setting

Aiming to characterize a broad range of settings, we focus on the formulation of RL in continuing
environments. As explained in Khetarpal et al. [1], not only are supervised learning and episodic RL
special cases of RL in continuing environments, but so are their non-stationary variants (continual
supervised learning and continual episodic RL), despite violating the stationarity assumptions of
their root settings. Indeed, approaches that do not acknowledge the more general RL in continuing
environments setting exhibit myopic bias in their optimization when faced with non-stationarity [1].

Unfortunately, the popular discounted reward setting inserts the very same kind of myopic bias
in optimization that we would like to avoid [2]. As typically implemented, discounting does not
correspond to the maximization of any objective function over a set of policies [3] and the policy
gradient is not the gradient of any function [4]. These fundamental issues do not resolve as the discount
factor approaches 1 [3] and discounting does not influence the ordering of policies, suggesting it likely
has no role to play in the definition of the control problem [5]. In contrast, the average reward per
step objective, which explicitly includes an average over the stationary distribution, avoids inducing
myopic biases and hence is well-suited for continual RL problems [5, 1].

2.1 Average Reward RL in Continuing Environments

RL in continuing environments is typically formulated using a finite, discrete-time, infinite horizon
Markov Decision Process (MDP) [6, 5], which is a tupleM = 〈S,A, T,R〉, where S is the set of
states,A is the set of actions,R : S×A → [0, Rmax] is the reward function, and T : S×S×A → [0, 1]
is the environment transition probability function. At each time step, the learning agent perceives
a state s ∈ S and takes an action a ∈ A drawn from a policy π : S × A → [0, 1] with internal
parameters θ ∈ Θ. The agent then receives a reward R(s, a) and with probability T (s′|s, a) enters
next state s′. Markov chains may be periodic and have multiple recurrent classes, but optimality is
difficult to define in such cases [7], making the following assumption necessary for analysis:

Assumption 1 All stationary policies are aperiodic and unichain, meaning they give rise to a Markov
chain with a single recurrent class that is recurrent in the Markov chain of every policy.2

Any RL problem may be modified such that Assumption 1 holds by adding an arbitrarily small
positive constant ε to all transition probabilities in T (s′|s, a) and renormalizing in which case the
effect on the objective of each stationary policy is O(ε) [8]. An important corollary to Assumption 1
is that the steady-state distribution µπ induced by the policy π is independent of the initial state:

Corollary 1 All stationary policies π induce a unique steady-state distribution
µπ(s) = limt→∞ Pπ(st = s|s0) that is independent of the initial state such that∑
s∈S µ

π(s)
∑
a∈A π(a|s)T (s′|s, a) = µπ(s′) ∀s′ ∈ S.

Corollary 1 implies that the long-term rewards of any π will be independent of the current state. As
such, the average reward per step objective ρ(π) can be defined independently of its starting state [5]:

ρ(π) := lim
h→∞

1

h

h∑
t=1

Eπ
[
R(st, at)

]
= lim
t→∞

Eπ
[
R(st, at)

]
=
∑
s∈S

µπ(s)
∑
a∈A

π(a|s)R(s, a) . (1)

Computing the average reward with the last expression is limited by the amount of time the Markov
chain induced by the policy Tπ(s′|s) =

∑
a∈A π(a|s)T (s′|s, a) needs to be run for before reaching

2This corresponds to what is called an ergodicity assumption for all stationary policies in [5].
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the steady-state distribution µπ(s). This amount of time is referred to in the literature as the mixing
time of the induced Markov chain. We denote tπmix(ε) as the ε-mixing time of the chain induced by π:

tπmix(ε) := min
{
h
∣∣∣max
s0∈S

dTV
(
Pπ(sh = ·|s0), µπ(·)

)
≤ ε
}

where dTV is the total variation distance between the two distributions. The so-called conventional
mixing time is defined as tπmix ≡ tπmix(1/4). The conventional mixing time only gives insight about
distributional mismatch with respect to the steady-state distribution, which led [9] to introduce the
notion of a mismatch with respect to the reward rate. The ε-return mixing time is a measure of the
time it takes to formulate an accurate estimate of the true reward rate. More formally, if we denote
the h-step average undiscounted return starting from state s as ρ(π, s, h), then we define the ε-return
mixing time as:

tπret(ε) := min
{
h
∣∣∣|ρ(π, s0, h

′)− ρ(π)| ≤ ε, ∀s0 ∈ S and ∀h′ ≥ h
}

(2)

We will come back to this definition when we present our experiments. As emphasized in Levin and
Peres [10], however, one should not get bogged down in the use-case specific definitions of mixing
time (we prove their equivalent scaling behaviour in fact, c.f. Proposition 1 ). Rather, it is their shared
property of being determined by both a policy π and environmentM, and not simply a property of
the environment itself, that is important. Thus the environment’s contribution can be assessed only
through mixing times obtained from extreme policies such as the optimal policy, tπ

∗

mix.

An alternative approach for quantifying mixing is by considering the structure of the transition matrix
Tπ(s′|s) induced by π. It is well known that the mixing properties of a Markov chain are governed by
the spectral gap derived from the eigenvalues of the matrix Tπ(s′|s). Unfortunately, it is difficult to
reason about the spectral gap of a class of MDPs directly. Towards this end, one useful interpretation
of a Markov chain is as a random walk over a graph G(π, T ) with vertex set S and edge set {(s, s′)},
for all s and s′ satisfying Tπ(s′|s) + Tπ(s|s′) > 0. The diameter Dπ of the Markov chain induced
by π is thus the diameter or maximal graph distance of G(π, T ). It is defined using the hitting time
tπhit(s1|s0), the first time step in which s1 is reached following the Markov chain Tπ(s′|s) from s0,

Dπ := max
s0,s1∈S

Eπ
[
tπhit(s1|s0)

]
; D∗ := min

π
Dπ . (3)

D∗ then denotes the minimum diameter achieved by any policy. All MDPs that follow Assumption
1 have finite diameter Dπ for all policies [11]. Levin and Peres [10] (eq. 7.4) established the
relationship, 2tπmix ≥ Dπ, so that the diameter provides a lower bound for the mixing time and thus
serves as a very relevant quantity when conducting mixing time analyses.

2.2 The Role Of Tasks And Non-stationarity

The preceding single-task formulation of RL in continuing environments can, in fact, be used to
formulate continual RL, which typically makes notions of multiple tasks and non-stationarity explicit.
This is indeed a useful construct because arbitrary non-stationarity precludes any consistent signal
to learn from, and thus further assumptions about the environment structure must be made to make
progress [1]. In this paper, we consider tasks as sub-regions of the total MDP (which alternatively
can be thought of as independent MDPs connected together) and we assume the transition dynamics
between and within tasks are both stationary. As highlighted in [1], this setting is quite general as
it is capable of modeling many continual RL problems. For example, it easily extends to partially
observable variants: if the task component is not directly observed, the problem appears non-stationary
from the perspective of an agent that learns from observations of only the within-task state. That
said, the continual learning literature demonstrates that optimization issues are generally experienced
whether task labels are observed or not [12]. Our analysis of mixing times in this paper is an attempt
to understand these difficulties even when the total MDP is fully observable and stationary.

To help the reader picture tπmix in continual RL, we offer the example depicted in Figure 1. Here, the
agent’s state space S is decomposed into a task component, z ∈ Z and a within-task component,
x ∈ Xz . For a policy, π, the pair of Markov chains induced by marginalizing over x and over z have
diameters Dπ

z and Dπ
x , respectively. Using the result connecting mixing times and diameters here,

we can establish a universal rule for problems of this type: 2tπmix ≥ Dπ ≥ Dπ
x ≥ Dπ

z , where Dπ is
the diameter over the entire state space. This rule highlights the intimate connection between mixing
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Figure 1: Continual RL Setting: The state space s ∈ S is decomposed as s = [x, z] where z ∈ Z is
the task and x ∈ Xz is the within-task state. The mixing time, tπmix, is lower-bounded by the diameter
over the full state space Dπ. The latter is lower-bounded by the diameter over the within-task state
space Dπ

x , which in turn is lower-bounded by the diameter over the space of tasks, Dπ
z .

times and continual RL: task locality and bottleneck structure inherently lead to environments with
correspondingly high mixing times due to high minimum diameters between states in different tasks.

3 Scalable MDPs

In this section, we formalize the notion of scaling in the context of MDPs and provide intuition about
the effect of this scaling with the aid of the schematic shown in Figure 2. We assume MDPs can
be described in terms of an n-dimensional parameter vector q ∈ Rn, and that some subset of these
dimensions are the parameters of interest that will be scaled up. We would like to analyze the effect
of this scaling on mixing times.3 With reference to Figure 1, these parameters can be non-spatial
such as the number of tasks, or spatial such as the size of an individual task. More generally and
with reference to Figure 2, the effect of scaling up parameters can contribute to longer mixing times
by adding bottleneck states (akin to increasing the number of tasks) and increasing the size of the
regions generated by a bottleneck (akin to increasing the size of each task). How parameters are
scaled is specified by a scaling function, σ controlled by scaling parameter, ν.4 All MDPs accessible
through σ by varying ν form a family of MDPs, Cσ = {Mν}, whereMν is the MDP specified by
qν . In particular, we consider proportional scaling functions, for which a subset of elements of q
are scaled linearly with ν. In our experiments, we show results for proportional scaling of two MDP
parameters central to continual RL: the number of tasks and the time between task switches.

As the MDP scales up according to σ, the overall state space size will grow with |S| → ∞ as ν →∞.
Regions within the state space can also grow and the steady-state probability on them from π may
change as a result. A region R ⊆ S is a connected subset of states with steady-state probability
µπ(R) =

∑
s∈R µ

π(s). The boundary ofR is a subset ∂R ⊆ R with states having finite probability
of transitioning to at least one state that is outside of R,

∑
s′∈S\R T

π(s′|s) > 0 ∀s ∈ ∂R. We
denote the scalable regions and boundaries Rν and ∂Rν , respectively. If the size of a region’s
boundary grows faster than the region’s interior, there is a finite state space size at which the region
no longer has an interior. In that case, the problem type is of bounded complexity and not relevant to
the development of scaling friendly algorithms. We are thus interested in problems where scalable
regions can maintain an interior as they are scaled (as measured by steady-state probability) in the
limit of large ν. See Appendix D for a precise formulation leading to the following definition:

Definition 1 A scalable MDP is a family of MDPs Cσ = {Mν} arising from a proportional scaling
function σ satisfying the property that there exists an initial scalable regionR0 with finite interior,
µπ
∗
(∂R0) < µπ

∗
(R0), that scales so that µπ

∗
(∂Rν) < µπ

∗
(Rν) as ν →∞ and thus |S| → ∞.

3Scalar parameters with discrete domains are incorporated by embedding them into R.
4Formally, this is a scaling deformation, σ : Rn × R → Rn parameterized by an order parameter ν ∈ R

that takes any q0 to qν = σ(q0, ν), with σ(·, 0) as the identity map. Proportional scaling has qν,i ∝ ν for all i
indexing scaled parameters such that qν = q0 + ν∆q, with ∆q ∈ Rn giving the rates of linear growth in q
with ν up from q0.
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Figure 2: Mixing times grow as MDPs are scaled up. Top left: A more general version of the continual RL
setting shown in Figure 1, where individual tasks correspond to regions, R, of the state space, S, connected
through bottlenecks (see legend). An example of the possible steady-state probability of π∗ is shown in black
gradient. The mixing time of an MDP can grow by increasing its diameter (number of equidistant arrow heads)
via (1) scaling that increases the size of visited regionsR and thus the expected residence time tπ

∗
R of π∗ (right)

and/or (2) scaling that increases the number of bottlenecks between regions of the state space (bottom left).

4 Polynomial Mixing Times

Prior work analyzing the scaling of mixing times makes the practical distinction between slow mixing
Markov chains that scale exponentially with a size parameter and rapid mixing Markov chains that
scale at most polynomially. Since the learning speed of any algorithm is lower bounded by the mixing
time of the optimal policy [9], environments with a slow mixing Markov chain induced by the optimal
policy may very well be outside the practical reach of RL algorithms. In this section, we would like
to further characterize mixing times over the space of practically solvable problems of sufficient
complexity to still be of interest for real-world applications.

For continuing environments, the tightest known lower bound satisfying Assumption 1 has H-step
regret Regret(H) ∈ Ω(

√
Dπ∗ |S||A|H) ⊆ Ω(

√
D∗|S||A|H) [11].5 Additionally, because we know

that D∗ ≥ log|A|(|S|) − 3 [11], we can bound our regret in the general case as Regret(H) ∈
Ω̃(
√
|S||A|H). Few practical problems are simple enough to exhibit diameters with such logarithmic

contributions. More typical and thus of greater interest are diameters (and mixing times) having
polynomial scaling in |S|. Focusing on polynomial scaling is thus warranted, and provides more
stringent lower bounds on regret. We thus consider the following definition:

Definition 2 A set or family of MDPs C has a polynomial mixing time if the environment mixing
dynamics contributes a Ω(|S|k) multiplicative increase for some k > 0 to the intrinsic lower bound
on regret as |S| → ∞ ∀M ∈ C.

An immediate utility of Definition 2 is that it subsumes the diversity of different diameter and mixing
time definitions by explicitly stating their equivalence in scaling with respect to the state space size:

Proposition 1 If all MDPsM within the subclass of MDPs C have tπ
∗

ret , tπ
∗

ces, t
π∗

mix, Dπ∗ , or D∗ ∈
Ω(|S|k) for some k > 0 we can say that C has a polynomial mixing time.6

We can thus hereon focus on formulating scaling in MDPs through their state space size. One way to
understand how a scalable region,Rν , contributes to the mixing time is through its residence time,
tπ
∗

R , i.e. the average time that π∗ spends inR during a single visit. Using results from the theory of
bottleneck ratios in Markov chains [10], we show that if scaling the MDP leads to tπ

∗

R increasing by a
polynomial factor in |S|, then the mixing time also increases at a polynomial rate:

5The bias span is only lower for weakly communicating MDPs violating Assumption 1 so that D∗ =∞.
6The ε-return mixing time tπret(ε) is for assessing mixing from the perspective of accumulated rewards,

whereas the ε-Cesaro mixing time tπces(ε) is for periodic problems that do not converge in the limit from Corollary
1. See Appendix D for additional details.

5



Proposition 2 Any scalable MDP Cσ exhibits a polynomial mixing time if there exists a scalable
regionRν such that Eµπ∗ [tπ

∗

Rν ] ∈ Ω(|S|k) for some k > 0.

The purpose of Proposition 2 and Figure 2 are to provide intuition to readers about why scalable
MDPs inherently must have polynomial mixing times. Our paper’s main result builds off Proposition
2, to make a general statement about the set of all possible scalable MDPs:

Theorem 1 (Mixing Time Scaling): Any scalable MDP Cσ has a polynomial mixing time.

5 Myopic Bias During Scaling
Monte Carlo sampling and bootstrapping are the two primary policy evaluation frameworks for RL
[5]. Both implicitly assume that a finite and fixed maximum frequency f∗(π) ∈ [0, 1] of policy
improvement steps is possible for unbiased updates regardless of the problem size. We now propose
three corollaries of Theorem 1 that together argue how polynomial mixing times invalidate this
assumption simply because f∗(π) ≥ 1/tπmix, and tπmix grows over scalable MDPs. In practice,
algorithm designers cannot afford to wait until reaching the mixing time before updating their model
when mixing times are high. This results in a myopic bias in the policy improvement steps taken.

Monte Carlo sampling: In continuing environments with polynomial mixing times, this sampling
procedure poses a problem when optimizing for ρ(π). To get an unbiased estimate of ρ(π), we must
be able to sample from the steady-state distribution µπ(s), which is only available after tπmix steps
in the environment. Moreover, as demonstrated by Zahavy et al. [13] in the general case where
no upper bound on the mixing time is known apriori, O(|S|tπmix) samples are needed to retrieve a
single unbiased sample from µπ(s). As such, it is clear that the length of the policy evaluation phase
strongly depends on the mixing time of the current policy π and thus the maximum frequency f∗(π)
of unbiased policy improvement steps decreases as the mixing time increases:

Corollary 2 A Monte Carlo sampling algorithm for policy π in scalable MDP Cσ has a maximum
frequency of unbiased policy improvement steps f∗(π)→ 0 as |S| → ∞.

For scalable MDPs of significant size, Corollary 2 implies that model-free Monte Carlo methods
perform unbiased updates arbitrarily slowly and that model-based Monte Carlo methods will need
arbitrary amounts of compute for unbiased updates even when a true environment model is known. As
such, to address scaling concerns over large horizons, bootstrapping methods based on the Bellman
equation are generally recommended [5].

Bootstrapping for Evaluation: This process is referred to as iterative policy evaluation [5] and is
known to converge to the true V π in the limit of infinite evaluations of a fixed policy. However,
in practice, RL algorithms constantly change their policy as they learn and only can afford partial
backups during policy evaluation when applied to large-scale domains. Indeed, a foundational
theoretical principle in RL is that as long as the agent constantly explores all states and actions with
some probability, bootstrapping with only partial backups will still allow an agent to learn π∗ in the
limit of many samples [5]. However, sample efficiency can still be quite poor since partial backups
insert bias into each individual policy evaluation step. This bias, referred to as staleness [14], arises
when the value function used for bootstrapping at the next state is reflective of an old policy that is
currently out of date. Unfortunately, if we want to avoid staleness bias during learning, the length of
policy evaluation for each policy must once again depend strongly on the mixing time:

Corollary 3 A bootstrapping algorithm with policy π in scalable MDP Cσ has a maximum frequency
of unbiased policy improvement steps f∗(π)→ 0 as |S| → ∞.

Bootstrapping for Improvement: is the process of using bootstrapping for policy improvement as
popularized by dynamic programming algorithms such as policy iteration and value iteration, as well
as by RL frameworks such as temporal difference (TD) learning and actor-critic. The theoretical
foundation of these approaches is the policy improvement theorem, which demonstrates the value
of taking a greedy action with respect to the estimated action-value function Qπ(s, a) at each step.
The policy improvement theorem then tells us that policy changes towards π′ are worthwhile as
V π(s) ≤ Qπ(s, π′(s)) ≤ V π′(s) eventually yielding π∗ in the limit of many changes [5]. However,
this improvement is unlikely to be efficient when mixing times are high. To demonstrate this, we
decompose value into the transient and limiting components respectively V π(s) = V πtrans(s) +V πlim(s).
While clearly V π(s) ≤ Qπ(s, π′(s)), the functions both follow π into the future, so their limiting
distribution is the same implying that V πtrans(s) ≤ Qπtrans(s, π

′(s)) and V πlim(s) = Qπlim(s, π′(s)).
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Corollary 4 Policy improvement steps with bootstrapping based on the Bellman optimality operator
guarantee monotonic improvement for V πtrans, but do not for V πlim.

See Appendix A for details on how these ideas connect to relevant off-policy or offline RL approaches
and to the literature on catastrophic forgetting in continual RL.

6 Empirical Analysis of Mixing Behavior

We have established theoretically that scalable MDPs have polynomial mixing times and that polyno-
mial mixing times present significant optimization difficulties for current approaches to RL. However,
we still must demonstrate 1) that scalable MDPs are a useful construct for understanding the scaling
process within modern continual RL benchmarks and 2) that large mixing times become a significant
practical impediment to performing reliable policy evaluation in these domains. Towards this end,
we consider empirical scaling of the mixing time with respect to the number of distinct tasks, |Z|,
and to the task duration, τ , which controls the bottleneck structure. For this purpose, we evaluate a
set of high-quality pretrained policies. In both cases, we report empirical results via the dependence
of the ε-return mixing time (equation 2) on the relative precision with which the reward rate is
estimated. Presenting the relationship in this way ensures we isolate the contribution that myopic
policy evaluation has on the performance relative to the optimum and that high mixing times are not
inflated by spurious sources of distributional mismatch that do not hinder policy evaluation.

Empirical Mixing Time Estimation. In order to quantitatively estimate the ε-return mixing time
tπret(ε) in equation 2, we need to estimate two terms: the average true reward rate ρ(π) (which is
agnostic to the start state), and the h-step undiscounted return ρ(h, s0, π) from a start state s0 for all
s ∈ S . We can then provide tπret(ε) for any desired value of ε. To calculate ρ(π) we unroll the policy
π in the environment for a large number of time steps (more than a million steps) while accumulating
the rewards that we received and finally compute the average over the total number of environment
interactions. Estimating ρ(h, s, π) for every start state s ∈ S in equation 2 is challenging because of
the large state spaces in Atari and Mujoco. Hence we rely on approximations where we choose a
subset of states from S to estimate ρ(h, s, π). However, since the estimates could be biased based
on the start states we choose, instead of randomly sampling a fixed set of start states, we leverage
reservoir sampling [15] to ensure that the limited fraction of possible start states that we consider is
unbiased according to the on-policy distribution. Conservative definitions of the mixing time take the
maximum over start states [9]. Here, since we are interested in the characteristic mixing time size, we
report the average among start states, which ensures that the mixing times reported are representative
of those actually needed for evaluation over the course of on-policy training. Finally, in order to
provide an intuitive interpretation for ε across domains, we leverage the relative error, ε/ρ(π), as a
common reference point for comparison. We can then calculate the ε-return mixing times for a fixed
relative error. See Appendix B for further details.7

Setting of Interest. We focus our experiments on the following scalable MDP formulation that is
broadly representative of the majority of work on continual RL [16, 17, 18, 19, 20]:

Example 1 (Continual Learning with Passive Task Switching): Consider an environment with tasks
z ∈ Z and within-task states x ∈ Xz . The residence time of the region encompassed by task z before
moving to another region is fixed for all tasks at τ for any π such that tπXz = τ ∀z ∈ Z . Regardless of
the way that tasks are connected, the diameter of such an MDP must scale as D∗ ∈ Ω(τ |Z|) because
the residence time bounds the minimum possible time to travel between two states in different tasks.
Utilizing our formulation of scalable MDPs with initial MDP parameters q0 = (τ, |Z|), the space
of possible proportional scaling functions on τ only, |Z| only, and both τ and |Z| simultaneously
are στ (q0, ν) = (τ + aν, |Z|), σ|Z|(q0, ν) = (τ, |Z|+ bν), and στ,|Z|(q0, ν) = (τ + aν, |Z|+ bν),
respectively, where a, b ∈ R span the respective spaces.

6.1 A Simple Motivating Example

We consider a simple 10×10×10 3-dimensional grid world environment with 6 actions corresponding
to up and down actions in each dimension. In this environment, we can define 1,000 different tasks
corresponding to considering each unique state as a goal location. At each time-step the agent is sent

7Our code is available at https://github.com/SharathRaparthy/polynomial_mixing_times.git.

7

https://github.com/SharathRaparthy/polynomial_mixing_times.git


Figure 3: Average reward rate across tasks at the end of training as a function of |Z| and τ .

a 60-dimensional concatenation of six 10-dimensional one-hot vectors. The first three one-hot vectors
correspond to the agent’s x,y, and z coordinates and the second three correspond to the goal location.

Myopic Optimization Bias: As we have motivated in Section 2.2, this environment is made to
demonstrate the difficulty associated with myopic optimization bias even when task boundaries and
their relation are fully observable. We consider a continual episodic RL formulation following the
description in Example 1 where task sequences arise from changing the goal location every τ steps
and the set of goal locations defines the set of tasks, Z . As such, the diameter of the MDP clearly
increases as τ and the number of tasks |Z| are scaled up, leading to at least linear scaling. As a result,
an agent that updates only based on the current episode experiences myopic bias with respect to the
steady-state distribution over which the tasks are uniformly balanced.

Training Procedure: The 60-dimensional sparse observation vector is processed by a multi-layer
perceptron with two 100 unit hidden layers and Relu activations. The agent performs optimization
following episodic REINFORCE. We explore different configurations of this scalable MDP by
varying |Z| from 1 to 1,000 and varying τ from 100 to 10,000. An important baseline to consider is
the extreme of switching tasks after every episode as in multi-task RL (which is generally considered
an upper bound on continual RL performance). The agent receives a reward of 1 every step it makes
progress towards its goal and a reward of 0 otherwise. This implies that the reward rate of π∗ is
ρ(π∗) = 1 and that the reward rate of a uniform action policy is 0.5 for every task z ∈ Z regardless
of the distance travelled from the start state for each episode. For each |Z| and τ , we train the agent
for 10,000 total steps and report the average reward rate after training as an average across 300 seeds,
which correspond to randomly selected task progressions. See Appendix C for further details.

Results: We display the results of these experiments in Figure 3. It is interesting to notice the
episodic transition performance, which can near flawlessly learn a single task in 10,000 steps but
struggles significantly with interference in the multitask setting. Performance goes down from 1 to
30 tasks and appears to rebound afterward, which is logical because the similarity between incoming
tasks and old tasks is increasing and the total number of training steps across tasks is going up. When
both τ and |Z| are high at the same time, learning performance is quite poor (not much better than a
uniform policy). The starting location is always in the same corner, so some commonalities can be
exploited even by a policy experiencing significant interference. Performance bottoms out after fewer
tasks when τ is larger, which makes sense as that is when the myopic bias of optimization is greatest.

6.2 Overview of Empirical Findings on Atari and Mujoco

Domains of Focus. We perform experiments involving sequential interaction across 7 Atari environ-
ments: Breakout, Pong, SpaceInvaders, BeamRider, Enduro, SeaQuest and Qbert. This is a typical
number of tasks explored in the continual RL literature [16, 17, 18, 19, 20]. We consider a sequential
Atari setup where the individual environments can be seen as sub-regions of a larger environment that
are stitched together (see Figure 1 and Appendix A for further details). To demonstrate the validity
of our results on vector-valued state spaces, we also consider sequential Mujoco experiments with
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Figure 4: Mixing time as a function of relative error for fixed scaling parameters. Left: ε-return
mixing time (equation 2) as a function of relative error, ε/ρ(π), in reward rate estimation for 3
standard algorithms. Right: Same as left, here normalized by τ |Z| where τ = 10,000 and |Z| = 7.
Note the difference in range on the y-axis, which reflects this normalization.

Figure 5: Mixing time scaling with the number of tasks |Z|. Left: Average ε-return mixing time
across different task combinations Z for different algorithms. Right: Same as left, here normalized by
τ |Z| where τ =1,000. Note the difference in range on the y-axis, which reflects this normalization.

the following 5 environments: HalfCheetah, Hopper, Walker2d, Ant and Swimmer. For both our
sequential Atari and Mujoco experiments, we leverage high-performing pretrained policies that are
publicly available [21] for mixing time calculations. We leverage task labels to use the pretrained
model specific to each task as our behavior policy as appropriate when tasks change.

Mixing Time as a Function of Relative Error. As the task connection structure following Example
1 can take any arbitrary form, we have focused our experiments on random transitions between tasks.
In Figure 4 we plot both tπret(ε) and tπret(ε)/τ |Z| for τ = 10,000 and |Z| = 7 as a function of the
relative error of ρ(π, s, h) with respect to ρ(π), i.e. ε = ρ(π, s, h)− ρ(π). We see the intuitive fact
that higher demands for precision define longer mixing times and that it is clear that the lower bound
on the diameter is a very conservative estimate of the mixing time where we only see tπret(ε)/τ |Z| < 1
for reward rates estimated to a poor tolerance of more than 30% error.

Scaling |Z|. We now analyze Example 1 in the case where the state space and diameter grow as we
increase the number of tasks |Z|. Specifically we scale |Z| from 2 to 4 to 6 as τ is kept fixed at 1,000
and generate 10 random task combinations from the list of 7 for each value of |Z|. In Figure 5 we
plot the resulting mixing times for a precision of 10% error in approximating the reward rate. We
find that there is a linear trend in the expected mixing time and not just the theoretical lower bound.

Scaling τ . We finally analyze Example 1 in the case where the state space is held constant but the
diameter grows with the increasingly severe bottleneck structure as we increase τ . Here we consider
|Z| = 7 and τ = 1,000, 3,000, 10,000, and 30,000, while calculating ρ(h, s, π) and ρ(π) by unrolling

(a) Continual Mujoco |Z| = 5 (b) Continual Atari |Z| = 7

Figure 6: Mixing time scaling with the task duration, τ . Left (a, b): ε-return mixing time across
different τ values for different algorithms. Right (a, b): Same as left, here normalized by τ |Z|. Note
the difference in range on the y-axis and the distinct subset of algorithms tested (see legend).
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the policy π for τ×1,000 environment steps each. In Figure 6 we once again plot both tπret(ε) and
the value normalized by the diameter lower bound tπret(ε)/τ |Z| to find that empirical average mixing
times scale linearly with increasing τ and not just the lower bound.

6.3 Implications For Continual RL

In summary, we have observed in Figure 4 that average mixing times reach a staggering high for lower
relative errors, and shorter mixing times are associated with very high relative errors. Additionally,
in Figures 5 and 6 we observed that, for a broad class of algorithms, there seems to be a linear
dependency of the expected mixing time with increasing |Z| and increasing τ .

Optimization Instability for Continual Atari. While we have empirically established that mixing
times scale to be quite large in the Atari domain following Example 1 and established theoretically
how RL approaches struggle when this is the case in Section 5, we would like to emphasize that
the prior literature applying deep RL to continual learning on Atari has empirically come to the
same conclusion. Indeed, [17] looked at continual learning across 10 Atari games with a randomized
duration between task switches and found that all approaches were significantly outperformed by the
single task baseline, reflecting significant instability in optimizing across tasks. Additionally, perhaps
the most common setting in the literature considered by [18], [19], and [22] is to train on a set of
tasks where |Z| = 6 and τ = 50,000,000. Note that extrapolating from our results would indicate
average mixing times on the order of ≈ 15 billion steps for a precision of 5% error or ≈ 5 billion
steps for a precision of 10% error. Across a number of RL approaches tried on these domains, as we
would expect, all approaches have experienced significant instability in their learning curves. A very
popular failure mode is approaches that display too much plasticity such that their performance for
a task goes through big peaks and valleys resulting from myopic bias towards optimization on the
current task. This phenomena is often known in the literature as catastrophic forgetting [23].

7 Inspiring New Approaches for Continual RL

While the focus of our paper is on highlighting the difficulty of the polynomial mixing time problem,
not proposing an approach to solve it, we believe that our analysis provides significant insights that
the community will be able to draw on to build better approaches for continual RL:

Direct Steady-State Estimation: In the context of commonly considered problems that follow the
high-level structure of Example 1, we have showcased the deep connection between catastrophic
forgetting and myopic bias in the presence of very large mixing times. In Appendix A we demonstrate
how this perspective explains some of the value of replay based approaches in this setting. Moreover,
this perspective naturally points towards approaches that directly reason over the steady-state distri-
bution as a natural solution to the catastrophic forgetting problem. In Appendix C we consider simple
tabular RL experiments across 3 example classes of scalable MDPs. Our analysis demonstrates that
on-policy and off-policy versions of Q-Learning that perform policy evaluation using an estimate
of the steady-state distribution, derived from matrix inversion of a tabular environment model, con-
sistently outperform standard model-based and model-free baselines in terms of lifelong regret as
environments are scaled up. Even though estimating the steady-state distribution would clearly be
quite challenging in complex state and observation spaces, recent approaches have made great strides
towards developing practical and scalable approaches leveraging data buffers [24].

Tracking Approaches: It was originally noted by [25] that it could be a better strategy even in
stationary environments with temporal coherence to learn to track the best local solution instead
of attempting to converge to a globally optimal fixed policy. This indeed, may be a necessity in
environments that experience extreme temporal coherence governed by high mixing times and could
provide a formalization of the benefit for approaches based on meta-learning in this context as noted
by [25]. For example, [26] recently was successful in addressing the non-stationarity of multi-agent
RL by learning to converge to a recurrent set of joint policies rather than a single joint policy.

Looking Forward. In this work, we have considered the implicit premise of the current continual
RL literature that results from currently manageable small-scale experiments are indicative of
performance for the large-scale aspirational use cases of the future. In particular, we have highlighted
that mixing times will scale significantly as the problems we deal with are scaled and how traditional
approaches to RL are ill-suited to deal with this. We hope that our work will encourage the community
to carefully consider the theoretical implications of scaling environments, especially with regard to
how proposed continual RL algorithms scale with the mixing time.
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