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Abstract

In this paper, we demonstrate that information retrieval can be accomplished with
a single Transformer, in which all information about the corpus is encoded in
the parameters of the model. To this end, we introduce the Differentiable Search
Index (DSI), a new paradigm that learns a text-to-text model that maps string
queries directly to relevant docids; in other words, a DSI model answers queries
directly using only its parameters, dramatically simplifying the whole retrieval
process. We study variations in how documents and their identifiers are represented,
variations in training procedures, and the interplay between models and corpus
sizes. Experiments demonstrate that given appropriate design choices, DSI signifi-
cantly outperforms strong baselines such as dual encoder models. Moreover, DSI
demonstrates strong generalization capabilities, outperforming a BM25 baseline in
a zero-shot setup.

1 Introduction

Information retrieval (IR) systems map a user query q ∈ Q to a ranked list of relevant documents
{d1, . . . , dn} ⊆ D, typically represented by integers or short strings called document identifiers
(docids). The most widely used IR approaches are based on pipelined retrieve-then-rank strategies.
For retrieval, approaches based on inverted indexes or nearest neighbor search are common where
contrastive learning based dual encoders (DEs) (Gillick et al., 2018; Karpukhin et al., 2020; Ni et al.,
2021) are the present state-of-the-art.

This paper proposes an alternative architecture, wherein a sequence-to-sequence (seq2seq) learning
system (Sutskever et al., 2014) is used to directly map a query q to a relevant docid j ∈ Y . This
proposal is shown in the bottom half of Figure 1, for a sequence-to-sequence encoder-decoder
architecture.

We call this proposed architecture a differentiable search index (DSI), and implement it with a
large pre-trained Transformer (Vaswani et al., 2017) model, building on the recent success of large
generative language models (LMs) (Brown et al., 2020; Raffel et al., 2019; Devlin et al., 2018;
Thoppilan et al., 2022; Du et al., 2021). In this proposed architecture, all information of the corpus is
encoded within the parameters of the Transformer language model.

At inference time, the trained model takes as input a text query q and outputs a docid j. If desired,
beam search can be used to produce a ranked list of potentially-relevant docids. As we show, this
process can work surprisingly well when trained properly. In our experiments it can consistently
outperform DE baselines, sometimes drastically: for a base-sized T5 model, Hits@1 on the smallest
corpus is improved by more than 20 points, from 12.4% for a DE to 33.9% for DSI; and on a corpus
∗Co-leads.
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Figure 1: Comparison of dual encoders (top) to differentiable search index (bottom).

Table 1: Information retrieval requires a series of decisions, associated with the subproblems of
document representation, indexing, and retrieval. Structured-document variants of DSI are also
sensitive to a fourth decision, namely how docids are represented.

BM25 or TFIDF Dual Encoder (DE) Differentiable Search Index (DSI)

doc/query rep. sparse vdj vector in R|V | dense vdj vector in Rd Various (see Section 3.1.2)

docid rep. − − Various (see Section 3.2)

indexing build inverted index mapping build table mapping train model (see Section 3.1.1)
each term t→ {dj1 , . . . , djk} each docvec vdj → j to map dj → j

retrieval approximate sparse matmul approximate MIPS run trained model
(top-1) to find argmaxjvT

q vdj to find argmaxjvT
q vdj to find argmaxj Pr(j|q)

30× larger, performance is improved by nearly 7 points. These gains increase when larger models are
used: for an 11B-parameter T5 model, Hits@1 performance improves by more than 25 points over
DE on the small corpus, and more than 15 points on the large corpus. DSI also performs extremely
well in a zero-shot setting, e.g., improving Hits@1 by 14 points over BM25.

In addition to these quantitative gains, the DSI architecture is much simpler than a DE (see Table 1).
A DE system fixes a search procedure (MIPS) and learns internal representations that optimize
performance for that search procedure; in contrast, a DSI system contains no special-purpose fixed
search procedure, instead using standard model inference to map from encodings to docids.

Of particular interest to the machine learning community, as Table 1 shows, in DSI all aspects of
retrieval are mapped into well-understood ML tasks. This may lead to new potential approaches to
solving long-standing IR problems. As one example, since indexing is now a special case of model
training, incrementally updating an index becomes a special case of model updating (Sun et al., 2020).

In this paper, DSI is applied to moderate-sized corpora (from 10k to 320k documents), all of which
are derived from one challenging retrieval task, and we leave the important question of the scaling
DSI to larger corpora to future work. The task considered is retrieving supporting passages given
questions from the Natural Questions (NQ) dataset, a challenging task for lexical models.

While the idea of DSI is simple, there are a number of ways it can be realized, some of which work
surprisingly well, and some of which work surprisingly poorly. Below we explore a number of
variations of the DSI architecture.

Document representation. We explore several approaches to representing documents, including a
“naive” approach of using the document’s full text, as well as variants of the bag-of-words representa-
tion used by traditional IR engines.

Docid representation. We look at several ways to represent docids. In addition to naively representing
integers as text strings, we also consider unstructured atomic docids, where each document is assigned
a unique token, and some simple baselines for constructing structured semantic docids that describe
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how to navigate to a document through a hierarchical clustering of the corpus. Structured docids—
either semantically structured via clustering, or naively structured as tokenized integers—scale better
to large corpora, since the size of the vocabulary used in the decoder is made larger.

Indexing. A trainable IR system traditionally has two phases: indexing a corpus (i.e., memorizing
information about each document), and learning how to effectively retrieve from the index. In DSI,
the index is stored in the model parameters, and indexing is simply another kind of model training.
Figure 1 suggests one approach to indexing a corpus: namely, to train on (1) examples (dj , j) that
pair document dj with its docid j, in addition to (2) examples (q, j) that pair a query q with a relevant
docid j. In this setup the examples of type (1) are “indexing” examples.

While it is clear that examples of type (2) alone do not provide enough information for a system to
generalize to novel retrievals, there are many alternatives to examples of type (1) that might plausibly
“teach” a model about the associations between documents and docids. We explore a number of these
below, and show that some plausible-seeming techniques perform very poorly. We also explore a
number of alternative multi-task optimization and curriculum learning schemes for combining these
types of examples.

Effects of model and corpus size. Since recent results suggest that some properties of large LMs
emerge only for very large model sizes Brown et al. (2020), we explore the performance of DSI for a
range of model sizes and corpus sizes of 10k, 100k, and 320k documents.

Summary. We show that even naive representations for documents and docids, coupled with appropri-
ate training procedures to fine-tune modern large LMs, can perform surprisingly well; we present
two improved docid representations, unstructured docids and semantically-structured docids, which
improve the naive representation choice. We show that there is substantial variation in performance
among indexing/training strategies and we show that performance of DSI significantly and consis-
tently improves with model scale. To our knowledge this is the first case of generative indexing
improving performance over strong baselines for a well-studied document retrieval task.

2 Related Work

De Cao et al. (2020) describe a related sequence-to-sequence system called autoregressive entity
linking, in which documents mentioning an entity—perhaps implicitly, e.g., by posing a question
to which that entity is an answer—are mapped to a canonical name of that entity. In the case of
Wikipedia, canonical entity names correspond to page titles, so this could be viewed as a sort of
document retrieval. This approach has been adapted to other purposes, such as generating knowledge
base triples in canonical form (Josifoski et al., 2021). The task we consider is different from those
considered in autoregressive entity linking: our goal is to retrieve a document containing the answer,
rather than a document whose title is the answer. More importantly, in autoregressive entity linking
the generation target is a semantically meaningful name, whereas we allow targets to be arbitrary
docids. This makes our approach applicable to general retrieval tasks, but raises new questions about
docid representation and indexing strategies.

In autoregressive entity linking, generation is constrained to return an output from a fixed set. It
would be feasible to constrain DSI generation outputs to be valid docids. Although we do not use this
technique, the degree to which this might improve performance is a worthwhile question.

There is a large body of work on retrieval augmented generation, i.e., retrieving auxiliary documents
to enhance language models (Borgeaud et al., 2021; Guu et al., 2020). These techniques are useful for
many tasks including question-answering, but rely on traditional retrieval methods such as DEs. Here
we use generation to replace a retrieval process, rather than using retrieval to augment a generation
process.

Dual encoders (Dehghani et al., 2017; Gillick et al., 2018; Gao et al., 2021; Ni et al., 2021; Karpukhin
et al., 2020) are a well-established paradigm for retrieval. The key idea is produce query and document
embeddings independently and perform a similarity retrieval in vector space across all embedding
pairs. Query and candidate documents are produced by a sequence encoder and training is performed
using a form of contrastive loss.

The interpretation of a large Transformer model as a memory store have been investigated in prior
work. (Roberts et al., 2020) demonstrated success on a closed-book QA task whereby they train
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T5 models to retrieve facts that are encoded within the parameters of the model during pretrain-
ing. However, different from CBQA, the presented problem here in this paper is to retrieve full
documents based on docids instead of generating direct answers. Meanwhile, (Petroni et al., 2019)
also investigated language models as knowledge bases and found that pretrained LMs may already
contain relational knowledge. (Geva et al., 2020) analyzes the knowledge encoded within Transformer
feedforward layers. There have been also works that demonstrate the relation of Transformers to
associative memory and Hopfield networks (Ramsauer et al., 2020), which reinforce the notion that
Transformers should intuitively serve as a good associative memory store or search index.

3 Differentiable Search Index

The core idea behind the proposed Differentiable Search Index (DSI) is to fully parameterize tradi-
tionally multi-stage retrieve-then-rank pipelines within a single neural model. To do so, DSI models
must support two basic modes of operation:

• Indexing: a DSI model should learn to associate the content of each document dj with its
corresponding docid j. This paper utilizes a straightforward sequence-to-sequence (seq2seq)
approach that takes document tokens as input and generates identifiers as output.

• Retrieval: Given an input query, a DSI model should return a ranked list of candidate docids.
Here, this is achieved with autoregressive generation.

Following these two operations, a DSI model can be trained to index a corpus of documents and
optionally fine-tune on an available set of labeled data (queries and labeled documents), and thereafter
used to retrieve relevant documents—all within a single, unified model. As opposed to retrieve-then-
rank approaches, this type of model allows for simple end-to-end training and can easily be used as a
differentiable sub-component of a larger, more complex neural model.

3.1 Indexing Strategies

We investigate various indexing strategies that are meant to learn associations between documents
and their identifiers. We train our model to predict docids given a sequence of document tokens. This
allows our model to learn which identifier belongs to which document and can be thought of as a
differentiable take on traditional search indexes. We consider various alternatives and ablate these
settings in subsequent sections. The final strategy employed was Inputs2Targets with direct indexing.

3.1.1 Indexing Method

This section discusses the indexing task variants that we consider.

Inputs2Target We frame this as a seq2seq task of doc_tokens→ docid. As its name suggests,
this binds the docids to the document tokens in a straightforward inputs-to-targets fashion. The
advantage here is that the identifier is the denoising target, which puts it in closer proximity to the
loss function. Since the retrieval task is also concerned with predicting identifiers, this formulation
allows the network to follow a similar input-target balance in terms of sequence length. A potential
weakness is that the document tokens are not denoising targets and therefore there is no opportunity
for general pre-training on document tokens.

Targets2Inputs This formulation considers the opposite of the above, i.e., generating document
tokens from identifiers, i.e., docid → doc_tokens. Intuitively, this is equivalent to training an
autoregressive language model that is conditioned on the docid.

Bidirectional This formulation trains both Inputs2Targets and Targets2Inputs within the same
co-training setup. A prefix token is prepended to allow the model to know which direction the task is
being performed in.

Span Corruption We also explored a setup that performs span corruption-based denoising (Raffel
et al., 2019) with the inclusion of docid tokens. In this approach, we concatenate the identifier to the
document tokens as a prefix that can be randomly masked as spans in the span corruption objective.
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This method has the advantage of (1) also performing general pre-training during indexing and (2)
achieving a good balance of docids as denoising targets and inputs.

3.1.2 Document Representation Strategies

In the previous section, we explored “how to index”. This section investigates “what to index?”,
i.e., how to best represent doc_tokens. We state our options here and carefully ablate them in our
experiments later. The best option in the end was the direct indexing method.

Direct Indexing This strategy represents a document exactly. We take the first L tokens of a
document, with sequential order preserved, and associate them with the docid.

Set Indexing Documents may contain repeated terms and/or non-informative words (e.g., stop-
words). This strategy de-duplicates repeated terms using the default Python set operation and
removes stopwords from the document. The rest of the document after filtering is passed into the
model in similar fashion to the direct index.

Inverted Index This strategy maps chunked documents (contiguous blocks of tokens) instead of
entire documents directly to the docid. We randomly subsample a single contiguous chunk of k
tokens and associate them with the docid. The key advantage of this approach is to allow looking
beyond the first k tokens.

3.2 Representing Docids for Retrieval

Retrieval within seq2seq-based DSI models is accomplished by decoding docids given an input query.
How to do this decoding in an effective way largely depends on how docids are represented in the
model. The remainder of this section explores a number of possible ways for representing docids and
how to handle decoding for each.

Unstructured Atomic Identifiers The most naive way to represent documents is assign each an
arbitrary (and possibly random) unique integer identifier. We refer to these as unstructured atomic
identifiers.

With these identifiers, an obvious decoding formulation is to learn a probability distribution over the
identifiers. In this case, models are trained to emit one logit for each unique docid (|Ndocuments|).
This is analogous to the output layer in standard language models, but extended to include docids.

To accommodate this, we extend the output vocabulary of a standard language model as follows:

O = Softmax([Wtokens; Wdocs]
T hlast)

where [; ] is the row-wise concatenation operator, Wtokens ∈ Rdmodel×|Ntokens| and Wdocs ∈
Rdmodel×|Ndocuments|. hlast is the last layer’s hidden state (∈ Rdmodel) of the decoder stack. To
retrieve the top-k documents for a given query, we simply sort the output logits and return the corre-
sponding indices. This is also reminiscent of standard listwise learning to rank where all documents
are considered at once.

Naively Structured String Identifiers We also consider an ostensibly absurd approach that treats
unstructured identifiers, i.e., arbitrary unique integers, as tokenizable strings. We refer to these as
naively structured identifiers.

In this formulation, retrieval is accomplished by decoding a docid string sequentially one token at
a time. This eliminates the need for the large softmax output space that comes with unstructured
atomic identifiers. It also eliminates the need to learn embeddings for each individual docid.

When decoding, beam search is used to obtain the predicted best docid. With this strategy, it is less
straightforward to obtain a top-k ranking. One could exhaustively comb through the entire docid
space and obtain the likelihood of each docid given the query. Instead, we use the partial beam search
tree to construct top-k retrieval scores. We find this approximation to be quite efficient and effective
in practice.
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Semantically Structured Identifiers All of the approaches for representing docids thus far as-
sumed that the identifiers are assigned in an arbitrary manner. While exploring the limits of arbitrary
identifiers is quite interesting, it is only intuitive that imbuing the docid space with semantic structure
can lead to better indexing and retrieval capabilities. As such, this section explores semantically
structured identifiers.

Specifically, we aim to automatically cre-
ate identifiers that satisfy the following
properties: (1) the docid should capture
some information about the semantics of its
associated document, (2) the docid should be
structured in a way that the search space is
effectively reduced after each decoding step.
This results in identifiers where semantically
similar documents share identifier prefixes.

In this work, we treat this as a fully unsuper-
vised pre-processing step. However, as part
of future work it may be possible to integrate
and automatically learn semantic identifiers
in a fully end-to-end manner.

To construct identifiers with this property,
we employ a simple hierarchical clustering
process over document embeddings to in-
duce a decimal tree (or more generally, a trie).

Given a corpus to be indexed, all documents
are clustered into 10 clusters. Each document
is assigned an identifier with the number of
their cluster from 0-9. For every cluster con-
taining more than c documents, the algorithm
is applied recursively, with the next level’s
result (the remaining suffix of the identifier)
appended to the existing identifier.

Figure 2: Visual example of a hierarchical cluster-
ing process used to assign semantically structured
identifiers. During inference, beam search navi-
gates this trie to decode the correct docid.

Algorithm 1 Generating semantically structured
identifiers. (Referenced in Section 3.2.)

Input: Document embeddings X1:N , where Xi ∈ Rd

Output: Corresponding docid strings J1:N

function GENERATESEMANTICIDS(X1:N )
C1:10 ← Cluster(X1:N , k = 10)
J ← empty list
for i = 0 to 9 do
Jcurrent ← [i] ∗ |Ci+1|
if |Ci+1| > c then
Jrest ←GENERATESEMANTICIDS(Ci+1)

else
Jrest ← [0, . . . , |Ci+1| − 1]

end if
Jcluster ←elementwiseStrConcat(Jcurrent, Jrest)
J ← J.appendElements(Jcluster)

end for
J ← reorderToOriginal(J, X1:N , C1:10)
return J

end function

For clusters with c documents or less, each element is assigned an arbitrary number from 0 to at
most c − 1 and likewise its digits are appended to the existing identifier. Although this specific
process induces a decimal tree, it is possible to induce similar types of tries using any number of
other reasonable strategies.In practice, we simply apply k-means over embeddings generated by a
small 8-layer BERT model, with c = 100. We include pseudo-code for this process in Algorithm 1.

3.3 Training and Optimization

The DSI models that we train are optimized for seq2seq cross entropy loss and are trained with teacher
forcing. We explored two main strategies for training DSI models. The first and more straightforward
strategy is to first train a model to perform indexing (memorization), followed by a fine-tuning stage
where the trained model is used to map queries to docids (e.g., retrieval). The second strategy is to
train them together in a multi-task setup. To this end, we frame co-training tasks in similar fashion to
T5-style co-training (e.g., using task prompts to differentiate them). The latter performed significantly
better, especially when the proportion of indexing to retrieval task examples is high. Hence, we
adopted multi-task learning as the default strategy.

Here, we make the observation that our setup is unique and unlike traditional multi-task learning
or transfer learning. In typical multi-task setups, two tasks have shared commonalities that could
improve the performance of both tasks if they were learned together. However, in our setup, the
retrieval task is completely dependent on the indexing task. In particular, without the indexing task,
the identifiers leveraged by the retrieval task would be completely meaningless. Hence, in order
to solve task B (retrieval), the model needs to learn task A (indexing) well enough. This problem
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setup presents unique and largely unexplored research challenges that might be of interest to the ML
community.

4 Experiments

In this section, we discuss our experimental setup, datasets used and baselines compared. We also
discuss experimental results, findings and effect of various strategies discussed in earlier sections
of the paper. Since this is fairly new concept, this work aims to put forth a proof-of-concept and
seeks to answer research questions instead of making a ‘sotaeesque’ comparison. We leave extensive
comparisons on other setups and baselines to future work.

Dataset We conduct our experiments on the challenging Natural Questions (NQ) (Kwiatkowski
et al., 2019) dataset. NQ consists of 307K query-document training pairs and 8K validation pairs,
where the queries are natural language questions and the documents are Wikipedia articles. Given a
question, the retrieval task is to identify the Wikipedia article that answers it. For evaluating how
DSI models perform at different scales, we construct three sets from NQ to form our testbed, namely
NQ10K, NQ100K, and NQ320K denoting different numbers of total query-document pairs in the
combined train and validation splits. NQ320K is the full NQ set and uses its predetermined training
and validation split for evaluation purposes. Unlike NQ320K, NQ10K and NQ100K constructs
randomly sampled validation sets. For all datasets, we use the same docid space/budget of 320K
tokens for all unstructured atomic and naively structured identifier experiments. Semantically
structured identifiers are generated separately for each dataset so as to prevent leakage of semantic
information from larger splits into smaller ones. Text is lowercased. Note that there exists fewer
unique documents than query-document pairs in these datasets. Please refer to Table 4 (Appendix)
which reports the statistics of these datasets.

Metrics We evaluate our models on Hits@N where N={1, 10}. This metric reports the proportion
of correct documents ranked in the top N predictions.

Implementation Details All DSI models are initialized using standard pretrained T5 (Raffel
et al., 2019) model configurations. The configurations names and corresponding number of model
parameters are: Base (0.2B), Large (0.8B), XL (3B) and XXL (11B). For unstructured atomic
identifiers runs, we initialize the identifiers randomly as new parameters and only finetune the weights
during the indexing stage. We use the Jax/T5X 2 implementation for our experiments. The DSI
models are trained for a maximum of 1M steps using a batch size of 128. We pick the best checkpoint
based on retrieval validation performance. Our training hardware consists of 128-256 TPUv4 chips
for models above 1B parameters and 64-128 TPUv3 or TPUv4 chips otherwise. As an estimate,
models above 1B parameters typically take about at least a full day for convergence for NQ320K.
We tune the learning rate amongst {0.001, 0.0005} and linear warmup amongst {10K, 100K, 200K,
300K} and/or none. Semantically structured identifiers are generated using an 8-layer BERT (Devlin
et al., 2018) model 3, and the default k-means clustering in scikit-learn. Based on our early ablation
experiments of various DSI setting, the main results presented use direct indexing (L = 32) and
the Inputs2Targets indexing strategy. We present results for all the docid representation methods.
Following the main results, we present our ablation studies.

4.1 Baselines

For baselines, we use T5-based dual encoders implemented by (Ni et al., 2021). We use the gensim4

package for computing BM25 scores. For the T5-based dual encoders, we train with contrastive
learning on the NQ pairs until convergence (≈ 10K steps) and obtain top-k nearest neighbors with a
system similar to ScaNN (Guo et al., 2020). For zero-shot retrieval, we also compare with a state-of-
the-art unsupervised baseline, Sentence T5 (Ni et al., 2021) which have been specially pre-trained
with a similarity learning task. There two reasons why we consider (Ni et al., 2021) the relevant dual
encoder baseline for this work rather than other dense retrieval works such as DPR (Karpukhin et al.,

2https://github.com/google-research/t5x
3https://tfhub.dev/google/collections/bert
4https://pypi.org/project/gensim
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Table 2: Experimental results on NQ document retrieval. DSI outperforms BM25 and Dual Encoder
baselines. Among all the Docid representation methods, Semantic String Docids perform the best.

NQ10K NQ100K NQ320K
Model Size Params Method Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@10

BM25 - - - 12.4 33.5 20.9 46.4 11.6 34.4

T5 Base 220M Dual Encoder 16.2 48.6 18.7 55.2 20.5 58.3
T5 Large 800M Dual Encoder 18.8 55.7 22.3 60.5 22.4 63.3
T5 XL 3B Dual Encoder 20.8 59.6 23.3 63.2 23.9 65.8
T5 XXL 11B Dual Encoder 22.1 61.6 24.1 64.5 24.3 67.3

DSI Base 250M Atomic Docid 13.0 38.4 23.8 58.6 20.7 40.9
DSI Large 800M Atomic Docid 31.3 59.4 17.1 52.3 11.6 37.6
DSI XL 3B Atomic Docid 40.1 76.9 19.0 55.3 28.1 61.9
DSI XXL 11B Atomic Docid 39.4 77.0 25.3 67.9 24.0 55.1

DSI Base 250M Naive String Docid 28.1 48.0 18.7 44.6 6.7 21.0
DSI Large 800M Naive String Docid 34.7 60.5 21.2 50.7 13.3 33.6
DSI XL 3B Naive String Docid 44.7 66.4 24.0 55.1 16.7 58.1
DSI XXL 11B Naive String Docid 46.7 77.9 27.5 62.4 23.8 55.9

DSI Base 250M Semantic String Docid 33.9 57.3 19.0 44.9 27.4 56.6
DSI Large 800M Semantic String Docid 37.5 65.1 20.4 50.2 35.6 62.6
DSI XL 3B Semantic String Docid 41.9 67.1 22.4 52.2 39.1 66.8
DSI XXL 11B Semantic String Docid 48.5 72.1 26.9 59.5 40.4 70.3

Table 3: Experimental results on Zero-Shot NQ document retrieval. DSI outperforms BM25, T5
embeddings and SentenceT5, the state-of-the-art for unsupervised similarity modeling. Among Docid
representation method, the Atomic Docid performs the best on zero-shot learning.

NQ10K NQ100K NQ320K
Model Size Method Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@10

BM25 - - 12.4 33.5 20.9 46.4 11.6 34.4
T5 XXL Dual Encoder 0.3 1.3 1.9 8.0 1.1 5.9
SentenceT5 Large Dual Encoder 17.6 50.7 17.4 50.8 16.9 51.0

DSI XXL Atomic Docid 25.7 60.1 23.0 57.3 25.1 56.6
DSI XXL Naive String Docid 43.4 67.4 17.4 41.5 9.2 22.6
DSI XXL Semantic String Docid 43.9 68.8 11.4 26.6 13.9 31.1

2020). Firstly, we employ the exact identical pretrained model, which allows systematic ablation of
the proposed approach without conflating other factors. Scientifically, we believe this comparison
against fine-tuned T5 is the best apples to apples comparison that we provide. Secondly, fine-tuned T5
dual encoders are considered to be architecturally and methodologically very identical to DPR (with
some minor differences such as parameter sharing but use the same concept of in-batch negatives).

4.2 Experimental Results

Table 2 reports retrieval results for NQ10K, NQ100K, and NQ320K with finetuning and Table 3
reports zero-shot retrieval results. For zero-shot retrieval, the model is only trained on the indexing
task and not the retrieval task, so the model sees no labeled query→ docid data points. Section 7.2 of
the Appendix reports extended results regarding the indexing performance and training dynamics of
DSI.

Supervised Finetuning Results Our results show that DSI outperforms DE across all dataset sizes.
On the small dataset (NQ10K), the performance gap between DSI and DE is large, e.g., the best DSI
variant outperforms DE by 2 times. On NQ100K, the gap becomes less prominent with the best DSI
model (unstructured atomic identifiers) outperforming DE by +5% Hits@1 and Hits@10. On the
large dataset (NQ320K), the best DSI model (structured semantic identifiers) outperform the best DE
model by +66% relative Hits@1 and +4.5% Hits@10.

Zero-Shot Results Table 3 reports results on zeros-shot retrieval. Recall that zero-shot retrieval is
performed by only performing indexing and not the retrieval task. In other words, the model does
not see any annotated query or document pairs. Generally, the best result is obtained by DSI with
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Figure 3: Scaling plots for DSI vs. DE
across model sizes. Performance refers to
the Hits@1 metric.

Figure 4: Effect of multi-task ratio of index-
ing to retrieval examples.

Figure 5: Performance of different document representations. (Referenced in Section 4.2.)

unstructured atomic identifiers on both NQ100K and NQ320K. The best performance on all NQ
datasets outperform well-established unsupervised retrieval baselines such as BM25. Moreover, DSI
outperforms unsupervised representation learning methods such as SentenceT5 (Ni et al., 2021),
which is trained to learn similarity-aware representations via contrastive learning. We also note that
raw T5 embeddings perform extremely poorly and do not produce reasonable results on the task
of unsupervised retrieval. Given that it is generally difficult for an unsupervised neural method to
outperform BM25, we find these early results very encouraging.

Document Identifiers One key research question in this paper is the crucial choice of how to
represent docids. Generally, we find that structured semantic identifiers are helpful and improve
over unstructured identifiers. When comparing naive versus semantic string identifiers, it seems
imperative to use semantic identifiers if possible. This is intuitive, since imbuing the target space
with semantic structure can facilitate greater ease of optimization and additional unsupervised
representation learning methods as external knowledge. The competitiveness of unstructured atomic
identifiers is somewhat mixed and we had some difficulty optimizing such models. We hypothesize
that this could possibly be because of the the newly initialized softmax layer and that training such
a system from scratch would mitigate these issues. However, we defer this line of investigation to
future work. In lieu of the instability and high variance of the unstructured atomic identifiers, the
performance is not consistent across the different datasets. Moreover, these docids might also run
into intermittent non-convergence which we trace back to an optimization related quirk. However,
we also note that unstructured atomic identifiers perform the best, by a wide margin, on the zero-shot
retrieval setup and achieve performance often more than double than that of beam decoding methods.

Indexing Strategies In this section, we explore the effect of different indexing methods (Sec-
tion 3.1.1). We run experiments on NQ100K with the different indexing strategies described earlier.
Models are trained using the Naive Docid method. Without indexing, the model achieves 0%
Hits@1. This is intuitive, since the Docids are not meaningful without the indexing task. Secondly,
the Inputs2Targets and Bidirectional formulation performs the best, with the bidirectional
method performing slightly worse (13.5 vs 13.2) compared to the former. Finally, the accuracy with
Targets2Inputs and Span Corrpution with Docids yield no meaningful results (0% accuracy). This
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goes to show that there can be huge variance across indexing strategies whereby some strategies work
reasonably well and some completely do not work at all.

Document Representations In this section, we explore the performance of the different document
representation strategies described in Section 3.1.2. Figure 5 reports the results on NQ320K. Overall,
we find that the direct indexing approach works the best. We also find that it is difficult to train the
inverted index method since the docid is repeatedly exposed to different tokens. We also find that
shorter document lengths seem to work well where performance seems to substantially dip beyond
64 tokens suggesting that it might be harder to optimize or efficiently memorize when there are a
larger number of document tokens. Finally, we also find that there was no additional advantage in
applying set processing or stopwords preprocessing to the document tokens.

Scaling Laws Another interesting insight is how the scaling law of DSI differs from Dual Encoders.
Understanding the scaling behaviour of Transformers have garnered significant interest in recent
years (Kaplan et al., 2020; Tay et al., 2021; Abnar et al., 2021). We find that the gain in retrieval
performance obtained from increasing model parameterization in DE seems to be relatively small.
Conversely, the scaling properties of DSI seems to be more optimistic.

Figure 3 plots the scaling behaviour (log scale) of three methods (DE and DSI with naive and
semantic IDs). DSI (naive) strongly benefits from scale going from base to XXL and seems to still
have headroom for improvement. Meanwhile, DSI (semantic) starts off equally competitive as DE
base but performs much better with scale. DE models, unfortunately are more or less plateaued at
smaller parameterization.

Interplay Between Indexing and Retrieval Our early experiments showed that first learning
the indexing task and then learning the retrieval task in a sequential manner results in mediocre
performance. There, we focused on exploring good ratios r for co-training the indexing and retrieval
tasks together using multi-task learning. Figure 4 shows the effect of modifying the ratio of indexing
to retrieval samples. We find the optimization process is significantly influenced by the interplay
between the indexing and retrieval tasks. Setting r too high or low generally resulted in poor
performance. We find that a rate of 32 generally performed well.

5 Conclusion

This paper proposed the Differentiable Search Index (DSI), a new paradigm for learning an end-to-end
search system in a unified manner, paving the way for next generation search (Metzler et al., 2021).
We define novel indexing and retrieval tasks that encode the relationship between terms and docids
completely within the parameters of a Transformer model. The paper proposed a number of different
ways to represent documents and docids, and explored different model architectures and model
training strategies. Experiments conducted on the Natural Questions data set show that DSI performs
favorably against common baselines such as BM25 and dual encoders, both in a standard fine-tuning
setup as well as in a zero-shot setup.

Although the models and results presented here are promising, there is a great deal of potential future
research that can be explored based on this work to improve this approach. For example, it would
be interesting to explore alternative strategies for representing documents and docids, as well as
to investigate mixture-of-expert models (Du et al., 2021; Fedus et al., 2021; Lepikhin et al., 2020)
for scaling the memory capacity of DSI. One important direction will also be to explore how such
models can be updated for dynamic corpora, where documents may be added or removed from the
system. Finally it may also be interesting to further investigate DSI as an unsupervised representation
learning method and/or memory store for other language models to leverage.
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Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. arXiv
preprint arXiv:2004.04906, 2020.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin Kenton Lee, Kristina Toutanova, Llion
Jones Matthew Kelcey, Ming-Wei Chang, Andrew M Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural Questions: a Benchmark for Question Answering Research. In Transactions of the
ACL, 2019.

11

https://aclanthology.org/2021.emnlp-main.552
https://aclanthology.org/2021.emnlp-main.552
https://arxiv.org/abs/1908.10396


Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Donald Metzler, Yi Tay, Dara Bahri, and Marc Najork. Rethinking search: making domain experts
out of dilettantes. In ACM SIGIR Forum, volume 55, pages 1–27. ACM New York, NY, USA,
2021.

Jianmo Ni, Gustavo Hernández Ábrego, Noah Constant, Ji Ma, Keith B Hall, Daniel Cer, and Yinfei
Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models. arXiv preprint
arXiv:2108.08877, 2021.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H Miller,
and Sebastian Riedel. Language models as knowledge bases? arXiv preprint arXiv:1909.01066,
2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas Adler,
Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, et al. Hopfield networks
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(b) Did you describe the limitations of your work? [Yes] We highlight that this is a proof-

of-concept for a new paradigm, and not geared towards SOTA comparisons (Section
4). Clearly, many open problems still remain such as index updating, scaling to larger
datasets, etc.

(c) Did you discuss any potential negative societal impacts of your work? [No] Our
work effectively provides the same end functionality as existing information retrieval
systems.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
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results.
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3. If you ran experiments...
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were ran using publicly available T5X codebase, with publicly available Natural Ques-
tions dataset. All necessary details were included to reproduce the experiments.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4, under Implementation Details.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] As these experiments are expensive, experiments were
not ran multiple times to save compute.
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