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A Expanded zero-shot evaluation for group robustness

In this section, we expand on the zero-shot evaluation of various foundation models on group
robustness benchmarks discussed in Section 3. We first describe the datasets and models used in
Appendix A.1. We then include results in Appendix A.2. We find consistent trends of poor group
robustness with zero-shot classification, marked by poor worst-group accuracy and large gaps between
average and worst-group accuracy.

A.1 Additional details on robustness datasets and foundation models

Datasets. To benchmark zero-shot group robustness, we use a diverse set of datasets with group
shifts from prior robustness literature. We describe them below and include details on size of groups
and type of group shift in Table 7:

• Waterbirds [65, 75]. We classify images by bird type. Each class 2 {waterbird, landbird}
carries two groups: birds on water backgrounds, and birds on land backgrounds.

• CelebA [48, 65]. We classify images by celebrity hair color. Each class 2 {not blond, blond}
carries two groups: celebrities labeled as male, and celebrities labeled as female.

• BREEDS (Living-17, Nonliving-26) [67]. For the Living-17 and Nonliving-26 datasets
in the BREEDS benchmark sourced from ImageNet [67], we classify images by one of several
categories. Each class is a coarse category consisting of multiple fine-grained groups. Groups in
the same class may be visually distinct (e.g., the ape class includes images of gibbons and gorillas).
While the original benchmark evaluates how classifiers trained on seen source groups generalize
to unseen target groups, we adapt the datasets for our group robustness setting by adding 5% of
the images in each target group to the source groups, and evaluating worst-group accuracy over
all source and target groups.

• CIFAR-10.001, CIFAR-10.02 [41, 49, 61]. We classify images by one of 10 categories. We
combine CIFAR-10 [41] and either CIFAR-10.1 [61] or CIFAR-10.2 [49], which are collected from
different sources. The new datasets’ classes carry two groups determined by the source dataset. For
CIFAR-10.001, 2% of the combined train and validation data is sourced from CIFAR-10.1 (the
rest from CIFAR-10). For CIFAR-10.02, 10% of the combined train and validation data is sourced
from CIFAR-10.2 (the rest from CIFAR-10). For both, we then split the combined data into 80%
train and 20% validation sets. We merely combine the official test splits.

• FMoW-WILDS [15, 40]. We classify satellite images into one of 62 building or land-use categories
(e.g., airport, zoo). Each images belongs to one of five groups based on continental region. To
test group robustness, we compare the accuracies over all samples in each group as in the WILDS
benchmark [40]. We also evaluate only over test images from the same time period as training
images (the “IID” split in the original WILDS benchmark [40]).

• CivilComments-WILDS [10, 40]. We classify if a text comment is toxic or not. Samples are
organized into 8 groups based on mention of a demographic identity (e.g., “female”, “LGBTQ”).

• Amazon-WILDS [40, 54]. We classify if an online text review is positive or negative. Reviews are
organized into different groups based on the product category (e.g., books, electronics). We
adapt this dataset from the official Amazon-WILDS split by using the category_subpopulation
split. We also map the original class labels, which are star-ratings from 1 to 5, to positive or
negative reviews by discarding samples with a 3-star rating, and re-labeling 1- and 2-star ratings as
negative and 4- and 5-start ratings as positive.

Foundation models. For image datasets, we evaluate pretrained CLIP [59] and CLOOB [20]
vision-language models using publicly available weights23. We evaluate 7 available CLIP models:
3 ResNet image encoder backbones (RN-50, RN-101, RN-50x4), and 5 Vision Transformer image
encoder backbones: (ViT-B/32, ViT-B/16, ViT-L/14, ViT-L/14@336px) and 2 CLOOB models
(all available: RN-50, RN-50x4). For text datasets, we evaluate 2 pretrained GPT-Neo [7] text models
trained on the Pile [21] (GPT-Neo-125M, GPT-Neo-1.3B) available on HuggingFace45.

2CLIP: https://github.com/openai/CLIP/blob/main/clip/clip.py
3CLOOB: https://ml.jku.at/research/CLOOB/downloads/checkpoints/
4GPT-Neo 125M: https://huggingface.co/EleutherAI/gpt-neo-125M
5GPT-Neo 1.3B: https://huggingface.co/EleutherAI/gpt-neo-1.3B
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A.2 Group robustness results

In Figure 6, we chart worst-group and average accuracies achieved by various zero-shot foundation
models across the group robustness datasets. Larger gaps between accuracies, i.e. high average
accuracy yet low worst-group accuracy, indicate poor group robustness. In aggregate, on all datasets
except FMoW-WILDS and Amazon-WILDS, we observe a shared pattern of noticeable gaps between
average and worst-group accuracy, suggesting that zero-shot classification with popular foundation
models may not be group robust. We perform zero-shot classification as described in Section 3. As
recommended by Radford et al. [59], for each dataset we consider several prompt templates. We
engineer prompts by using the single best template based on validation worst-group accuracy. In
Table 11, Appendix C.5 we include a list of optimal prompts used. Table 20 includes a list of all
prompt templates tried for each dataset.

Figure 6: Foundation model zero-shot classification accuracies. We find poor zero-shot group
robustness across datasets and models via large gaps between average and worst-group accuracies.
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Table 7: Group robustness datasets, source of group shift, and group sizes.

(Class-wise) Group Size

Dataset Group Shift Largest Smallest Class-Wise?

Waterbirds Confounder 1057 56 Yes
CelebA Confounder 22880 1387 Yes
BREEDS Living-17 Subclass 1076 1009 Yes
BREEDS Nonliving-26 Subclass 1043 712 Yes
CIFAR-10.001 Data source 1000 114 Yes
CIFAR-10.02 Data source 4039 431 Yes
FMoW-WILDS Subclass 34816 1582 No
Amazon-WILDS Subclass 496127 110 No
CivilComments-WILDS Confounder 4962 1003 Yes

B Contrastive adapter implementation details

We provide further details on the adapter architecture and training sampling.

B.1 Adapter architecture
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Figure 7: Adapter architecture

Similar to prior works [22, 33], the adapters we use are bottleneck
2-layer multilayer perceptrons (MLPs). We set the input dimension
and output dimensions as the same as the pretrained foundation
model embedding dimension, and pick a smaller dimension for the
hidden layer (frequently 128, although this was chosen as a heuristic
and not tuned). We also experimented with using a single residual
connection [29] and batch normalization layer [35] between the input
and output layers, but only found the latter to be helpful. Pytorch-like
pseudocode is given below. The adapter is visualized in Figure 7.

1 import torch.nn as nn
2

3 class Adapter(nn.Module):
4 def __init__(self , input_dim , hidden_dim):
5 super().__init__ ()
6 self.arch = nn.Sequential(
7 nn.Linear(input_dim , hidden_dim),
8 nn.BatchNorm1d(hidden_dim),
9 nn.ReLU(),

10 nn.Linear(hidden_dim , input_dim)
11 )
12 def __forward__(self , x):
13 return self.arch(x)

B.2 Adapter training sampling

Recall in Section 4.2 that we train the adapter with both a supervised contrastive loss over specifically
sampled “contrastive batches”, and a cross-entropy loss over resampled batches, both over the fixed
pretrained foundation model embeddings. We use the foundation model’s zero-shot classification
predictions to guide sampling for both.

We outline the algorithms for sampling training batches in Algorithm 1 and Algorithm 2. We then
train an adapter by applying the contrastive loss (Eq. 6) and the cross-entropy loss (Eq. 5) over these
batches in Algorithm 3.
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Algorithm 1 Contrastive batch sampling
Input: Training dataset sample embeddings U = {un}Nn=1. Ground-truth class labels Y = {yn}Nn=1.

Foundation model zero-shot predictions Ŷ = {ŷn}Nn=1.
Require: Number of positives P per anchor. Number of negatives M per anchor. Number of nearest

neighbors M⇤ per anchor to sample negatives from.
1: Initialize set of contrastive batches B = {}
2: for anchor ua 2 {ui 2 U : ŷi 6= yi} do

(Positive sampling)

3: Sample P positives {up}Pp=1 uniform-randomly from U where ŷp = yp (and ŷp 6= ŷa)
(Negative sampling)

4: Sample M negatives {um}M
m=1 by computing the M

⇤ sample embeddings with the highest
cosine similarity to ua where ym 6= ya, then randomly sampling M of these embeddings

5: Update contrastive batch sets B  B [
�
ua, {up}Pp=1, {um}M

m=1

�

6: end for

Algorithm 2 Resampled training set sampling
Input: Training dataset sample embeddings U = {un}Nn=1. Ground-truth class labels Y = {yn}Nn=1.

Foundation model zero-shot predictions Ŷ = {ŷn}Nn=1. All unique classes C.
1: Initialize resampled training samples U⇤ = {}
2: for class c 2 C do

3: Identify incorrect samples U� = {ui} where ŷi 6= c

4: Identify correct samples U+ = {ui} where ŷi = c

5: Obtain upsampled samples Ũ� by uniform-randomly sampling from U
� s.t. |Ũ�| = |U+|

6: Update resampled samples U⇤  U
⇤ [

�
Ũ

� [ U
+
�

7: end for

Algorithm 3 Contrastive adapting
Input: Set of contrastive batches B, resampled training samples U⇤, number of epochs K.

1: Randomly initialize adapter f✓
2: for epoch 1, . . . ,K do

3: Sample contrastive batch {b} from B

4: Sample randomly-shuffled minibatch of samples {u} from U
⇤

5: Update f✓ with Equation 6 over {b}
6: Update f✓ with Equation 5 over {u}
7: end for

C Additional experimental details

C.1 Model selection and hyperparameters

We describe the hyperparameters used for each dataset and method. As in prior group robustness
work [40], we select the best model and hyperparameters based on early stopping that achieves
highest worst-group validation accuracy. For all methods and datasets, we train both linear probes and
adapters with SGD, and sweep over learning rate 2 {1e-3, 1e-4, 1e-5} and weight decay 2 {5e-5, 5e-
4, 1e-1}. For adapter classification, we used the default temperature used for zero-shot classification
in CLIP [59]. We did not tune the contrastive temperature. Unless noted, we ran all numbers.

We list hyperparameters for linear probes (Table 8), adapters (Table 9, both ERM and contrastive),
and contrastive-specific hyperparameters (Table 10). We discuss method-specific hyperparameters:

• Contrastive adapting requires selecting three additional hyperparameters: the number of positives
and negatives, and the number of nearest neighbors to sample negatives from. For these we swept
over the following combinations of (number positives, number negatives, number neighbors):
(2048, 2048, 2146), (2048, 2048, 4096), (512, 512, 1024).

• Weight-space ensembling (WiSE-FT): WiSE-FT requires picking a value ↵ 2 [0, 1] to compute a
weighted combination of the zero-shot classifier parameters and the trained linear probe parameters.
We sweep over intervals of size 0.1, i.e. ↵ 2 {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.
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Table 8: Linear probe hyperparameters

Dataset Max Epochs Learning Rate Weight Decay Momentum Batch Size

Waterbirds 100 1e-3 5e-5 0.9 128
CelebA 50 1e-3 5e-5 0.9 128
BREEDS Living-17 100 1e-3 5e-5 0.9 128
BREEDS Nonliving-26 100 1e-3 5e-5 0.9 128
CIFAR-10.001 100 1e-3 5e-5 0.9 128
CIFAR-10.02 100 1e-3 5e-5 0.9 128
FMoW-WILDS 100 1e-3 5e-5 0.9 128
Amazon-WILDS 100 1e-3 5e-5 0.9 16
CivilComments-WILDS 100 1e-3 5e-5 0.9 16

Table 9: Adapter hyperparameters. For contrastive adapters, batch size refers to the size of each
minibatch sampled for updating with cross-entropy loss.

Dataset Max Epochs Learning Rate Weight Decay Momentum Batch Size Hidden Dimension Temperature

Waterbirds 100 1e-3 5e-5 0.9 128 128 0.01
CelebA 50 1e-3 5e-5 0.9 128 128 0.01
BREEDS Living-17 100 1e-3 5e-5 0.9 128 128 0.01
BREEDS Nonliving-26 100 1e-3 5e-5 0.9 128 128 0.01
CIFAR-10.001 100 1e-3 5e-5 0.9 128 128 0.01
CIFAR-10.02 100 1e-3 5e-5 0.9 128 128 0.01
FMoW-WILDS 100 1e-3 5e-5 0.9 128 512 0.01
Amazon-WILDS 100 1e-3 5e-5 0.9 16 512 0.01
CivilComments-WILDS 100 1e-3 5e-5 0.9 16 512 0.01

Table 10: Specific contrastive adapter hyperparameters.

Dataset Number Positives Number Negatives Number Nearest Neighbors Contrastive Temperature

Waterbirds 2048 2048 4096 0.1
CelebA 2048 2048 4096 0.1
BREEDS Living-17 2048 2048 4096 0.1
BREEDS Nonliving-26 512 512 1024 0.1
CIFAR-10.001 512 512 1024 0.1
CIFAR-10.02 512 512 1024 0.1
FMoW-WILDS 2048 2048 2146 0.1
Amazon-WILDS 2048 2048 2146 0.1
CivilComments-WILDS 2048 2048 2146 0.1

C.2 Data splits

We use the same train, validation, and test splits for Waterbirds, CelebA, FMoW-WILDS, Amazon-
WILDS, and CivilComments-WILDS as in prior work. For BREEDS and CIFAR datasets that we
adapt for our problem setting, we construct test splits by combining official test splits from the
original benchmarks. We then create training and validation splits by combining the rest of the data
from these benchmarks, and randomly splitting this into 80% training data and 20% validation data.
No original test data is seen during training on our splits.

C.3 Additional dataset assets details and discussion

Dataset licenses. To curate CIFAR-10.0001 we use the CIFAR-10.1 dataset, which is distributed
under the MIT License. The FMoW-WILDS dataset is distributed under the FMoW Challenge Public
License6. The CivilComments-WILDS dataset is distributed under CC0 1.0. The Amazon-WILDS
dataset does not have a license, but is requested to be used for research purposes only [40]. We were
not able to find explicit license information for CIFAR-10.2, Waterbirds, CelebA, or the BREEDS
datasets. We note that the BREEDS datasets are sourced from ImageNet, which is distributed under
the BSD 3-Clause License, and set up with code from the MadryLab robustness GitHub repository7,
which is distributed under a MIT license. The authors of the CelebA dataset provide a list of
agreements8, including that the dataset is used only for non-commercial research purposes.

Existing assets personally identifiable information and offensive content. The CelebA dataset
consists of images of celebrity faces, which are personally identifiable. The dataset is also categorized

6https://github.com/fMoW/dataset/blob/master/LICENSE
7https://github.com/MadryLab/robustness
8http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Table 11: Class prompt templates or example prompts

Dataset Foundation Model Prompt template / example of prompt

Waterbirds CLIP “This is a picture of a [class_name].”
CLOOB “a [class_name]”

CelebA CLIP “A photo of a celebrity with blond hair.”
CLOOB “A photo of a celebrity with blond hair.”

BREEDS Living-17 CLIP “This is a picture of a [class_name].”
CLOOB “This is a picture of a [class_name].”

BREEDS Nonliving-26 CLIP “A photo of a [class_name].”
CLOOB “a [class_name]”

CIFAR-10.001 CLIP “a [class_name]”
CLOOB “a [class_name]”

CIFAR-10.02 CLIP “a [class_name]”
CLOOB “a [class_name]”

FMoW-WILDS CLIP “satellite view of the [class_name]”
CLOOB “aerial view of an [class_name]”

Amazon-WILDS GPT-Neo “Negative”

CivilComments-WILDS GPT-Neo “Not toxic”

by male and female identification at the time of curation, which may be outdated. The CivilComments-
WILDS contains text samples flagged as toxic by toxicity classifiers [40], which contain potentially
offensive content. Both datasets are existing assets, and both personal identifiability for CelebA and
offensive content for CivilComments-WILDS can be checked by inspecting the original data inputs
(images and text comments).

C.4 Compute and resources

All experiments were run on a machine with 14 CPU cores and a single NVIDIA Tesla P100 GPU.
For training a contrastive adapter on top of CLIP ResNet-50 Waterbirds embeddings, this took
approximately 30 minutes to run 100 epochs. Other than the numbers reported from their original
publications in Table 6, we report all numbers from running experiments on the same machine.

C.5 Class prompt templates

In Table 11, we list the templates used to generate class prompts for each dataset. As a reminder,
for each provided class name in a dataset, we create a prompt by inserting the class name into the
prompt template. We then encode this prompt with a foundation model text encoder to get class
embeddings. We selected these prompts for each dataset by trying several different prompt templates
per dataset, and selecting the best prompt template based on validation set worst-group accuracy.
Table 20 contains a full list of all templates tried.

D Additional related work discussion

We provide additional discussion of related work and connections to our work below.

Zero-shot classification with foundation models. Our work builds on a growing literature on
applying foundation models, large pretrained models that can be applied to various downstream tasks.
These models demonstrate exciting promise in their ability to achieve accurate downstream transfer
without any additional finetuning [9, 11, 59]. In particular we consider the zero-shot capabilities
of pretrained vision-language foundation models. These models, such as CLIP [59], ALIGN [36],
and CLOOB [20] are trained on massive amounts of naturally paired image-text data, e.g., Internet
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images and their corresponding captions. Consisting of an image encoder (usually a ResNet or Vision
Transformer) and a text encoder (usually a Transformer), such foundation models are commonly
trained to learn a shared image-text embedding space where embeddings of images are most similar
to embeddings of their corresponding caption text. While these objectives have been shown to
lead to powerful representations [18, 81], a crucial element for successful zero-shot classification
is training data scale [59]. However, added scale can also be a double-edged sword; when zero-
shot classification still makes undesirable mistakes, standard ways to correct for these mistakes via
retraining can become prohibitively expensive. We study one such motivating instance via group
robustness, and provide a first-step solution towards improving group robustness efficiently.

Robustness of foundation models. Prior works have studied the robustness of foundation model
inference to natural distribution shifts. Radford et al. [59] show that zero-shot CLIP models can be
more robust to out-of-distribution (OOD) shifts than prior ImageNet-trained models, measured via
better generalization to various dataset-level distribution shifts on ImageNet classes [4, 30, 32, 62, 74].
However, they also show that finetuning, or updating the original weights, of CLIP models on
ImageNet can reduce this OOD robustness. Kumar et al. [42], Wortsman et al. [76] thus propose
finetuning methods that improve downstream in-distribution accuracy while maintaining out-of-
distribution robustness. Kumar et al. [42] specifically study the trade-off between linear probing and
finetuning, finding that finetuning on downstream data can improve generalization on in-distribution
data over linear probing but more substantially hurt performance OOD data than linear probing. They
show theoretically and empirically that a two-step strategy of first linear probing then full fine-tuning
can combine the performance boosts of both. Wortsman et al. [76] focus on the OOD trade-off
presented by Radford et al. [59] between a finetuned foundation model and its pretrained zero-shot
weights. They propose weight-space ensembling (WiSE-FT), which computes a weighted average
of the finetuned and pretraiend foundation model parameters, and show that the resulting averaged
parameters can in some instances achieve higher performance on both data distributions that the
model was finetuned on and unseen OOD data than the initial finetuned and zero-shot or pretrained
models. They show this effect with both full finetuning and training a linear probe. Unlike these
works, we focus on foundation model robustness to group shifts that occur within a dataset. We
also compare against the linear probe version of WiSE-FT, and find that training adapters can be
advantageous for achieving higher group robustness on various datasets.

Recently, other works also study foundation model learned spurious correlations and biases. Singla
et al. [70] show how various models (including CLIP models) may rely on spurious artifacts to classify
ImageNet images. Berg et al. [6] aim to debias CLIP image embeddings of human faces using extra
metadata (textual concepts or attributes) that the embeddings should ignore. Our evaluation is
complementary, noting poor group robustness across multiple types of data sources (objects, animals,
human faces, text). We also provide a method that works without additional training metadata.

Improving group robustness of deep learning models. Improving the group robustness of deep
learning models is a common deep learning challenge, where models may learn biases during training
that lead to poor performance on certain groups. This is a widespread issue presented in contexts
ranging from algorithmic fairness to healthcare diagnosis [8, 12, 27]. Several methods exist to
improve group robustness. We compare against several recent approaches in Section 5.3. While
one effective strategy to improve group robustness is to upweight the error of worst-performing
group during training [65, 66], training group labels may be impractical to obtain in practice [55, 71].
We thus consider robustness approaches which aim to work without training group labels. Several
approaches involve training two models; one model is first trained with standard ERM to help infer
groups, and another trained with a robust objective using these inferred groups. Just Train Twice
(JTT) [47] treats samples that the first model misclassifies as inferred minority group samples to
upweight. JTT then upweights these samples by a hyperparameter factor, and trains a second model
with ERM on this upsampled data. Environment Inference for Invariant Learning (EIIL) [16] infers
groups by assigning samples to group under which the ERM model maximally violates an Invariant
Risk Minimization [2] principle. It then trains a robust model with Group DRO [65] using the
inferred groups, which dynamically upweights the worst-performing groups during training. Correct-
N-Contrast (CNC) [79] instead identifies samples with the same class labels but different ERM model
predictions, and trains a robust model by using a contrastive loss to learn similar representations
between these samples. Spread Spurious Attribute (SSA) [52] specifically trains the first model to
predict groups using a small set of group labels, before using Group DRO to train a robust model.
Contrastive Input Morphing (CIM) [72] trains a network to transform the input features of an image
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to better present class-specific information shared across groups. Idrissi et al. [34] suggest that simply
changing the training data by subsampling large classes (SUBY) or balancing the class sampling
probabilities (RWY), then training a model with ERM, can also improve group robustness.

E Additional experimental results

E.1 Extended main results

In Table 12 and Table 13 we report group robustness results evaluating all methods discussed in
Section 5.1 on all group robustness benchmarks. Table 12 contains results for image datasets,
using CLIP-RN50 embeddings. Table 13 contains results for text datasets, using GPT-Neo 1.3B
embeddings. As in Table 3, we report the worst-group and average accuracies, along with their gap.
Higher worst-group accuracy and smaller accuracy gap are indicative of better group robustness. All
results are computed over three random seeds, with mean and one standard deviation included (error
bars deferred to here from the main paper). Compared to alternative methods, contrastive adapting
consistently improves group robustness over zero-shot classification, and obtains highest worst-group
accuracy and smallest accuracy gap on datasets where training adapters with ERM fails. On datasets
where ERM-trained adapters achieve best group robustness, contrastive adapters are also competitive
or closest to ERM-trained adapters among other robustness methods.

E.2 Contrastive adapter ablations

In this section, in extension to Section 5.2 we ablate different training components of contrastive
adapting. We first study how ablating the training objective (cross-entropy and contrastive losses)
affects worst-group accuracy across multiple pretrained model embeddings on the Waterbirds dataset.
We then study how the number of positives and negatives used in contrastive sampling affects
performance. Our results suggest that the full combination of contrastive objective and hard sampling
corresponds to best group robustness across models on Waterbirds, and that contrastive adapters also
benefit from training with larger batches of positive and negative samples.

E.2.1 Ablation on loss components in training objective

We first study the importance of the contrastive and cross-entropy components in contrastive adapting.
For evaluation, we use the Waterbirds dataset, and run ablations comparing adapters trained on top of
CLIP embeddings with (i) no contrastive component (Eq. 6), (ii) no cross-entropy component (Eq. 5),
or the default proposed approach. We evaluate across five different CLIP models and three seeds. We
keep all other training procedures consistent (e.g., we use the proposed “hard” sampling strategy).

In Table 14, we report worst-group accuracies. We find that both contrastive and cross-entropy
components are necessary for best worst-group accuracy. The contrastive objective leads to a
substantial improvement over just the resampled cross-entropy loss (+17.9 pp on average). However,
we also note that without the cross-entropy objective to learn sample embeddings close to their
ground-truth class embeddings, we observe high variance in classification accuracy. We improve
+26.9 pp on average using both objectives compared to contrastive alone.

E.2.2 Effect of contrastive batch size

While one advantage of training adapters is that because we train on embeddings, the memory size
of our data inputs during training is much smaller than the traditional alternative (e.g., storing an
tensorized image). We can thus train with larger batch sizes. Here we study how contrastive batch
size, i.e. how many positives and negatives we sample per anchor, affects worst-group accuracy. On
the Waterbirds and CelebA datasets and with CLIP RN-50 embeddings, we train a contrastive adapter
with varying levels of positives and negatives. For both datasets, the default is 2048 positives and 2048
negatives per batch. We ablate these numbers with the following (positive, negative) combinations:
(1, 1), (2, 2), (256, 256), (256, 512), (512, 256), (512, 512), (512, 1024), (1024, 512), (1024, 1024),
(1024, 2048), (2048, 1024).

In Figure 8, we plot the effect of smaller batch sizes on worst-group accuracy. We find that larger batch
sizes weakly correspond to higher worst-group accuracy on both Waterbirds and CelebA. However,
perhaps surprisingly, we still maintain a substantial improvement over zero-shot classification with
just a single positive and negative per anchor.
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Table 12: Worst-group (WG) and average (Avg) accuracies (in %) for zero-shot and efficient methods
to improve CLIP-RN50 inference. 1st / 2nd highest WG acc. and 1st / 2nd smallest accuracy gap
bolded / underlined respectively. Contrastive adapter (Contrast. Adapter) bolded for visibility.

Waterbirds
Acc. Zero-Shot Group Prompt ERM LP ERM Adapter WiSE-FT DFR (Sub) DFR (Up) Contrast. Adapter

WG 49.8± 0.0 55.9± 0.0 7.9± 1.0 60.8± 0.9 49.8± 0.0 51.3± 1.4 63.9± 1.5 83.7± 0.7
Avg. 91.0± 0.0 87.8± 0.0 93.5± 0.1 96.0± 0.1 91.0± 0.0 92.4± 0.1 91.8± 3.1 89.4± 0.9
Gap 41.2 31.9 85.6 35.2 41.2 41.1 27.9 5.7

CelebA
Acc. Zero-Shot Group Prompt ERM LP ERM Adapter WiSE-FT DFR (Sub) DFR (Up) Contrast. Adapter

WG 74.0± 0.0 70.8 11.9± 0.3 36.1± 1.4 85.6± 0.0 76.9± 1.4 89.6± 0.3 90.0± 0.4
Avg. 81.9± 0.0 82.6 94.7± 0.0 94.2± 0.2 88.6± 0.0 92.5± 0.2 91.8± 0.1 90.7± 0.0
Gap 7.9 11.8 82.8 58.1 3.0 15.6 2.2 0.7

BREEDS Living-17
Acc. Zero-Shot Group Prompt ERM LP ERM Adapter WiSE-FT DFR (Sub) DFR (Up) Contrast. Adapter

WG 6.0± 0.0 30.0± 0.0 53.3± 0.9 70.7± 0.9 53.3± 0.9 46.7± 3.4 44.0± 0.0 62.0± 1.6
Avg 86.7± 0.0 90.6± 0.0 90.8± 0.0 94.0± 0.1 90.8± 0.0 89.3± 0.3 86.4± 0.0 90.9± 0.3
Gap 80.7 60.6 37.5 23.2 37.5 42.6 42.4 28.9

BREEDS Nonliving-26
Acc. Zero-Shot Group Prompt ERM LP ERM Adapter WiSE-FT DFR (Sub) DFR (Up) Contrast. Adapter

WG 6.0± 0.0 56.0± 0.0 32.0± 0.0 61.3± 1.9 36.7± 0.9 29.3± 1.9 30.0± 4.1 55.3± 4.2
Avg 72.3± 0.0 87.1± 0.0 82.3± 0.1 92.1± 0.2 83.6± 0.1 80.6± 0.1 83.6± 0.0 88.1± 0.6
Gap 66.3 31.1 50.3 30.8 46.9 51.3 53.6 32.8

CIFAR-10.001
Acc. Zero-Shot Group Prompt ERM LP ERM Adapter WiSE-FT DFR (Sub) DFR (Up) Contrast. Adapter

WG 31.4± 0.0 N/A 44.0± 1.4 68.2± 3.5 53.3± 0.0 18.1± 4.3 45.0± 1.6 59.7± 4.1
Avg 69.8± 0.0 N/A 75.2± 0.2 87.3± 0.3 81.1± 0.0 58.7± 1.7 78.3± 0.1 82.0± 0.1
Gap 38.4 N/A 31.2 19.1 27.8 40.6 33.3 22.3

CIFAR-10.02
Acc. Zero-Shot Group Prompt ERM LP ERM Adapter WiSE-FT DFR (Sub) DFR (Up) Contrast. Adapter

WG 39.1± 0.0 N/A 51.3± 0.2 68.8± 0.5 58.2± 0.2 45.0± 0.8 38.5± 2.1 60.7± 1.7
Avg 69.9± 0.0 N/A 77.7± 0.1 86.0± 0.5 79.1± 0.0 75.0± 0.3 77.9± 0.5 80.9± 0.2
Gap 48 N/A 26.4 17.2 20.9 30.0 39.4 20.2

FMoW-WILDS
Acc. Zero-shot Group Prompt ERM LP ERM Adapter WiSE-FT DFR (Sub) DFR (Up) Contrast. Adapter

WG 10.5± 0.0 - 21.6± 0.1 41.3± 0.5 21.6± 0.1 6.8± 0.6 27.0± 0.2 39.2± 0.7
Avg 13.2± 0.0 - 24.1± 0.1 43.6± 0.5 24.1± 0.1 10.2± 0.5 28.7± 0.2 41.9± 0.1
Gap 2.7 - 2.5 2.3 2.5 3.4 1.7 2.7

Table 13: Worst-group (WG) and average (Avg) accuracies (in %) for zero-shot and efficient methods
to improve GPT-Neo 1.3B inference. 1st / 2nd highest WG acc. and 1st / 2nd smallest accuracy gap
bolded / underlined respectively. Contrastive adapter (Contrast. Adapter) bolded for visability.

Amazon-WILDS
Acc. Zero-shot Group Prompt ERM LP ERM Adapter WiSE-FT DFR (Sub) DFR (Up) Contrast. Adapter

WG 79.4± 0.0 N/A 87.2± 0.3 87.2± 0.3 87.2± 0.3 87.2± 0.3 85.4± 0.8 87.9± 1.1
Avg 86.7± 0.0 N/A 93.3± 0.2 93.6± 0.1 93.3± 0.2 93.2± 0.3 92.7± 0.7 92.6± 0.8
Gap 7.3 N/A 6.1 6.4 6.1 6.0 7.3 4.7

CivilComments-WILDS
Acc. Zero-shot Group Prompt ERM LP ERM Adapter WiSE-FT DFR (Sub) DFR (Up) Contrast. Adapter

WG 16.0± 0.0 N/A 46.7± 2.0 32.1± 1.5 46.7± 2.0 47.4± 0.9 48.2± 1.3 50.1± 1.5
Avg 74.8± 0.0 N/A 51.2± 0.26 37.7± 0.7 51.2± 0.26 51.9± 0.8 52.1± 1.3 54.2± 0.5
Gap 58.8 N/A 4.5 5.6 4.5 4.5 3.9 4.1

E.3 Comparison to TIP-adapter and training sample nearest-neighbors lookup

On representative benchmarks, we perform further comparison to the nearest-neighbor look-up
approach employed by TIP Adapter [80]. Instead of learning transformed representations of pretrained
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Table 14: Contrastive adapter training objective ablation. For five CLIP models, we report the worst-
group accuracy (%) on Waterbirds (mean, std. dev. over three seeds). Having both contrastive (Eq. 6)
and cross-entropy (Eq. 5) objectives lead to best worst-group accuracy. Removing Eq. 5 (which keeps
sample embeddings close to class embeddings), also leads to higher performance variance.

Adapter Method Ablation RN-50 RN-101 ViT-B/32 ViT-B/16 ViT-L/14

No contrastive (Eq. 6) 56.3± 1.5 68.8± 2.2 56.7± 2.4 70.2± 1.4 75.1± 1.0
No cross-entropy (Eq. 5) 60.7± 8.3 37.8± 12.0 23.1± 10.5 77.7± 2.9 82.4± 2.0
Default 83.7± 0.7 82.0± 1.3 80.7± 1.4 83.1± 2.1 86.9± 1.6

Figure 8: Effect of contrastive batch size on worst-group accuracy. With CLIP RN-50 embeddings,
training contrastive adapters with larger batch sizes (greater number of positives and negatives) tends
to help worst-group accuracy. However, even training with one positive and negative per batch leads
to substantially greater worst-group accuracy than zero-shot classification.

Table 15: Group robustness comparison to nearest training sample look-up / TIP Adapter [80]. Across
representative benchmarks, on average contrastive adapting achieves 30.4 pp higher worst-group
accuracy than the nearest training sample look-up employed by TIP-adapter. This supports learning
non-linear transformations of pretrained embeddings to better classify samples.

Waterbirds CelebA BREEDS Living-17 CIFAR-10.02

Acc (%) WG Avg Gap WG Avg Gap WG Avg Gap WG Avg Gap

Zero-shot (ZS) 36.6 92.2 55.6 74.0 81.9 7.9 6.0 86.7 80.7 39.1 69.9 30.8
TIP Adapter 39.9 93.9 54.0 19.4 91.1 71.7 64.0 90.7 26.7 51.5 75.4 23.9
Contrastive Adapter 83.7 89.4 5.7 90.0 90.7 0.7 62.0 90.9 28.9 60.7 80.9 20.2

embeddings, another approach to better classify a test sample is to use the class of its nearest training
sample. Under the assumption that the training and test data are sampled from the same broader
distribution and share the same groups, then test samples in a given group should embed closest to
training samples in the same group. The training sample ground-truth class should then apply to
the test sample. TIP adapter operates accordingly, keeping a cache of training sample embeddings
available at test-time. One advantage is this allows for potentially more accurate classification without
any training. To test how well this idea fares for group robust classification, for each test sample we
perform a look-up with all training samples, using cosine similarity to identify nearest neighbors.

In Table 15, we compare TIP-adapter with zero-shot classification and contrastive adapting on the
Waterbirds, CelebA, BREEDS Living-17, and CIFAR-10.02 group robustness benchmarks. For
all methods, we use CLIP RN-50 pretrained embeddings. We find that TIP adapter improves
worst-group accuracy over zero-shot classification on 3 out of 4 datasets, and notably achieves best
worst-group accuracy on BREEDS Living-17 without training any additional parameters. However,
the improvements are more marginal on Waterbirds and CIFAR-10.02. Contrastive adapting still
achieves 30.4 pp higher worst-group accuracy over TIP adapter on average. This may suggest that
learning a nonlinear transformation of the pretrained embeddings can still be helpful for better
“presenting” class-specific information to classify samples by.
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Figure 9: Plotting worst-group versus average accuracy trade-off against WiSE-FT ensemble (traced
out) on representative datasets (Table 3). Contrastive adapters (dark blue stars) consistently achieve
higher worst-group accuracy than weight-space ensembles.

E.4 Evaluation with respect to weight-space ensembling trade-off

To provide additional perspective on how different embedding-only methods trade-off worst-group
and average accuracy, we compare how these methods perform with respect to the accuracy trade-
off traced out by weight-space ensembles. Wortsman et al. [76] show an interesting phenomenon
where simply taking a weighted average of a trained linear probe and the original foundation model
(either over the weights, or the outputs) can result in a “pareto frontier” of accuracy metrics. They
specifically show that a weight-space ensemble can often achieve better OOD performance without
sacrificing too much IID performance. compared to a single linear probe. In this context, we see
how this trade-off occurs over average accuracy and worst-group accuracy across our representative
set of group-robustness datasets. We also evaluate how other approaches (ERM adapters, DFR [39],
contrastive adapters) fare along this trade-off.

In Figure 9, we plot the accuracies of these methods run on CLIP RN-50 embeddings. We note
several observations. Weight-space ensembles (WiSE-FT) achieve the desired effect on certain
datasets but not others. On CelebA and CIFAR-10.02, we find that an ensemble can obtain a better
worst-group accuracy versus average accuracy trade-off than either zero-shot classification or linear
probes. However, the single linear probe does at least as well as any ensemble in BREEDS Living-17,
while the zero-shot classification does at least as well as any ensemble in Waterbirds.

We also find that among other methods, contrastive adapting is the only evaluated approach that
consistently achieves higher worst-group accuracy than any weight-space ensemble. While contrastive
adapting places “above” the trade-off curve traced out by WiSE-FT on 3 out of 4 datasets (CelebA,
BREEDS Living-17, and CIFAR-10.02), it tends to degrade average performance in favor of higher
worst-group performance compared to other approaches. Further work can improve on how to raise
worst-group performance without sacrificing any average performance when compared to zero-shot
classification or ERM-trained adapters.

E.5 Comparison to recent robustness methods adapted for the pretrained embedding setting

The scope of this paper focused on identifying the poor group robustness of foundation models
and determining how to efficiently improve this robustness. Thus, to judge the effectiveness of
our proposed approach, our main evaluation considered existing methods for efficiently improving
pretrained model inference, i.e., with no model retraining and only access to pretrained embeddings.

Here, in an initial study on how we can adapt more robustness techniques for efficiently improving
group robustness, we consider how recent robustness methods proposed for standard model training
(as introduced in Section 5.3) can transfer to the pretrained model setting. We adapt methods such
as Just Train Twice (JTT) [47], Correct-N-Contrast (CNC) [79], and Just Mix Once (JM1) [24] to
train adapters, and compare these methods to the proposed contrastive adapting on the representative
benchmarks in the main results (Section 5.1). In Section E.5.1, we describe how we adapt the method
to the pretrained model setting. In Section E.5.2, we discuss key hyperparameters and our sweeps.
Finally, in Section E.5.3 we report results and comparison takeaways.
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Table 16: Hyperparameters for robustness methods adapted to the pretrained embedding setting

Dataset Waterbirds CelebA BREEDS Liv-17 CIFAR-10.02

Method JTT CNC JM1 JTT CNC JM1 JTT CNC JM1 JTT CNC JM1

LR 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
Weight Decay 5e-5 5e-5 1e-1 5e-5 5e-5 1e-1 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5
Momentum 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Batch Size 128 128 128 128 128 128 128 128 128 128 128 128
Stage 1 Epochs 0 5 0 0 0 0 5 0 0 2 1 0

E.5.1 Method overview for adapters

• Just Train Twice (JTT) [47]: Following the two-stage process in JTT, we first train an initial ERM
adapter (via the cross-entropy loss in Eq. 5) for a few epochs and upsample the samples that the
adapter gets incorrect. We then train a new adapter with the same objective but on the resampled
data. Alternatively, we can also use the zero-shot pretrained model predictions for sampling.

• Correct-N-Contrast (CNC) [79]: Like JTT, CNC also employs a two-stage process. We first
train an initial ERM adapter like in JTT, but instead of upsampling the incorrect samples, use
the first ERM adapter’s predictions to set up a contrastive learning dataset in the second stage.
Following [79], we obtain contrastive batches by sampling anchors and positives as samples with
the same class, but different initial ERM adapter predictions. We identify anchors and negatives
as samples with different classes, but the same initial ERM adapter predictions. We then train a
second adapter with the contrastive loss in Eq. 6 on this training set. Alternatively, we can also use
the zero-shot pretrained model predictions for sampling.

• Just Mix Once (JM1) [24]: We similarly first identify samples with the same class but different
predictions, using predictions from either training an initial ERM adapter for a few epochs, or
using the pretrained model zero-shot predictions. Then to train a robust adapter, during each
training epoch we compute a set of interpolated sample embeddings by interpolating embeddings
for samples in the same class but different predictions (i.e. u = ↵u1 + (1 � ↵)u2 if u1, u2 are
pretrained sample embeddings that fit the criteria). We follow the proposed strategy [24] for
randomly sampling ↵, alternating between a Uniform(0, 1) and Beta(2, 5) distribution. As the
embeddings have the same class, we use the original class label as the interpolated sample label.
We train another adapter on the interpolated embeddings using the cross-entropy loss (Eq. 5).

E.5.2 Training details and hyperparameters

We evaluate the group robustness after training adapters on CLIP ResNet-50 pretrained embeddings
with each method. For all methods, we sweep over the same adapter hyperparameter set in Section C.1.
As each method trains an initial “stage 1” ERM model, before using this model’s predictions to
setup a robust training stage, we also try this. In addition to using the pretrained model’s zero-shot
predictions, as a hyperparameter we try sourcing predictions from an initial ERM adapter after
training for 1, 2, 5, or 10 epochs. In Table 16, we list the optimal hyperparameters for each method
and dataset. We use the same learning rate, weight decay, momemtum, and optimizer for both
adapters. We select models with early stopping based on best worst-group validation accuracy. When
the zero-shot predictions lead to best validation set accuracy, we denote this by Stage 1 Epochs = 0.

Following recommendations for fair group robustness comparison [26], we try to keep the total size
of all hyperparameter combinations consistent across methods. Thus for JTT, we do not tune the
upsampling ratio; we upsample samples by the class-specific ratios that equate the number of correct
and incorrect samples per class (intuitively balancing groups to improve group robustness). For CNC,
we pick the same number of positives and negatives for each dataset as in Table 10.

E.5.3 Results

In Table 17 we report results on representative group robustness benchmarks, comparing contrastive
adapting to recent robustness techniques applied to training adapters. We find that among methods,
the proposed contrastive adapting strategy obtains best or competitive group robustness on all datasets.
For three out of four datasets (Waterbirds, CelebA, and BREEDS Living-17), contrastive adapting
obtains best worst-group accuracy, and on average across all datasets outperforms the next best
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Table 17: Group robustness of recent robustness methods adapted for training adapters on top of
pretrained foundation model embeddings. Worst-group (WG), Average (Avg) and worst-group versus
average accuracy gap (Gap) reported over three seeds. Contrastive adapting (Ours) achieves best
worst-group (WG) accuracy on three of four benchmarks, and competitive worst-group versus average
accuracy gap on all datasets. On average, this results in a 1.7 pp increase in worst-group accuracy,
and a 0.5 pp decrease in the worst-group versus average accuracy gap, over the next best method.

Waterbirds CelebA BREEDS Liv-17 CIFAR-10.02
Acc. (%) WG Avg Gap WG Avg Gap WG Avg Gap WG Avg Gap

JTT 69.2 ± 2.3 85.1 ± 0.4 15.9 86.3 ± 0.9 88.2 ± 0.4 1.9 61.4 ± 2.5 91.4 ± 0.3 30.0 63.5 ± 1.3 81.7 ± 0.2 18.2
CNC 82.7 ± 2.0 87.0 ± 1.1 4.3 86.9 ± 1.4 91.8 ± 0.4 4.9 60.7 ± 2.5 88.1 ± 0.7 27.4 59.2 ± 2.5 80.4 ± 0.2 21.2
JM1 74.2 ± 3.1 80.4 ± 1.0 6.2 87.1 ± 1.1 91.6 ± 1.0 4.5 61.7 ± 2.0 91.1 ± 0.1 29.4 65.2 ± 0.9 82.6 ± 0.2 17.4

Ours 83.7 ± 0.7 89.4 ± 0.9 5.7 90.0 ± 0.4 90.7 ± 0.4 0.7 62.0 ± 1.6 90.9 ± 0.3 28.9 60.7 ± 1.7 80.9 ± 0.2 20.2

method by 1.7 pp. Contrastive adapting also obtains competitive gaps between worst-group and
average accuracy. Notably, while the application of CNC to adapters also involves supervised
contrastive learning over sample embeddings, contrastive adapting outperforms CNC on all datasets.
We preliminarily hypothesize that the negative sampling procedure in contrastive adapting, which
focuses on the nearest neighbors of each anchor, and not just incorrectly predicted samples with the
same class (as in CNC), samples “harder” negatives that the initial pretrained model embeddings
more erroneously embeds closer to the anchors. By focusing on “pulling” these sample embeddings
apart, contrastive adapting may thus more effectively transform the pretrained representations for
better group robust classification, as discussed in Section 4.1.

Building on these results and our initial proposed method, we believe (1) a more comprehensive eval-
uation of how well existing robust training methods can transfer to efficiently improving foundation
model inference, and (2) a deeper exploration into how method differences impact performance for
training on large pretrained model embeddings, are interesting grounds for future work.

E.6 Additional study on how dataset properties impact adapter robustness

In this section, we try to further understand what properties of the representative benchmarks in
the main results (Section 5.1) may explain why ERM adapters achieve better group robustness on
BREEDS Living-17 and CIFAR-10.02 than contrastive adapters (c.f. Table 3). Our study also helps
understand why contrastive adapters work significantly better on Waterbirds and CelebA.

We consider two hypotheses for the relative performance improvement of ERM adapters on CIFAR-
10.02 and BREEDS Living-17, but not Waterbirds and CelebA. First, in Appendix E.6.1, we discuss
how the lack of group shift in CIFAR-10.02 may result in ERM adapters and linear probes performing
best among all methods. Second in Appendix E.6.2, we explore how the group balance in the
BREEDS Living-17 training data may also enable ERM adapters to best improve group robustness.

In each subsection, we provide empirical validation supporting or opposing these hypotheses. Our
findings suggest that rather than these settings being challenging for contrastive adapting, the CIFAR-
10.02 and BREEDS Living-17 datasets as-is are more optimal for ERM training to achieve good
group-robustness. When we make the BREEDS Living-17 task harder for group-robust classification,
we find that contrastive adapting outperforms ERM training. Furthermore, this harder BREEDS task
exhibits the same combination of significant group shift and group imbalance present in Waterbirds
and CelebA (where contrastive adapting outperforms ERM training by a large margin), suggesting
that contrastive adapters work particularly well in these harder group robustness settings.

E.6.1 Lack of group shift in CIFAR-10.02

First, for CIFAR-10.02, we hypothesize that ERM adapters achieve high worst-group and average
accuracy on CIFAR-10.02 because there are not significant distribution shifts between individual
groups in each class. While we curated benchmarks to intentionally include different groups and
induced minority groups in CIFAR-10.02, if there are not significant group shifts between different
groups, then training via ERM on all of the data may still allow adapters to learn generalizable
correlations from the majority groups that apply to all groups. Thus using all of the available data as
in ERM can be optimal. Meanwhile, the contrastive adapter protocol may restrict training to a certain
subset of the available data via the hard sampling strategy, relatively hurting performance.
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Table 18: To evaluate if datasets exhibit significant distribution shifts between groups, we report the
worst-group (WG) and average (Avg) test accuracy of ERM adapters after training on training data
with the minority groups removed (No Minority Group). For comparison, we include performance
with default train data (Default Train). High worst-group accuracy (in blue, c.f. CIFAR-10.02)
suggests even after only training on majority groups, ERM adapters still generalize to unseen test
minority groups, pointing to little group-shift between groups (i.e., where ERM is expected to suffice).
All other datasets exhibit significant group shifts, via drops in WG acc. to below zero-shot (in red).

Waterbirds CelebA BREEDS Liv-17 CIFAR-10.02
Acc. (%) WG Avg WG Avg WG Avg WG Avg

Default Train 60.8 ± 0.9 96.0 ± 0.1 36.1 ± 1.4 94.2 ± 0.2 70.7 ± 0.9 94.0 ± 0.1 68.8 ± 0.5 86.0 ± 0.5
No Minority Group 28.7 ± 1.0 95.3 ± 0.1 30.6 ± 1.1 94.7 ± 0.2 6.5 ± 0.9 85.7 ± 0.3 62.5 ± 1.4 85.7 ± 0.0

Acc. Difference -32.1 -0.7 -5.5 +0.5 -64.2 -8.3 -6.3 -0.3

To test this hypothesis, we study how well adapters trained via ERM on datasets with only majority
groups transfer to minority groups. We subsample training sets such that 100% of all samples belong
to majority groups (or the source group in BREEDS Living-17), such that models never see the other
groups during training. We evaluate these models on the regular test sets, and report average and
worst-group accuracy. If models still obtain high worst-group accuracy, then this suggests that there
is little group shift between majority and minority groups. The datasets are thus “easier” from a
group-robustness standpoint.

In Table 18, we compare results training ERM adapters on the subsampled datasets and the original
splits (all trained on CLIP ResNet-50 pretrained embeddings). Notably, on CIFAR-10.02, despite
never seeing certain groups during training, worst-group accuracy only drops 6.3 pp, and is still
significantly higher than chance (62.5% vs. 10.0% given 10 possible classes). This suggests there is
little group-shift, as training on only the majority groups still enables sufficient transfer to minority
groups. Meanwhile, on Waterbirds, CelebA, and BREEDS Living-17, we see much larger drops in
performance. This suggests these datasets exhibit more significant distribution shifts between groups.

E.6.2 Balanced groups in BREEDS Living-17

Next, for BREEDS Living-17, we hypothesize that the natural group balance in the training set allows
ERM adapters to achieve best or competitive worst-group and average accuracy. Recall that the
same groups are encountered during train and test (for all splits we combine source and target

splits from the original benchmark [67]). This amounts to roughly evenly sized groups (c.f. Table 7).
Thus if there are no actual minority groups in the training data, then training adapters with ERM to
minimize the average empirical error across samples can also lead to good generalization across all
groups at test time. We note that if the embeddings actually do contain the necessary information to
classify each group, then this can still happen despite the initial pretrained embeddings performing
poorly (e.g., by learning nonlinear transformations with the adapters). Meanwhile, the sampling
procedure with contrastive adapting may restrict the training sample size or focus on certain groups,
leading to poorer overall generalization.

To test this hypothesis, we introduce group imbalance by subsampling certain groups in the training
data. We downsample the training data such that there exist groups that only makes up 5% of
the samples in their classes. If group balance is a key factor for the robust performance of ERM
adapters on BREEDS Living-17, then we expect the worst-group accuracy for ERM adapters to drop
substantially. By introducing group imbalance, but keeping the group shifts, we arguably also make
group-robust classification more difficult on the BREEDS Living-17 dataset.

In Table 19, using CLIP ResNet-50 and CLIP ViT-L/14 pretrained embeddings, we evaluate ERM
adapters, linear probes, and contrastive adapters on the group-imbalanced BREEDS Living-17
training set, and compare their worst-group accuracy to that achieved after training on the default
group-balanced training set. As hypothesized, we find that ERM adapters (and linear probes) perform
significantly worse after training with the group-imbalanced data. Meanwhile, the contrastive adapters
are more robust to this setting. They now outperform the other ERM approaches by 4.0 pp and 2.0
pp on worst-group accuracy for CLIP ResNet-50 and ViT-L/14 models respectively. In contrast to
the results in Table 3, contrastive adapting can outperform ERM training in settings with multiple
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Table 19: Evaluating whether group balanced training data explains ERM training performance.
On the BREEDS Living-17 dataset, we compare worst-group accuracy for ERM linear probes
(ERM LP), ERM adapters, and contrastive adapters (Contrast. Adapter) after training on the default
dataset (Group Balanced) and a harder group-imbalanced version (Group Imbalanced). Compared to
ERM, contrastive adapting is more robust to group-imbalanced training data, with lowest drop in
performance. Contrastive adapting also outperforms ERM in the harder group-imbalanced setting.

CLIP RN-50 CLIP ViT-L/14
Worst-group Acc. (%) ERM LP ERM Adapter Contrast. Adapter ERM LP ERM Adapter Contrast. Adapter

Group Balanced 53.3 ± 0.9 70.7 ± 0.9 62.0 ± 1.6 84.0 ± 0.9 82.8 ± 0.9 80.0 ± 1.6
Group Imbalanced 8.0 ± 0.0 56.0 ± 1.6 60.0 ± 2.3 52.7 ± 1.9 70.7 ± 0.9 72.7 ± 1.9

Acc. Difference -45.3 -14.7 -2.0 -31.3 -12.1 -7.3

classes and subclass group shift. Notably, from Appendix E.6.2, we saw that the BREEDS Living-17
dataset exhibits significant group shifts, and this improvement over ERM occurs when we make
the BREEDS Living-17 dataset harder with group-imbalanced training data. This is also consistent
with the improved performance of contrastive adapting over ERM on Waterbirds and CelebA, which
exhibit significant group shift (c.f. Table 18) and group imbalance (c.f. Table 7). Thus, contrastive
adapting may enable group robust classification in harder settings where ERM training is insufficient.

F Limitations and societal impact

Method limitations. While in this work, we demonstrated that we can substantially improve the
group robustness of foundation model classification without any finetuning of the original model,
several limitations still exist. First, this does not imply that we can get desirable performance in
general without additional retraining. To obtain high worst-group performance in general, we are
upper-bounded by whether the pretrained embeddings do contain the information needed to classify
all groups. While our study suggests that in many cases they do carry this information—which can
surprising given that the zero-shot classification with the same embeddings results in poor group
robustness—in other situations the pretrained embeddings may lack this information. For example, if
downstream task data is very different in distribution from the pretraining data, then the pretrained
foundation model embeddings may not be sufficient to work with. While more efficient ways to
improve robustness can democratize foundation model use, further finetuning may still be needed.

We also emphasize that our approach is a simple first-step method to improving the group robustness
over existing baseline approaches. This is motivated by our observation that foundation model zero-
shot classification may not be group robust, and that we would like to both (i) improve performance
of these models when we realize they fail in certain aspects, and (ii) do so efficiently, such that fixing
their failures is not bound by who can conduct costly retraining procedures, and when they can do so.
We are excited for future work and expect further improvements as this thread of how to efficiently
improve FM performance with limited access (e.g., only pretrained embeddings) is further explored.

Societal impact and related limitations. Finally, we note that it is important to carefully study
the learned biases of foundation models, and to devise appropriate solutions evaluated outside of
just computational metrics. Due to their promise of widespread and effective downstream transfer,
foundation models may have a particularly strong impact on various parts of society. Individuals may
get the sense that they can successfully apply these pretrained models to their desired downstream
tasks “out-of-the-box”. However, doing so also risks applying any learned biases of the model. Our
work raises this issue with respect to group robustness as motivation for our problem setting, also
noting that additional evaluation beyond average accuracy can shed light on the negative qualities of
existing models (e.g., zero-shot FM classification may perform very well on average, but very poorly
on certain groups, c.f. Figure 6). However we note the limitations of purely computational solutions
to addressing group performance disparities in society. We also note the need to better understand
these large pretrained models and their potential uses in broader socio-technical systems [9].
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Table 20: Class prompt templates tried for each dataset. Each vertical section denotes prompt
templates used for every dataset in that section, e.g., Waterbirds, CelebA, BREEDS, and CIFAR-10
datasets used the same prompt templates. For Amazon-WILDS and CivilComments-WILDS, we
tried different ways to convey the class (e.g., negative versus positive review for Amazon-WILDS),
and list the prompts used for the “negative review” and “not toxic” classes respectively.

Dataset Prompt template (for a class)

Waterbirds “A photo of a {}.”
CelebA “A picture of a {}.”
BREEDS Living-17 “A {}”
BREEDS Nonliving-26 “This is a photo of a {}.”
CIFAR-10.001 “This is a picture of a {}.”
CIFAR-10.02 “a {}”

FMoW-WILDS

“satellite imagery of a {}.”
“aerial imagery of a {}.”
“satellite photo of a {}.”
“aerial photo of a {}.”
“satellite view of a {}.”
“aerial view of a {}.”
“satellite imagery of the {}.”
“aerial imagery of the {}.”
“satellite photo of the {}.”
“aerial photo of the {}.”
“satellite view of the {}.”
“aerial view of the {}.”

Amazon-WILDS

“negative”
“negative review”
“negative.”
“negative review.”
“Negative”
“Negative review”
“Negative.”
“Negative review.”
“This is a negative review”
“This is a negative review.”
“this is a negative review”

CivilComments-WILDS

“This comment is not toxic”
“This comment is not toxic.”
“this comment is not toxic”
“this comment is not toxic.”
“This is not a toxic comment.”
“this is not a toxic comment.”
“this is not a toxic comment”
“Not toxic.”
“Not toxic.”
“Not toxic”
“not toxic”
“not toxic.”
“positive”
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