
A Additional Results

A.1 Experiments Details

We use a sliding window approach to generate samples of sequences. For test-future, we train and test
on the same tasks but different time steps. For test-domain, we train and test on different tasks with
an 80%-20% split. All models are trained to make next step prediction given the previous steps as
input. We forecast in an autoregressive manner to generate multi-step ahead predictions. All results
are averaged over 3 runs with random initialization.

We tuned learning rate (1e-2∼1e-5), batch size (16∼64), the number of unrolled prediction steps for
backpropogation (2∼6), and hidden size (64∼512). We fixed the number of historic input frames as
20. The models that use ResNet, including MAML, MetaNets and DyAd+ResNet, have same number
of residual blocks for fair comparison. When we trained the encoder on turbulence and sea surface
temperature, we used α = 1 and β = 1 in the Equ. 1. For ocean currents, we used α = 0.2 and
β = 0.2. We performed all experiments on 4 V100 GPUs. Table 5 in Appendix A displays the
number of parameters of each fine-tuned model on the turbulence dataset.

We compare our model with a series of baselines on the multi-step forecasting with different dynamics.
We consider two testing scenarios: (1) dynamics with different initial conditions (test-future) and (2)
dynamics with different parameters such as external force (test-domain). The first scenario evaluates
the models’ ability to extrapolate into the future for the same task. The second scenario is to estimate
the capability of the models to generalize across different tasks.

Apart from the root mean square error (RMSE), we also report the energy spectrum error (ESE)
for ocean current prediction which quantifies the physical consistency. ESE indicates whether the
predictions preserve the correct statistical distribution and obey the energy conservation law, which is
a critical metric for physical consistency. The turbulence kinetic energy spectrum E(k) is related to
the mean turbulence kinetic energy as∫ ∞

0

E(k)dk = ((u′)2 + (v′)2)/2, (u′)2 =
1

T

T∑
t=0

(u(t)− ū)2.

where the k is the wavenumber and t is the time step. The spectrum can describe the transfer of
energy from large scales of motion to the small scales and provides a representation of the dependence
of energy on frequency. Thus, the ESE can indicate whether the predictions preserve the correct
statistical distribution and obey the energy conservation law. A trivial example that can illustrate why
we need ESE is that if a model simply outputs moving averages of input frames, the accumulated
RMSE of predictions might not be high but the ESE would be really big because all the small or even
medium eddies are smoothed out.

A.2 Addtional Experiments Results

Table 5: The number of parameters of the fine-tuned model of each architecture on the turbulent flow
dataset

ResNet U-net PredRNN VarSepNetMod-attn Mod-wt MetaNets MAML

20.32 9.69 27.83 9.85 13.19 13.19 9.63 20.32

DyAd+ResNet DyAd+Unet DyAd+Unet-Big
15.60 12.20 23.64

B Theoretical Analysis

The high-level idea of our method is to learn a good representation of the dynamics that generalizes
well across a heterogeneous domain, and then adapt this representation to make predictions on new
tasks. Our model achieves this by learning on multiple tasks simultaneously and then adapting
to new tasks with domain transfer. We prove that learning the tasks simultaneously as opposed
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Figure 7: Target and full 20-step predictions by Unet-c, Modular-wt and DyAd turbulent flows with
buoyancy factors 9 (top) and 21 (bottom) respectively.

Figure 8: Left: Pairwise RMSEs between the averaged samples of different tasks in the turbulent
flow dataset. RMSE between the averaged samples is a lower bound of Wasserstein distance between
tasks. Right: DyAd+ResNet prediction RMSE breakdown on five tasks in the domain test set.

to independently results in tighter generalization bounds. As these are upper bounds, they do not
necessarily imply better generalization, although empirically, this is what we observe. Although
we are not able to provide a proof of our empirical finding that an encoder-forecaster architecture
outperforms a monolithic architecture, we do provide an analysis of the error, decomposing it into
error due to the forecaster, encoder, and domain adaptation. This decomposition helps to quantify the
trade-offs involved in our two-part architecture.

Suppose we have K tasks {ck}Kk=1 ∼ C, each of which is sampled from a continuous parameter
space C. Here ck are the parameters of the task, which can be inferred by the encoder. For each task
ck, we have a collection of data µ̂ck of size n, sampled from µk, a shorthand for µck .

B.1 Multi-Task Learning Error

We want to bound the true loss ϵ using the empirical loss ϵ̂ and Rademacher complexity of the
hypothesis class F . We can use the classic results from [2]. Define empirical Rademacher complexity
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for all tasks as

R̂X(F) = Eσ

[
sup
f∈F

(
1

nK

K∑
k=1

n∑
i=1

σ
(i)
k l(f(x

(i)
k ))

)]
(2)

where {σ(i)
k } are independent binary variables σ(i)

k ∈ {−1, 1}. The true Rademacher complexity is
then defined R(F) = EX(R̂X(F)).

The following theorem restates the main result from [2]. We simplify the statement by using
Rademacher complexity rather than the set cover number argument used in the original proof. The
assumption of bounded loss is reasonable given a prescribed data domain and data preprocessing.
Theorem B.1. ([2]) Assume the loss is bounded l ≤ 1/2. Given n samples each from K different
forecasting tasks µ1, · · · , µk, then with probability at least 1− δ, the following inequality holds for
each f ∈ F in the hypothesis class:

ϵ(f) ≤ ϵ̂(f) + 2R(F) +
√

log (1/δ)/(2nK)

Proof. Consider {x(i)
k } as independent random variables. For a function ϕ that satisfies

|ϕ(x(1), · · · ,x(i), · · ·x(n))− ϕ(x(1), · · · , x̃(i), · · ·x(n))| ≤ ci

by McDiarmid’s inequality, we have

p
(
ϕ(x(1), · · · ,x(n))− E[ϕ] ≥ t

)
≤ exp

(
− 2t2∑

i c
2
i

)
.

Applying this inequality to the max differenceQ(X) = supf∈F [ϵ(f)−ϵ̂(f,X)], then with probability
at least 1− δ, we have

Q(X)− EX[Q(X)] ≤ C

√
log 1/δ

nK

where C is a constant depending on the bounds ci. If the loss l ≤ 1/2, then |Q| ≤ 1/2 and so we can
take ci = 1 leading to C = 1/

√
2. A standard computation (see [44] Theorem 3.3) using the law of

total expectation shows EX[Q(X)] ≤ 2R(F), which finishes the proof.

The following inequality compares the performance for multi-task learning to learning individual
tasks. Let Rk(F) be the Rademacher complexity for F over µk.
Lemma B.2. The Rademacher complexity for multi-task learning is bounded R(F) ≤
(1/K)

∑K
k=1Rk(F).

Proof. We compute the empirical Rademacher complexity,
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R̂Xk (F)

Proposition B.3. Assume n = nk for all tasks k and the loss l is bounded l ≤ 1/2, then the
generalization bound given by considering each task individually is

ϵ(f) ≤ ϵ̂(f) + 2

(
1

K

K∑
k=1

Rk(F)

)
+

√
log 1/δ

2n
, (3)

which is weaker than the bound of Theorem B.1.
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Proof. Applying the classical analog of Theorem B.1 to a single task, we find with probability greater
than 1− δ,

ϵk(f) ≤ ϵ̂k(f) + 2Rk(F) + Ck

√
log 1/δ

n
.

Averaging over all tasks yields

1

K

K∑
k=1

ϵk(f) ≤
1

K

K∑
k=1

ϵ̂k(f) + 2
1

K

K∑
k=1

Rk(F) +
1

K

K∑
k=1

Ck

√
log 1/δ

n
.

Since the loss l is bounded l ≤ 1/2, we can take C = Ck = 1/
√
2, giving the generalization upper

bound for the joint error of Equation 3. By Lemma B.2 and the fact 1/
√
2nK ≤ 1/

√
2n, the bound

in Theorem B.1 is strictly tighter.

The upper bound in Theorem B.1 is strictly tighter than that of Proposition B.3 as the first terms ϵ̂(f)
are equal, the second term is smaller by Lemma B.2 and the third is smaller since 1/

√
2nK ≤ 1/

√
2n.

This helps explain why our multitask learning forecaster has better generalization than learning each
task independently. The shared data tightens the generalization bound. Ultimately, though a tighter
upper bound suggests lower error, it does not strictly imply it. We further verify this theory in our
experiments by comparison to baselines which learn each task independently.

B.2 Domain Adaptation Error

Since we test on c ∼ C outside the training set {ck}, we incur error due to domain adaptation from
the source domains µc1 , . . . , µcK to target domain µc with µ being the true distribution. Denote the
corresponding empirical distributions of n samples per task by µ̂c =

1
nc

∑nc

i=1 δx(i)
c

.

For different c and c′, the domains µc and µc′ may have largely disjoint support, leading to very
high KL divergence. However, if c and c′ are close, samples xc ∼ µc and xc′ ∼ µc′ may be close
in the domain X with respect to the metric ∥ · ∥X . For example, if the external forces c and c′ are
close, given xc ∼ µc there is likely xc′ ∼ µc′ such that the distance between the velocity fields
∥xc−xc′∥ is small. This implies the distributions µc and µc′ may be be close in Wasserstein distance
W1(µc, µc′). The bound from [54] applies well to our setting as such:

Theorem B.4. Let λc = minf∈F

(
ϵc(f) + 1/K

∑K
k=1 ϵck(f)

)
. There is N = N(dim(X )) such

that for n > N , for any hypothesis f , with probability at least 1− δ,

ϵc(f) ≤
1

K

K∑
k=1

ϵck(f) +W1

(
µ̂c,

1

K

K∑
k=1

µ̂ck

)
+
√
2 log(1/δ)

(√
1/n+

√
1/(nK)

)
+ λc.

Proof. We apply [54] Theorem 2 to target domain µT = µc and joint source domain µS =

1/K
∑K

k=1 µck with empirical samples µ̂T = µ̂c and µ̂S = 1/K
∑K

k=1 µ̂ck .

B.3 Encoder versus Prediction Network Error

Our goal is to learn a joint hypothesis h over the entire domain X in two steps, first inferring the task
c and then inferring xt+1 conditioned on c. Error from DyAd may result from either the encoder gϕ
or the prediction network fθ. Our hypothesis space has the form {x 7→ fθ(x, gϕ(x))} where ϕ and
θ are the weights of the encoder and prediction network respectively. Let ϵX be the error over the
entire domain X , that is, for all c. Let ϵenc(gϕ) = Ex∼X (L1(g(x), gϕ(x)) be the encoder error where
g : X → C is the ground truth. We state a result that decomposes the final error into that attributable
to the encoder and that to the forecaster.
Proposition B.5. Assume c 7→ fθ(·, c) is Lipschitz continuous with Lipschitz constant γ uniformly in
θ. Then we bound

ϵX (fθ(·, gϕ(·))) ≤ γϵenc(gϕ) + Ec∼C [ϵc(fθ(x, c))] (4)
where the first term is the error due to the encoder incorrectly identifying the task and the second
term is the error due the prediction network alone.
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The hypothesis in the second term consists of the prediction network combined with the ground truth
task label x 7→ fθ(x, g(x)). In practice, the Lipschitz constant γ of the encoder may be indirectly
minimized through weight decay.

Proof. By the triangle inequality and linearity of expectation,
ϵX (fθ(·, gϕ(·))) = Ec∼C [Ex∼µc [∥fθ(x, gϕ(x))− f(x)∥Y ]]

≤ Ec∼C [Ex∼µc
[∥fθ(x, gϕ(x))− fθ(x, c)∥Y ]]

+ Ec∼C [Ex∼µc
[∥fθ(x, c)∥Y − ∥f(x)∥Y ]] .

By Lipschitz continuity,
≤ Ec∼C [Ex∼µc [γ∥gϕ(x)− c∥C ]] + Ec∼C [Ex∼µc [∥fθ(x, c)∥Y − ∥f(x)∥Y ]] ,
which, since g(x) = c and by linearity of expectation,
= γEc∼C [Ex∼µc

[∥gϕ(x)− g(x)∥C ]] + Ec∼C [Ex∼µc
[∥fθ(x, c)∥Y − ∥f(x)∥Y ]]

by definition of ϵenc and ϵc,= γϵenc(gϕ) + Ec∼C [ϵc(fθ(x, c))].

By combining Theorem B.1, Proposition B.5, and Theorem B.4, we can bound the generalization
error in terms of the empirical error of the prediction network on the source domains, the Wasserstein
distance between the source and target domains, and the empirical error of the encoder. Let G =
{gϕ : X → C} be the task encoder hypothesis space. Denote the empirical risk of the encoder gϕ
with respect to X by ϵ̂enc(gϕ).
Proposition B.6. Assuming the hypotheses of Theorem B.1, Proposition B.5, and Theorem B.4,

ϵX (fθ(·, gϕ(·))) ≤ γϵ̂enc(gϕ) +
1

K

K∑
k=1

ϵ̂ck(fθ(·, ck)) + 2γR(G) + 2R(F)

+ (γ + 1)

√
log(1/δ)

2nK
+
√

2 log(1/δ)
(√
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√

1/(nK)
)
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[
W1

(
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1

K
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)
+ λc

]
.

Proof. We provide an upper bound for the right-hand side of (4). By Theorem B.1 or [44], Theorem
3.3, we can bound

ϵenc(gϕ) ≤ ϵ̂enc(gϕ) + 2R(G) +
√

log(1/δ)

2nK
. (5)

In order to apply Theorem B.1 to the risk ϵc and relate it to the empirical risk, we first relate the error
on the target domain back to the source domain of our empirical samples. By Theorem B.4,

ϵc(fθ(·, c)) ≤
1

K

K∑
k=1

ϵck(fθ(·, ck)) +W1

(
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1

K

K∑
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+
√
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√
1/(nK)

)
+ λc. (6)

Applying Theorem B.1, this is

≤ 1

K

K∑
k=1

ϵ̂ck(fθ(·, ck)) + 2R(F) +

√
log 1/δ

2nK
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(
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)
+
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Substituting (5) and (7) into (4) gives

ϵX (fθ(·,gϕ(·))) ≤ γ

(
ϵ̂enc(gϕ) + 2R(G) +

√
log(1/δ)

2nK

)

+ Ec∼C

[
1

K
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√
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(
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1

K
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√

1/(nK)
)
+ λc

]
.
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Using linearity of the expectation over c, removing it where there is no dependence on c, and
rearranging terms.

Although this result does not settle either the question of end-to-end versus pre-training or encoder-
forecaster versus monolithic model, it quantifies the trade-offs these choices depend on. We empiri-
cally consider both questions in the experiments section.
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