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Abstract

Ensemble sampling serves as a practical approximation to Thompson sampling
when maintaining an exact posterior distribution over model parameters is com-
putationally intractable. In this paper, we establish a regret bound that ensures
desirable behavior when ensemble sampling is applied to the linear bandit prob-
lem. This represents the first rigorous regret analysis of ensemble sampling and
is made possible by leveraging information-theoretic concepts and novel analytic
techniques that may prove useful beyond the scope of this paper.

1 Introduction

Thompson sampling (TS) is a popular heuristic for balancing between exploration and exploitation in
bandit learning. In its basic form, TS maintains a posterior distribution over model parameters. When
the prior distribution and likelihood function exhibit conjugacy properties, the posterior distribution
can be maintained through computationally tractable Bayesian inference. However, many practical
contexts call for more complex models for which exact Bayesian inference becomes computationally
intractable. For such contexts, ensemble sampling (ES) can serve as a practical approximation to TS
[Lu and Van Roy, 2017].

Instead of the posterior distribution, ES maintains an ensemble of statistically plausible models that
can be updated in an efficient incremental manner. The corresponding discrete distribution represents
an approximation to the posterior distribution. At the start of each timestep, a model is sampled
uniformly from the ensemble and an action is selected to optimize expected reward with respect to
the sampled model. Each model is initially sampled from the prior distribution and evolves through
an updating process that adapts to observations and random perturbations.

While a growing literature [Osband et al., 2016, Russo et al., 2018, Osband et al., 2018, Lu et al.,
2018, Osband et al., 2019, Dwaracherla et al., 2020, Osband et al., 2022] presents applications of
ES, there has been no rigorous theory that ensures desirable behavior similar to that enjoyed by TS.
A regret bound for ES applied to linear-Gaussian bandits is provided by Lu and Van Roy [2017],
but a flaw in the associated analysis has brought this result into question. Since the publication of
that paper, several researchers have tried to remedy the analysis or otherwise establish performance
guarantees for ES, but these efforts have gone without success.

We offer in this paper the first rigorous regret analysis of ES. Like Lu and Van Roy [2017], we
study ES applied to linear-Gaussian bandits. This serves as a simple sanity check for the approach.
We establish a Bayesian regret bound (Theorem 1) that consists of two terms. The first term is
identical to a Bayesian regret bound established for TS. The second term accounts for posterior
mismatch and can be made arbitrarily small by increasing the ensemble size. Our analysis leverages
information-theoretic concepts and novel analytic techniques that may prove useful beyond the scope
of this paper.

As a stepping stone in our analysis, we establish a general Bayesian regret bound that applies to any
learning algorithm for linear bandits (Theorem 2). In particular, this regret bound is based on the
Hellinger distance between the action-selection distribution specified by the learning algorithm and
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the posterior distribution of the optimal action at each timestep. We believe that this regret bound
is of independent interest and might be useful in analyzing other learning algorithms, such as other
approximate TS algorithms.

Note that for linear-Gaussian bandits considered in this paper, Kalman filtering offers a tractable
means to exact inference and, as such, an approximation method like ES is not required. However,
it is worth mentioning that the analysis in this paper also offers insight into more complex models
that call for approximate inference. For example, consider a neural network with very wide hidden
layers. A recent research thrust (e.g., Jacot et al. [2018], Lee et al. [2017]) highlights that, under
suitable technical conditions, training such a neural network via stochastic gradient descent (SGD)
approximates Gaussian process inference. Our result extends directly to finite-armed Gaussian
process bandits. This suggests that ES applied with neural networks that are trained via SGD can be
effective in complex bandit problems, though formalizing this extension requires significant technical
work, which we leave for future research.

The remainder of this paper is organized as follows: Section 2 reviews related work, and Section 3
formulates the considered linear bandit problem and describes the ensemble sampling algorithm.
Section 4 presents the main result of this paper: a Bayesian regret bound for ES applied to linear
bandits. Before diving into the analysis, we define some notation used in this paper in Section 5.
Then we motivate and derive a general regret bound in Section 6, and apply it to analyzing ES in
Section 7. Finally, we conclude the paper and discuss future directions in Section 8.

2 Related work

Thompson sampling [Thompson, 1933, Chapelle and Li, 2011, Russo et al., 2018] is a commonly used
heuristic for balancing exploration and exploitation in bandits [Lattimore and Szepesvári, 2020] and
reinforcement learning [Sutton and Barto, 2018]. However, the basic form of Thompson sampling can
be computationally intractable unless the prior distribution and likelihood function exhibit conjugacy
properties. To overcome this computational challenge, variants of approximate versions of TS have
been developed (see Chapter 5 of Russo et al. [2018]), including approximate TS using Laplace
approximation [Chapelle and Li, 2011], bootstrapping [Eckles and Kaptein, 2019, Kveton et al.,
2019], variational inference [Urteaga and Wiggins, 2018, Yu et al., 2020], Markov chain Monte Carlo
[Casella and George, 1992, Roberts and Tweedie, 1996], hypermodels [Dwaracherla et al., 2020],
and optimal transport [Zhang et al., 2019].

Ensemble sampling is an approximate version of Thompson sampling, formally proposed by Lu and
Van Roy [2017]. It has been one of the most popular methods in approximate Bayesian inference and
has wide applications in sequential decision making. For example, variations of ES have been applied
to (deep) reinforcement learning [Osband et al., 2016, 2018, 2019], online recommendation [Lu et al.,
2018, Hao et al., 2020, Zhu and Van Roy, 2021], multi-agent reinforcement learning [Dimakopoulou
and Van Roy, 2018], behavioral sciences [Eckles and Kaptein, 2019], and marketing strategies [Yang
et al., 2020]. Recently, Osband et al. [2022] has developed a testbed to compare and rank agents
designed for uncertainty modeling, including variants of ensemble agents.

A lot of work has attempted to analyze ensemble sampling, but none of them has been successful.
In their original paper, Lu and Van Roy [2017] try to analyze ES in linear-Gaussian bandits, but
there is a mistake in the final step of the analysis where they compare the regret of ES to that of TS.
In particular, in the proof of Lemma 8, the hypothetical actions selected by TS are defined on the
histories of ES, instead of TS. Therefore, the cumulative regret incurred by these hypothetical TS
actions is not equal to the cumulative regret of applying TS throughout all timesteps, while the paper
incorrectly claims that they are equal.

In addition to Lu and Van Roy [2017], Phan et al. [2019] aims to analyze general approximate TS
with approximation errors measured in α-divergence for K-armed bandit. To demonstrate the main
result, Phan et al. [2019] uses ES as an example, but also inherits the technical flaw in Lu and Van Roy
[2017]. In addition, though Phan et al. [2019] shows that the approximate version of TS with uniform
sampling achieves sublinear regret, this result mainly benefits from this forced exploration.

There are also papers aiming to analyze bandit algorithms with approximate inference. A recent
paper [Huang et al., 2022] studies an upper-confidence-bound (UCB) type algorithm for bandit
problems with approximate inference. Another recent paper [Ash et al., 2021] proposes and analyzes
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an ensemble based UCB algorithm for bandit problems. Kveton et al. [2020] studies linear bandits in
the frequentist setting and provides a general regret bound that is tailored to analyzing randomized
algorithms with good concentration and anti-concentration properties, but it could not be directly
applied to analyzing ES due to ES’s discrete and incremental update nature.

3 Preliminaries

We begin by introducing a formulation of the linear bandit and an ensemble sampling algorithm
suited for this environment.

3.1 Linear bandit

The linear bandit [Abbasi-Yadkori et al., 2011, Lattimore and Szepesvári, 2020] has received much
attention in the bandit learning literature. It serves as a simple didactic environment, often used to
sanity-check agent designs. In this spirit, we will analyze ES as applied to the linear bandit.

We consider the linear bandit with a Gaussian prior distribution and likelihood function. An instance
is characterized by a tuple E = (A, µ0,Σ0, σ

2), where A ⊂ Rd is a finite action set, µ0 and Σ0 are
the prior mean vector and covariance matrix, and σ2 is the noise variance. Let K = |A| denote the
cardinality of the action set. Note that actions are vectors of dimension d. The prior distribution
over the unknown coefficient vector θ ∈ Rd, P(θ ∈ ·), is multivariate Gaussian N(µ0,Σ0). Rewards
are generated by a random sequence (Rt : t = 1, 2, . . .) of K-dimensional vectors, which is i.i.d.
conditioned on θ. In particular, for t = 1, 2 . . . ,

Rt,a = a⊤θ +Wt,a ∀a ∈ A,

where Wt = (Wt,a)a∈A is a K-dimensional vector with each element distributed as N(0, σ2).

An agent interacts with the linear bandit as follows: at timestep t = 0, 1, . . ., the agent executes an
action At; then it observes a reward Rt+1,At

. Note that only the reward associated with the executed
action At is observed through what is termed bandit feedback. The agent’s experience through
timestep t is encoded by a history Ht = (A0, R1,A0

, . . . , At−1, Rt,At−1
). The agent’s objective is to

maximize expected reward over some duration T :

T−1∑
t=0

E
[
Rt+1,At

]
.

This is equivalent to minimizing the Bayesian regret:

Regret(T ) =

T−1∑
t=0

E[Rt+1,A∗ −Rt+1,At
]

where A∗ ∼ unif
{
argmaxa∈A a⊤θ

}
. The expectations in both equations integrate over random

reward realizations, algorithmic randomness, and the coefficient vector θ. Note that A∗ is random
since it depends on random θ and the uniform sampling among maximizers (which breaks ties).

3.2 Ensemble sampling

In the absence of conjugacy properties that enable efficient Bayesian inference, TS in its exact form
becomes computationally infeasible. ES serves as a practical approximation to TS [Lu and Van Roy,
2017], often suitable for such contexts. The key idea behind ES is to maintain an ensemble of
statistically plausible models that can be updated in an efficient incremental manner and to treat the
discrete distribution represented by this ensemble of models as an approximation to the posterior
distribution. The algorithm begins by sampling M models from the prior distribution, where M is a
hyperparameter. At the start of each timestep, a model is sampled uniformly from the ensemble and
an action is selected to optimize the immediate expected reward with respect to the sampled model.
Then, each model is updated incrementally based on the observed reward and a random perturbation.
Algorithm 1 presents the associated pseudo-code for ES.
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Algorithm 1 Ensemble Sampling
1: Input: M and P(θ ∈ ·)
2: Sample: θ̃0,1, . . . , θ̃0,M ∼ P(θ ∈ ·)
3: for t = 0, 1, . . . do
4: Sample: mt ∼ unif {1, . . . ,M}

5: Execute: At ∼ unif

{
argmax

a∈A
a⊤θ̃t,mt

}
6: Observe: Rt+1,At

7: Update: θ̃t,m −→ θ̃t+1,m ∀m ∈ [M ]
8: end for

For Gaussian prior N(µ0,Σ0), by conjugacy, the posterior distribution is also Gaussian with covari-
ance matrix and mean vector updated as follows,

Σt+1 =

(
Σ−1

t +
1

σ2
AtA

⊤
t

)−1

and µt+1 = Σt+1

(
Σ−1

t µt +
Rt+1,At

σ2
At

)
. (1)

While this highlights conjugacy properties of a sort that allow for efficient Bayesian inference and
thus tractable implementation of exact TS, the linear bandit with a Gaussian prior distribution and
likelihood function serves as a useful context for studying the behavior of ES in relation to TS. Like
[Lu and Van Roy, 2017], we consider a version of ES that updates each m-th model according to

θ̃t+1,m = Σt+1

(
Σ−1

t θ̃t,m +
Rt+1,At + W̃t+1,m

σ2
At

)
(2)

where W̃t+1 = (W̃t+1,m)m∈[M ] is an M -dimensional vector with each element distributed as
N(0, σ2) and [M ] = {1, . . . ,M}.

4 A regret bound for ensemble sampling

In this section, we establish the following regret bound for ES (Algorithm 1) when it is applied to
linear bandits described in Section 3.1:
Theorem 1. Under ensemble sampling,

Regret(T ) ≤ ι
√
dTH(A∗)︸ ︷︷ ︸

(a)

+ ηT

√
K log(6TM)

M︸ ︷︷ ︸
(b)

where H(A∗) is the Shannon entropy of the optimal action A∗ under the prior, and

ι ≜

√
2

(
max
a∈A

a⊤Σ0a+ σ2

)
and η ≜ 2

√
E
[
max
a∈A

(a⊤θ)
2

]
+ σ2. (3)

Note that ι = O(1) and Lemma 7 in Appendix A shows η = O(
√
min{d, logK}), so

Regret(T ) ≤ O

(√
dTH(A∗) + T

√
min{d, logK}K log(6TM)

M

)
.

Theorem 1 represents the first rigorously proved regret bound that ensures some degree of robustness
in application of ES to a nontrivial bandit problem. One limitation is that the second term (b) in our
regret bound depends on the action set size K since our current analysis uses the method of (finite)
types [Cover and Thomas, 2006], which might not be tight for linear bandit. We conjecture that the
second term (b) can be improved to be only dependent of the dimension d. Another limitation is that
the result applies only to the linear bandit with Gaussian prior distribution and likelihood function,
which admits tractable application of exact TS. Nevertheless, this result represents a beginning of the
theory of ES, suggesting that the approach is sound and the analysis might be extended to broader
problem classes.
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Comparison with the regret bound for TS The regret bound in Theorem 1 consists of two terms.
The first term (a) is exactly the regret bound achieved by TS with exact posterior [Russo and Van Roy,
2016]. Since the action set size is K, the entropy of the optimal action H(A∗) ≤ logK, and as
discussed in Russo and Van Roy [2016], when the prior is informative, H(A∗) ≪ logK. Therefore,
the first term (a) is order optimal and improves upon the worst-case regret bound achieved by other
algorithms, e.g., upper confidence bound type algorithms. On the other hand, the second term (b)
is an incremental term and accounts for posterior mismatch. Note that as the ensemble size M
approaches infinity, the second term (b) converges to zero and our regret bound for ES reduces to that
for TS with exact posterior. Moreover, as long as the ensemble size M reaches KT/d, our regret
bound for ES has the same order as that for TS in terms of T and d (up to logarithmic factors).

Comparison with the regret bound in Lu and Van Roy [2017] Theorem 1 presents a Bayesian
regret bound for the prior N(µ0,Σ0) over θ, while Lu and Van Roy [2017] studies ES in the
frequentist setting where unknown θ is fixed. They try to upper bound the frequentist regret of
ES by that of TS plus some cumulative approximation error due to posterior mismatch, similar
to the second term (b) in our Bayesian regret bound. Although there are some technical issues in
their analysis, as is discussed in Section 2, we compare both regret bounds. The frequentist regret
bound in Theorem 3 of Lu and Van Roy [2017] suggests that for any ϵ > 0, when the ensemble
size M = Θ̃(K/ϵ2) (Θ̃ hides logarithmic factors), their cumulative approximation error is ϵ∆(θ)T
where ∆(θ) = maxa∈A a⊤θ −mina∈A a⊤θ. To make the second term (b) in our regret bound scale
as Õ(ϵT ) (Õ hides logarithmic factors), we need the ensemble size M to be Θ̃(K/ϵ2) as well. We
conjecture the required ensemble size can be improved to be only dependent of the dimension d.

5 Information measures

Before proceeding, we present several information measures including Kullback–Leibler divergence,
Hellinger distance, Shannon entropy and mutual information.

5.1 Kullback–Leibler divergence and Hellinger distance

For two probability distributions P and Q, the Kullback–Leibler (KL) divergence between P and Q
is defined as

dKL(P∥Q) ≜
∫

log

(
dP

dQ

)
dP

if P is absolutely continuous with respect to Q; otherwise, define dKL(P∥Q) = +∞. Note that
dKL(P∥Q) ̸= dKL(Q∥P ) in general. The Hellinger distance between P and Q is defined as

dH(P∥Q) ≜

√∫ (√
dP −

√
dQ
)2

which is symmetric in P and Q. In the special case of discrete distributions P = (p1, . . . , pn) and
Q = (q1, . . . , qn), the KL divergence and Hellinger distance between P and Q can be written as

dKL(P∥Q) =
∑
i∈[n]

pi log (pi/qi) and dH(P∥Q) =

√∑
i∈[n]

(
√
pi −

√
qi)

2
.

5.2 Shannon entropy and mutual information

Consider a random variable X that takes values in a countable set X . The Shannon entropy of X is

H(X) ≜ −
∑
x∈X

P(X = x) logP(X = x) = EX [− logP(X ∈ ·)]

with a convention that 0 log 0 = 0.

For ease of exposition, let Y be another random variable that takes values in a countable set Y . For
y ∈ Y such that P(Y = y) > 0, the realized conditional entropy of X given Y = y is

H(X|Y = y) ≜ −
∑
x∈X

P (X = x|Y = y) logP(X = x|Y = y) = EX [− logP(X ∈ ·|Y )|Y = y],
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and the conditional entropy of X given Y is
H(X|Y ) ≜ EY

[
−
∑

x∈X P (X = x|Y ) logP(X = x|Y )
]
= EY [H(X|Y = Y )].

Note that the above definitions can be extended to general random variables.

The mutual information between X and Y is
I(X;Y ) ≜ dKL (P(X ∈ ·, Y ∈ ·) ||P(X ∈ ·)P(Y ∈ ·)) = H(X)−H(X|Y ),

and the conditional mutual information between X and Y given a general random variable Z is
I(X;Y |Z) ≜ EZ [dKL (P(X ∈ ·, Y ∈ ·|Z) ||P(X ∈ ·|Z)P(Y ∈ ·|Z))] = H(X|Z)−H(X|Y,Z).

6 A general regret bound

In this section, we derive a general regret bound for any learning algorithm (Theorem 2), based on the
Hellinger distance between the (conditional) action-selection distribution specified by the algorithm
and the posterior distribution of the optimal action A∗, and apply it to analyzing the regret bound for
ES in Theorem 1. We believe that our regret bound is of independent interest and might be used to
analyze other bandit algorithms, such as variants of approximate TS algorithms, in the future.

To simplify the exposition, we first define some shorthand notation to simplify the exposition of this
paper. First, we use subscript t to denote conditioning on Ht, specifically, we define

Pt(·) ≜ P(·|Ht) and Et[·] ≜ E[·|Ht].

In addition, we define two probability distributions pt and pt over action set A as
pt(·) ≜ Pt(At = ·) and pt(·) ≜ Pt(A∗ = ·).

Conditional on the history Ht, pt is the sampling distribution of the action At and pt is the posterior
distribution of the optimal action A∗. Both pt and pt are specific to the algorithm. Note that given the
history Ht, pt and pt are the same under TS, but they are not under other algorithms. For approximate
TS algorithms, if the approximation is accurate, pt is close to pt. Now we introduce a general regret
bound for any learning algorithm:
Theorem 2. Under any learning algorithm,

Regret(T ) ≤ ι
√

dTH(A∗) + η

T−1∑
t=0

√
E [d2

H(pt∥pt)]

where ι and η are defined in Equation (3).

The regret bound in Theorem 2 holds for any learning algorithm. Note H(A∗) is the entropy of the
optimal action A∗ and we always have H(A∗) ≤ logK. The first term matches the regret bound for
TS derived in Russo and Van Roy [2016]. In the second term,

∑T−1
t=0

√
E [d2

H(pt∥pt)] quantifies the
cumulative distance between the sampling distribution of the action At and the posterior distribution
the optimal action A∗. Under TS with exact posterior, d2

H(pt∥pt) = 0 due to the posterior matching
property of TS, i.e., pt = pt. Moreover, for approximate TS algorithms, if the approximation is
accurate, d2

H(pt∥pt) should be small.

Regret bounds in terms of KL divergence between pt and pt It is sometimes more convenient to
analyze the KL divergence between pt and pt. Recall that the squared Hellinger distance is symmetric
and upper bound by the KL divergence.
Fact 1 (Lemma 2.4 in Tsybakov [2009]). For two probability distributions P and Q, we have

d2
H(P∥Q) ≤ min{dKL(P∥Q), dKL(Q∥P )}.

We obtain the regret upper bound with the approximation error in terms of two forms of KL divergence
between pt and pt.
Corollary 1. Under any learning algorithm,

Regret(T ) ≤ ι
√

dTH(A∗) + η

T−1∑
t=0

√
E [min {dKL(pt∥pt),dKL(pt∥pt)}].

We will show in Section 7 that for ensemble sampling, dKL(pt∥pt) can be bounded in terms of the
ensemble size M . It is noteworthy that in some other problems, it is more convenient to bound the
other form dKL(pt∥pt). One such example is the regret bound developed in Wen et al. [2022].
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6.1 Proof of Theorem 2

For t = 0, 1, . . . , we define per-timestep main regret Gt and per-timestep approximation error Dt:

Gt ≜
∑
a∈A

√
pt(a)pt(a) (Et[Rt+1,a|A∗ = a]− Et[Rt+1,a]) ,

Dt ≜
∑
a∈A

(√
pt(a)−

√
pt(a)

)(√
pt(a)Et[Rt+1,a|A∗ = a] +

√
pt(a)Et[Rt+1,a]

)
.

Lemma 1. The cumulative regret can be written as follows,

Regret(T ) =

T−1∑
t=0

E[Gt +Dt].

Proof. By the tower property of conditional expectation,

Regret(T ) =
∑T−1

t=0 E [Et[Rt+1,A∗ −Rt+1,At
]]

where

Et[Rt+1,A∗ −Rt+1,At ] =
∑
a∈A

pt(a)Et[Rt+1,a|A∗ = a]−
∑
a∈A

pt(a)Et[Rt+1,a|At = a]

=
∑
a∈A

pt(a)Et[Rt+1,a|A∗ = a]−
∑
a∈A

pt(a)Et[Rt+1,a] = Gt +Dt

where the second equality uses that Rt+1 = (Rt+1,a)a∈A is independent of the action At.

Next we upper bound
∑T−1

t=0 E[Gt] and
∑T−1

t=0 E[Dt], respectively. We first analyze per-timestep
main regret Gt. The following lemma generalizes Proposition 5 and Corollary 1 in Russo and
Van Roy [2016] for the case such that At and A∗ are not identically distributed given the history.
Lemma 2. With ι defined in Equation (3), for t = 0, 1 . . . , T − 1,

Gt ≤ ι
√
d · It(A∗; (At, Rt+1,At))

where It(A∗; (At, Rt+1,At
)) is the mutual information between the optimal action A∗ and action-

reward pair (At, Rt+1,At
) conditioning on a given history Ht at timestep t.

Proof. Let the action set A = {a1, . . . , aK}. Fix t and define M ∈ RK×K by

Mi,j =
√
pt(ai)pt(aj) (Et[Rt+1,ai |A∗ = aj ]− Et[Rt+1,ai ]) ∀i, j ∈ [K].

Then Gt = Trace(M). By the proof of Proposition 2 in Russo and Van Roy [2016],

It(A∗; (At, Rt+1,At
)) = It(A∗;At) + It(A∗;Rt+1,At

|At)

= It(A∗;Rt+1,At
|At)

=
∑
i∈[K]

pt(ai)It(A∗;Rt+1,At
|At = ai)

=
∑
i∈[K]

pt(ai)It(A∗;Rt+1,ai
)

=
∑
i∈[K]

pt(ai)

∑
j∈[K]

pt(aj)dKL (Pt(Rt+1,ai ∈ ·|A∗ = aj)∥Pt(Rt+1,ai ∈ ·))


=

∑
i,j∈[K]

pt(ai)pt(aj)dKL (Pt(Rt+1,ai ∈ ·|A∗ = aj)∥Pt(Rt+1,ai ∈ ·))

where the first equality uses the chain rule of mutual information (Fact 2); the second and fourth
ones follow from that conditional on the history Ht, At is jointly independent of A∗ and Rt+1 =
(Rt+1,a)a∈A; the fifth equality uses the KL divergence form of mutual information (Fact 3).
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By the updating rule on covariance matrix in Equation (1), conditional on Ht, θ ∼ N(µt,Σt) with
Σt ⪯ Σ0. Hence, for any i ∈ [K],

Rt+1,ai
= a⊤i θ+Wt,ai

∼ N
(
a⊤i µt, a

⊤
i Σtai + σ2

)
where a⊤i Σtai ≤ a⊤i Σ0ai ≤ max

a∈A
a⊤Σ0a.

This implies that Rt+1,ai
is sub-Gaussian with variance proxy (maxa∈A a⊤Σ0a + σ2). Then by

Lemma 10, we have

It(A∗; (At, Rt+1,At
)) ≥

∑
i,j∈[K] pt(ai)pt(aj) (Et[Rt+1,ai

|A∗ = aj ]− Et[Rt+1,ai
])
2

2 (maxa∈A a⊤Σ0a+ σ2)

=

∑
i,j∈[K] M

2
i,j

2 (maxa∈A a⊤Σ0a+ σ2)

=
∥M∥2F

2 (maxa∈A a⊤Σ0a+ σ2)
.

Then by Fact 4,

G2
t

It(A∗; (At, Rt+1,At
))

≤
2
(
maxa∈A a⊤Σ0a+ σ2

)
Trace(M)2

∥M∥2F
≤ 2

(
max
a∈A

a⊤Σ0a+ σ2

)
Rank(M).

Now we show that Rank(M) ≤ d. Define

ν = Et [θ] and νj = Et [θ|A∗ = aj ] ∀j ∈ [K].

Then for any i, j ∈ [K],

Mi,j =
√
pt(ai)pt(aj)

(
Et

[
θ⊤ai|A∗ = aj

]
− Et

[
θ⊤ai

])
=
√

pt(ai)pt(aj) (νj − ν)
⊤
ai,

and thus

M =


√

pt(a1) (ν1 − ν)
⊤

...√
pt(aK) (νK − ν)

⊤

 [ √pt(a1)a1 · · ·
√

pt(aK)aK
]
.

Since M is the product of one K×d matrix and the other d×K matrix, we have Rank(M) ≤ d.

Now we are ready to bound
∑T−1

t=0 E[Gt] and derive the first term of the regret bound in Theorem 2
by following the analysis of Proposition 1 in Russo and Van Roy [2016].
Lemma 3. With ι defined in Equation (3), the following inequality holds:

T−1∑
t=0

E[Gt] ≤ ι
√

dTH(A∗).

Proof. By Lemma 2,

T−1∑
t=0

E[Gt] ≤ ι
√
d

T−1∑
t=0

E
[√

It (A∗, (At;Rt+1,At))

]
≤ι

√√√√dTE

[
T−1∑
t=0

It (A∗; (At, Rt+1,At))

]

=ι

√√√√dT

T−1∑
t=0

I (A∗; (At, Rt+1,At
)|Ht)

=ι
√

dT (H(A∗)−H(A∗|HT ))

≤ι
√

dTH(A∗)

where the second inequality applies the Cauchy-Schwarz inequality, and the last inequality uses the
chain rule for mutual information (Fact 2) and the definition of mutual information.

The next lemma controls the expected per-timestep approximation error E[Dt] under (sub-)Gaussian
prior distribution and noises. Summing over timesteps completes the proof of Theorem 2.
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Lemma 4. With η defined in Equation (3), for t = 0, 1, . . . , T − 1,

E[Dt] ≤ η
√

E [d2
H(pt∥pt)].

Proof. Fix t. We write

Dt =
∑
a∈A

(√
pt(a)−

√
pt(a)

)√
pt(a)Et[Rt+1,a|A∗ = a] +

∑
a∈A

(√
pt(a)−

√
pt(a)

)√
pt(a)Et[Rt+1,a]

≤
√∑

a∈A

(√
pt(a)−

√
pt(a)

)2√∑
a∈A

pt(a) (Et[Rt+1,a|A∗ = a])
2
+

√∑
a∈A

pt(a) (Et[Rt+1,a])
2


≤dH(pt∥pt)

√∑
a∈A

pt(a)
(
Et

[
R2

t+1,a|A∗ = a
])

+

√∑
a∈A

pt(a)
(
Et

[
R2

t+1,a

])
=dH(pt∥pt)

√∑
a∈A

pt(a)Et

[
R2

t+1,a|A∗ = a
]
+

√∑
a∈A

pt(a)Et

[
R2

t+1,a|At = a
]

=dH(pt∥pt)

(√
Et

[
R2

t+1,A∗

]
+

√
Et

[
R2

t+1,At

])
where the first inequality applies the Cauchy–Schwarz inequality; the second inequality uses the
definition of Hellinger distance and the Jensen’s inequality; the second-to-last equality holds since
At is independent of Rt+1 = (Rt+1,a)a∈A. Taking expectation of both sides, we have

E[Dt] ≤ E

[
dH(pt∥pt)

√
Et

[
R2

t+1,A∗

]]
+ E

[
dH(pt∥pt)

√
Et

[
R2

t+1,At

]]

≤
√
E [d2

H(pt∥pt)]

(√
E
[
R2

t+1,A∗

]
+

√
E
[
R2

t+1,At

])

=
√
E [d2

H(pt∥pt)]
(√

E [(A⊤
∗ θ +Wt+1,A∗)

2] +
√
E
[
(A⊤

t θ +Wt+1,At
)2
])

≤
√

E [d2
H(pt∥pt)]

(√
E [(A⊤

∗ θ)
2 + σ2] +

√
E
[
(A⊤

t θ)
2
]
+ σ2

)
≤ 2
√
E [d2

H(pt∥pt)]

√
E
[
max
a∈A

(a⊤θ)
2

]
+ σ2

where the second inequality uses the Cauchy–Schwarz inequality and tower property of conditional
expectation, and the second-to-last inequality holds for the independent mean-zero (sub-)Gaussian
noises with variance bounded by σ2.

7 Completion of the proof of Theorem 1

In this section, we complete the proof of Theorem 1 by controlling the cumulative approximation
error

∑T−1
t=0

√
E [dKL(pt∥pt)] in Corollary 1 for ensemble sampling, where pt is the sampling

distribution of the action At and pt is the posterior distribution of the optimal action A∗. It suffices to
show Lemma 5 below for the per-timestep approximation error E[dKL(pt∥pt)] since summing over
timesteps yields the second term of the regret bound for ensemble sampling in Theorem 1.
Lemma 5. Under ensemble sampling, for t = 0, 1, . . . , T − 1,

E [dKL(pt∥pt)] ≤
K log(6(t+ 1)M)

M
.

Proof. We first discuss the behavior of ensemble sampling. Ensemble sampling uniformly sam-
ples a model m ∈ {1, . . . ,M}, and then chooses the action At uniformly from the set Ãt,m ≜

9



argmaxa∈A a⊤θ̃t,m. We define the following approximation of pt(a):

p̂t(a) ≜
1

M

∑
m∈[M ]

1

|Ãt,m|
1

{
a ∈ Ãt,m

}
where |Ãt,m| is the cardinality of the set Ãt,m (with probability one, |Ãt,m| = 1). At timestep t,
ES would sample an action from the approximation p̂t. Notice that the history Ht does not include
independent random perturbation W̃t = (W̃t,m)m∈[M ] ∼ N(0, σ2I), which is used in updating
M models in Equation (2). Therefore, given history Ht, p̂t(a) is still a random variable, and its
expectation is the conditional probability of sampling action a, i.e., Et[p̂t(a)] = pt(a). By convexity
of KL divergence, the per-timestep approximation error

dKL(pt∥pt) = dKL (Et [p̂t] ∥pt) ≤ Et [dKL (p̂t∥pt)] .
Taking expectation of both sides over Ht gives E [dKL(pt∥pt)] ≤ E [dKL (p̂t∥pt)]. Next we upper
bound E [dKL (p̂t∥pt)] by first writing it in terms of the cumulative distribution function:

E [dKL (p̂t∥pt)] =
∫ ∞

0

P (dKL (p̂t∥pt) > ϵ) dϵ. (4)

Then we use the following result to upper bound P (dKL (p̂t∥pt) > ϵ) in the above integral.

Lemma 6 (Lemma 4 in Lu and Van Roy [2017]). Let ϵ > 0. For t = 0, 1, . . . , T − 1,

P (dKL (p̂t∥pt) > ϵ | θ) ≤ (t+ 1)K(M + 1)Ke−Mϵ.

Taking expectation of both sides over θ gives the same upper bound on P (dKL (p̂t∥pt) > ϵ), and
thus for any δ ≥ 0, the integral in Equation (4) can be decomposed and bounded as follows,∫ ∞

0

P (dKL (p̂t∥pt) > ϵ) dϵ =

∫ δ

0

P (dKL (p̂t∥pt) > ϵ) dϵ+

∫ ∞

δ

P (dKL (p̂t∥pt) > ϵ) dϵ

≤ δ + (t+ 1)K(M + 1)K
∫ ∞

δ

e−Mϵdϵ

= δ +
(t+ 1)K(M + 1)Ke−Mδ

M
.

Taking derivative of RHS gives optimal δ∗ = K[log(t+1)+log(M+1)]
M , and then plugging in δ∗ yields∫ ∞

0

P (dKL (p̂t∥pt) > ϵ) dϵ ≤ K [log(t+ 1) + log(M + 1)] + 1

M
≤ K log(6(t+ 1)M)

M
.

This completes the proof of Lemma 5, and summing over timesteps gives Theorem 1.

8 Concluding remarks

We present the first rigorous analysis for ensemble sampling, an approximate Thompson sampling
method. ES maintains an ensemble of statistically plausible models that can be updated in an efficient
incremental manner. We develop the regret bound for ES in Theorem 1 for linear bandits, which
approaches the regret bound for TS as the ensemble size increases. The linear bandit problem serves
only as a sanity check, and as discussed in Section 2, ES has been developed for broader and more
challenging bandit and reinforcement learning problems. It is noteworthy that in many practical
problems, ES with a moderate ensemble size (e.g. ≤ 30 models) outperforms other state-of-the-art
benchmarks [Lu and Van Roy, 2017, Lu et al., 2018, Osband et al., 2019].

As a stepping stone, we also establish a general regret bound in Theorem 2 that applies to any learning
algorithm for linear bandits. This general regret bound may be of independent interest, since it is
particularly useful for analyzing other varieties of approximate TS. One only need to bound the
(cumulative) approximation error measured by the Hellinger distance between the action-selection
distribution specified by the algorithm and the posterior distribution of the optimal action.

Finally, Theorem 2 is established by bounding the information ratios for linear bandits, and we believe
it could be generalized to other bandit and online learning problems as long as the corresponding
information ratios can be appropriately bounded. These problems include generalized linear bandits,
combinatorial semi-bandits, online learning with full information feedback, and problems with pure
exploration objectives. We also conjecture that the results of this paper can be extended to episodic
reinforcement learning, but leave these extensions to future work.
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Appendices

A An upper bound O(
√
min{d, logK}) on η in Theorem 1

In Equation (3), we define

η = 2

√
E
[
max
a∈A

(a⊤θ)
2

]
+ σ2

where the expectation is taken with respect to the prior distribution over the coefficient vector θ. In the
following result, we derive an upper bound on η for θ ∼ N(µ0,Σ0) by using that the expectation of
the maximum of K squares of (potentially correlated) (sub-)Gaussian random variables is O(logK).
Note that this upper bound also holds for any sub-Gaussian prior distribution.

Lemma 7. The following upper bound on η holds:

η ≤ 2

√
min

{
d ·max

a∈A
∥a∥2 max

i∈[d]

(
µ2
0,i +Σ0,i,i

)
, (4 logK + 5)max

a∈A
a⊤Σ0a+max

a∈A
(a⊤µ0)

2

}
+ σ2

= O(
√

min{d, logK}),

where for any i ∈ [d], µ0,i is the i-th element of µ0 and Σ0,i,i is the i-th diagonal element of Σ0.

Proof. Using the Cauchy-Schwarz inequality, we have

E
[
max
a∈A

(
a⊤θ

)2] ≤ max
a∈A

∥a∥2E
[
∥θ∥2

]
= max

a∈A
∥a∥2

∑
i∈[d]

E
[
θ2i
]
≤ d·max

a∈A
∥a∥2 max

i∈[d]

(
µ2
0,i +Σ0,i,i

)
where θi is the i-th element in θ, which follows N(µ0,i,Σ0,i,i).

On the other hand, since a⊤θ ∼ N
(
a⊤µ0, a

⊤Σ0a+ σ2
)

for any a ∈ A, applying Lemma 8 below
gives

E
[
max
a∈A

(
a⊤θ

)2] ≤ (4 logK + 5)max
a∈A

a⊤Σ0a+max
a∈A

(
a⊤µ0

)2
.

This completes the proof.

A.1 Expectation of maximum of squares of sub-Gaussian random variables

We upper bound the expectation of maximum of squares of sub-Gaussian random variables.

Lemma 8. For any i ∈ [K], let Xi be a sub-Gaussian random variable with mean νi and variance
proxy σ2

i . The following inequality holds:

E
[
max
i∈[K]

X2
i

]
≤ (4 logK + 5) max

i∈[K]
σ2
i + max

i∈[K]
ν2i .

Proof. For λ > 0,

exp

(
λE
[
max
i∈[K]

X2
i

])
≤ E

[
exp

(
λmax

i∈[K]
X2

i

)]
= E

[
max
i∈[K]

exp(λX2
i )

]
≤
∑
i∈[K]

E[exp(λX2
i )]

where the first inequality uses the Jensen’s inequality. For λ ∈
(
0, 1

4maxi∈[K] σ
2
i

]
, by applying

Lemma 9 (Appendix B in Honorio and Jaakkola [2014]) below to the RHS above, we have

exp

(
λE
[
max
i∈[K]

X2
i

])
≤
∑
i∈[K]

exp(16λ2σ4
i+λE[X2

i ]) ≤ K exp

(
16λ2 max

i∈[K]
σ4
i + λmax

i∈[K]
E[X2

i ]

)
,
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and then taking logarithm of both sides yields

E
[
max
i∈[K]

X2
i

]
≤ 1

λ
logK + 16λmax

i∈[K]
σ4
i + max

i∈[K]
E[X2

i ].

Minimizing the RHS above over λ ∈
(
0, 1

4maxi∈[K] σ
2
i

]
gives optimal λ∗ = 1

4maxi∈[K] σ
2
i

, and then
plugging in λ∗ yields

E
[
max
i∈[K]

X2
i

]
≤ 4 (logK + 1) max

i∈[K]
σ2
i + max

i∈[K]
E[X2

i ]

≤ (4 logK + 5) max
i∈[K]

σ2
i + max

i∈[K]
ν2i

where the last inequality uses

max
i∈[K]

E[X2
i ] ≤ max

i∈[K]

[
Var(Xi) + ν2i

]
≤ max

i∈[K]
σ2
i + max

i∈[K]
ν2i .

This completes the proof.

Lemma 9 (Appendix B in Honorio and Jaakkola [2014]). Let X be a sub-Gaussian random variable
with mean ν and variance proxy σ2. For |λ| ≤ 1

4σ2 ,

E
[
eλ(X

2−E[X2])
]
≤ e16λ

2σ4

.

B Lemmas and facts from Russo and Van Roy [2016]

We use the following lemmas and facts from Russo and Van Roy [2016] in the proof of Theorem 2.
Lemma 10 (Lemma 3 in Russo and Van Roy [2016]). Suppose there is a Ht measurable random
variable γ such that for any a ∈ A, Rt+1,a is γ sub-Gaussian conditional on Ht. Then for any
t = 0, 1, . . . and a, a∗ ∈ A, with probability one,

Et[Rt+1,a|A∗ = a∗]− Et[Rt+1,a] ≤ γ
√
2dKL (Pt(Rt+1,a ∈ ·|A∗ = a∗)∥Pt(Rt+1,a ∈ ·)).

Fact 2 (Fact 5 in Russo and Van Roy [2016]: chain rule of mutual information). The mutual
information between a random variable X and a collection of random variables (Z1, . . . , ZT ) can
be written as,

I (X; (Z1, . . . , ZT )) = I (X;Z1) + I (X;Z2|Z1) + · · ·+ I (X;ZT |Z1, . . . , ZT ) .

Fact 3 (Fact 6 in Russo and Van Roy [2016]: KL divergence form of mutual information). The
mutual information between random variables X and Y can be written as,

I (X;Y ) = EX [dKL (P(Y ∈ ·|X) || P(Y ∈ ·))]
=

∑
x∈X

P(X = x)dKL (P(Y ∈ ·|X = x) ||P(Y ∈ ·)) .

Fact 4 (Fact 10 in Russo and Van Roy [2016]). For any matrix M ∈ Rd×d,

Trace (M) ≤
√
Rank(M)∥M∥F

where ∥M∥F is the Frobenius norm of M .
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