
Fine-Tuning Pre-Trained Language Models Effectively
by Optimizing Subnetworks Adaptively

Haojie Zhang1, Ge Li1∗, Jia Li1, Zhongjin Zhang1, Yuqi Zhu1, Zhi Jin1

1Key Laboratory of High Confidence Software Technologies (Peking University),
Ministry of Education; Institute of Software, EECS, Peking University, Beijing, China

zhanghaojie@stu.pku.edu.cn, lige@pku.edu.cn
lijia@stu.pku.edu.cn, zjz123@stu.pku.edu.cn, zhuyuqi97@gmail.com, zhijin@pku.edu.cn

Abstract

Large-scale pre-trained language models have achieved impressive results on a
wide range of downstream tasks recently. However, fine-tuning an extremely
large-scale pre-trained language model on limited target datasets is often plagued
by overfitting and representation degradation. In this paper, we propose a Dy-
namic Parameter Selection (DPS) algorithm for the large-scale pre-trained models
during fine-tuning, which adaptively selects a more promising subnetwork to per-
form staging updates based on gradients of back-propagation. Experiments on
the GLUE benchmark show that DPS outperforms previous fine-tuning meth-
ods in terms of overall performance and stability, and consistently achieves bet-
ter results with variable pre-trained language models. In addition, DPS brings
a large magnitude of improvement in out-of-domain transferring experiments
and low-resource scenarios, which shows that it can maintain stable general con-
textual features and reduce the representation collapse. We release our code at
https://github.com/ZhangHaojie077/DPS.

1 Introduction

The paradigm of pre-training on a large-scale unlabeled corpus and fine-tuning on task-specific
datasets has led to a remarkable breakthrough in the field of Natural Language Processing (NLP)
[Devlin et al., 2018, Raffel et al., 2019, Clark et al., 2020, He et al., 2021]. While the great success has
been achieved on various downstream tasks, previous research has pointed out that such approaches
are still facing two limitations: ❶ Fine-tuning instability. With the same hyper-parameters, different
restarts will lead to huge differences in the performance of pre-trained language models, especially on
small datasets [Phang et al., 2018, Dodge et al., 2020, Lee et al., 2020, Zhang et al., 2021, Mosbach
et al., 2021]. ❷ Poor generalizability. Limited by the size of the downstream datasets, aggressive fine-
tuning can lead to catastrophic forgetting and overfitting, which causes the model to perform poorly
when transferring to out-of-domain data or other related tasks [Mahabadi et al., 2021, Aghajanyan
et al., 2021, Xu et al., 2021]. Therefore, it remains a challenging topic to adapt large-scale pre-trained
models to various scenarios while maintaining their stability and generalizability to the fullest.

Optimizing a subnetwork of pre-trained models has been proved to be an effective approach to
improve stability or mitigate overfitting, such as Mixout [Lee et al., 2020] and CHILD-TUNINGD

[Xu et al., 2021]. Mixout utilizes pre-trained weights to randomly replace some parameters with a
probability of p and updates only the subnetwork composed of the parameters without replacement.
CHILD-TUNINGD computes the importance of parameters based on all training samples’ gradients
before training and chooses an unchanged subnetwork composed of important parameters for updating.

*Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/ZhangHaojie077/DPS


Despite their great performance, we argue that (i) choosing subnetworks randomly (Mixout) ignores
the importance of parameters; (ii) choosing an unchanged subnetwork and ignoring the update of some
parameters (CHILD-TUNINGD) may affect the model’s perception of downstream tasks. Moreover,
accumulating all training samples’ gradients calculated by back-propagation outside training would
induce a heavy additional computational overhead.

To overcome the above two restrictions of existing subnetwork optimizations, we propose a Dynamic
Parameter Selection (DPS) algorithm to fine-tune pre-trained models adaptively. Overall, DPS
consists of a cyclic two-stage updating strategy: Stage I accumulates in-batch gradients of updated
parameters during fine-tuning; Stage II utilizes accumulated values of Stage I to derive a stage-specific
subnetwork composed of important parameters to update while keeping non-subnetwork constant.
Note that both two stages consist of several iterations and the whole fine-tuning process will repeat
several two-stage updating processes until the model convergence. Compared to previous subnetwork
optimizations, we summarize the advantages of DPS as follows: (i) DPS can adaptively choose out
more promising subnetworks based on the changing parameter importance while paying attention to
more parameters possibilities, which enables better optimization of the model. (ii) DPS can effectively
combine two processes: fine-tuning and deriving subnetworks, which greatly reduces the additional
heavy computational costs introduced by separating above two processes like CHILD-TUNINGD.

In details, we propose two variants, DPS Dense and DPS Mix, to optimize the fine-tuning process.
DPS Dense aims at optimizing the full network update process. In Stage I, DPS Dense updates the
whole network while accumulating gradients’ values. In Stage II, DPS Dense updates the stage-
specific subnetwork composed of important parameters measured by ranking the accumulated values
of Stage I. In contrast, DPS Mix is designed to optimize the stochastic parameter update process. In
Stage I, DPS Mix randomly replaces some outgoing parameters of the neural network with pre-trained
parameters and accumulates in-batch gradients of the remaining updated parameters. In Stage II,
DPS Mix applies a frequency-penalized selection strategy, which utilizes updated gradients’ average
value and an exponential penalty factor negatively correlated with update frequency to choose out the
stage-related important parameters for updating. It adaptively chooses a more promising subnetwork
in stages while avoiding deviations from the pre-trained weights due to aggressive optimization.

We re-evaluate several state-of-the-art fine-tuning regularization approaches [Lee et al., 2020, Agha-
janyan et al., 2021, Zhang et al., 2021, Xu et al., 2021, Wu et al., 2021] on GLUE Benchmark
and find that DPS outperforms prior approaches by 0.44 ∼ 1.33 points gains and 0.29 ∼ 0.80 std
(standard deviation) drops. Moreover, DPS brings an improvement in out-of-domain transferring
experiments/low-resource scenarios with up to 1.86/3.27 average score, indicating that DPS can
obtain excellent generalization ability. In extensive experiments, we further explore DPS in the
following four settings: (i) subnetwork size; (ii) various pre-trained models; (iii) a sufficient number
of training examples; (iv) time usage. Based on the above extensive experiments, we observe that (i)
DPS can better capture task-relevant parameters across a variety of subnetwork sizes than Mixout
and CHILD-TUNINGD; (ii) DPS can consistently bring a stable improvement in various pre-trained
models; (iii) our proposed DPS is helpful to model performance in fine-tuning with a sufficient
number of training examples; (iv) DPS is a more time-efficient approach than several fine-tuning
methods.

2 Approach

2.1 Background and Related Work

We first start to introduce the paradigm of fine-tuning the subnetwork by giving formulations of
forward and back propagation during standard fine-tuning, Mixout, and CHILD-TUNINGD. We
will describe all formulations for Stochastic Gradient Descent (SGD) iterations. We assume W (t) =

(W
(t)
1 , · · · ,W (t)

n ), where W (t)
i represents parameters of the i-th neuron at the t-th iteration. Standard

fine-tuning formulates model parameters as follows:

W (t+1) = W (t) − η
∂L
(
W (t)

)
∂W (t)

, (1)

where L represents in-batch loss; η represents learning rate. Differ from fine-tuning whole network,
Mixout first derives a mask matrix M (t) = (M

(t)
1 , · · · ,M (t)

n ), where M (t)
i is same-sized as W (t)

i and

2



M
(t)
i ’s are mutually independent Bernoulli(1− p) for all i and t. Then Mixout replaces parameters

corresponding to zero values in M (t) with pre-trained parameters and only update the subnetwork
composed of remaining parameters. Its formulation is as follows:

W (t+1) = W (t) − η
∂L
((
M (t)W (t) +

(
I −M (t)

)
W (0) − pW (0)

)
(1− p)−1

)
∂W (t)

, (2)

where I is full-one matrix and is same-sized as M (t); W (0) represents the parameter matrix of the
pre-trained model; the larger p is, the smaller the subnetwork.

Besides selecting a subnetwork randomly, CHILD-TUNINGD has explored fine-tuning subnetwork
composed of measured important parameters. Considering Fisher Information [Fisher, 1922] serves as
a good way of measuring the amount of information that a random variable carries about a parameter
of the distribution [Tu et al., 2016] and has been widely used in modern machine learning and deep
learning [Achille et al., 2019, Kirkpatrick et al., 2017, Amari, 1996, Pascanu and Bengio, 2013, Singh
and Alistarh, 2020, Crowley et al., 2018, Martens, 2014, Theis et al., 2018], CHILD-TUNINGD

utilizes Fisher Information to compute the importance of parameters based on all training samples
before training, then derives an unchanged subnetwork composed of important parameters to update.
Its formulation is as follows:

MCTD
= Σ(

∂L
(
W (0)

)
∂W (0)

)2 > sort

(
Σ(

∂L
(
W (0)

)
∂W (0)

)2

)
p

, (3)

W (t+1) = W (t) − η
∂L
(
W (t)

)
∂W (t)

MCTD
, (4)

where sort(A)p represents the value of p percentile in matrix A after sorting in ascending order;
MCTD

is an unchanged mask matrix, which determines the subnetwork used for updates throughout
the fine-tuning process.

Since their introduction that aggressive fine-tuning will lead to instability and overfitting, especially on
small datasets[Devlin et al., 2018, Phang et al., 2018], various fine-tuning methods have been proposed
to solve the above problems, except for subnetwork optimizations. Some of them utilize output
representations or inject noise into input to regularize models [Mahabadi et al., 2021, Aghajanyan
et al., 2021, Wu et al., 2021], while others adjust the weights of top layers of Transformer or
BERTAdam optimizer to make the pre-trained models more task-relevant. [Zhang et al., 2021,
Mosbach et al., 2021].

Algorithm 1 Training Algorithm for DPS
Require: ms: total training steps; ur: update ratio; us: update steps; p: the proportion of parameters not updated
to the overall parameters in Stage II; k: current cycle times; n: total cycle times
1: Initialize timestep t← 1, us← ms ∗ ur, n← ⌊ms/2us⌋
2: for k = 0 to n do
3: // k-th cycle
4: while t ≤ (k + 1) ∗ 2us do
5: // Stage I
6: if ⌈t/us⌉%2 = 1 then
7: Accumulate in-batch gradients of the updated parameters during fine-tuning.
8: //Stage II
9: if ⌈t/us⌉% 2 = 0 and (t− 1) % us = 0 then

10: Derive a stage-specific mask matrix by selecting the top (1 − p) parameters by a specified
selection strategy.

11: Clear the accumulated values of Stage I.
12: Update the selected subnetwork by stage-specific mask matrix.
13: else
14: Update the selected subnetwork by stage-specific mask matrix.
15: t← t+ 1
16: end while
17: end for

3



2.2 Overview of DPS

DPS consists of a cyclic two-stage updating strategy: Stage I accumulates in-batch gradients of
updated parameters during fine-tuning; Stage II utilizes accumulated values of Stage I to derive a
stage-specific subnetwork composed of important parameters to update while keeping non-subnetwork
constant. We provide a pseudo-code of DPS in Algorithm 1. We argue that fine-tuning a dynamic
promising subnetwork while paying attention to more parameters possibilities can align all parameters
more relevant for a specific downstream task, which in turn better unlocks the potential of the model.
To select a promising subnetwork adaptively, we propose two enhanced fine-tuning strategies: DPS
Dense (in Sec. 2.3) and DPS Mix (in Sec. 2.4), which respectively optimize the fine-tuning processes
of full network update and stochastic network update.

2.3 DPS Dense

We firstly explore the DPS in full network update called DPS Dense. Before fine-tuning, DPS Dense
initializes a Gradient Accumulation Matrix (GAM ), which is the same-sized as W (0). In Stage I,
DPS Dense fine-tunes the whole network as Equation 1 while accumulating the gradients’ square of
all parameters at every iteration with the help of GAM ; In Stage II, DPS Dense first ranks GAM
and derives a stage-specific mask matrix MDPS filtered by selecting top (1 − p) highest Fisher
Information of GAM , then utilizes MDPS to update the stage-specific subnetwork composed of
important parameters. we denote the formulation of Stage II as follows:

MDPS = GAM > sort(GAM)p, (5)

W (t+1) = W (t) − η
∂L
(
W (t)

)
∂W (t)

MDPS . (6)

The specific update process can be seen in Figure 1.

𝑮𝑨𝑴	 = 	 𝒈𝟏𝟏
𝟐 + ⋯+ 𝒈𝒊𝟏𝟐 𝒈𝟏𝟐𝟐 + ⋯+ 𝒈𝒊𝟐𝟐 𝒈𝟏𝟑𝟐 + ⋯+ 𝒈𝒊𝟑𝟐

𝒈𝟏𝟒𝟐 + ⋯+ 𝒈𝒊𝟒𝟐 𝒈𝟏𝟓𝟐 + ⋯+ 𝒈𝒊𝟓𝟐 𝒈𝟏𝟔𝟐 + ⋯+ 𝒈𝒊𝟔𝟐

Stage I

step 2k*us+1, …, step 2k*us+i

Stage II

Stage I
𝑮𝑨𝑴	=		 𝒈𝟏𝟏

𝟐 𝟎 𝒈𝟏𝟑𝟐

𝒈𝟏𝟒𝟐 𝟎 𝒈𝟏𝟔𝟐

𝑭𝑨𝑴	= 𝟏 𝟎 𝟏
𝟏 𝟎 𝟏 𝑭𝑨𝑴	 =	 𝟏+ ⋯+ 𝟏 𝟎 +⋯+𝟏 𝟏+ ⋯+ 𝟎

𝟏+ ⋯+ 𝟏 𝟎 +⋯+𝟏 𝟏+ ⋯+ 𝟎

step (2k+1)*us+1, …, step (2k+1)*us+i 

step 2k*us+1, …, step 2k*us+i

DPS Dense

DPS Mix

𝑴𝑫𝑷𝑺 	= 	
𝟏 𝟎 𝟏
𝟎 𝟏 𝟏

𝑮𝑨𝑴	 = 	 𝒈𝟏𝟏
𝟐 + ⋯+ 𝒈𝒊𝟏𝟐 𝟎 +⋯+ 𝒈𝒊𝟐𝟐 𝒈𝟏𝟑𝟐 + ⋯+ 𝟎

𝒈𝟏𝟒𝟐 + ⋯+ 𝒈𝒊𝟒𝟐 𝟎 +⋯+ 𝒈𝒊𝟓𝟐 𝒈𝟏𝟔𝟐 + ⋯+ 𝟎

𝑮𝑨𝑴	=		 𝒈𝟏𝟏
𝟐 𝒈𝟏𝟐𝟐 𝒈𝟏𝟑𝟐

𝒈𝟏𝟒𝟐 𝒈𝟏𝟓𝟐 𝒈𝟏𝟔𝟐

Figure 1: In this figure, we show the k-th two-stage updating process of DPS Dense and DPS Mix.
gij represents the the gradient value of parameter j at time step 2k ∗us+ i (i <= us); the parameters
on the red edges are same-valued as corresponding parameters of W ((2k+1)us+1), the parameters on
the orange edges are same-valued as corresponding parameters of W (0). Both red and orange edges
will not be updated during back propagation; GAM , FAM and MDPS will be re-initialized at the
beginning of every cycle.

2.4 DPS Mix

Considering stochastic parameter update is common to deploy in fine-tuning pre-trained models, we
also propose an alternative to optimize this fine-tuning process called DPS Mix. Before fine-tuning,
DPS Mix needs to initialize another Frequency Accumulation Matrix (FAM ) besides GAM , which

4



is used to store the frequency of every parameter being updated in Stage I. In Stage I, DPS Mix
derives a mask matrix M (t) like Mixout, and then fine-tunes the subnetwork determined by M (t)

while replacing non-subnetwork as pre-trained weights as Equation 2. In Stage II, DPS Mix derives
MDPS according to a frequency-penalized selection strategy as follows:

MDPS =


(
GAM
FAM

)
> sort

(
GAM
FAM

)
p
, if us < 50(

GAM
FAM e−(

FAM
us )

)
> sort

(
GAM
FAM e−(

FAM
us )

)
p
, else

. (7)

As Equation7 illustrates, DPS Mix follows the ratio of GAM and FAM as the basis for deriving the
MDPS . During the random selection of Stage I, considering that each parameter may be updated at
an inconsistent frequency and parameters with more frequent updates may have smaller potential,
DPS Mix also multiplies an exponential penalty factor negatively correlated with update frequency
in addition to the ranking selection, to give more chances to parameters with fewer updates. Since
this penalty factor may introduce some fluctuations, we grid search the boundary and decide to
exclude this factor when us is less than 50. After obtaining the MDPS , DPS Mix formulates model
parameters as follows:

W (t+1) = W (t) − η
∂L
((
MDPSW

(t) + (I −MDPS)W
′ − pW ′) (1− p)−1

)
∂W (t)

, (8)

where W ′ are same-valued as W ((2k+1)us+1); Note that the subnetwork size of Stage I is the
same-sized as Stage II’s in DPS Mix. The specific update can be seen in Figure 1. In terms of
implementation details, we apply DPS Dense and DPS Mix to specific layers.

3 Experiments

3.1 Datasets

GLUE benchmark. Following previous studies [Lee et al., 2020, Dodge et al., 2020, Zhang et al.,
2021], we conduct a series of extensive experiments on eight datasets from the GLUE benchmark
[Wang et al., 2019]. The datasets cover four tasks: natural language inference (RTE, QNLI, MNLI),
paraphrase detection (MRPC, QQP), linguistic acceptability (CoLA), and sentiment classification
(SST-2). Appendix B provides dataset statistics and a brief description of each dataset. Since the test
set can only be submitted online for a very limited times, we follow several previous studies [Phang
et al., 2018, Lee et al., 2020, Dodge et al., 2020, Aghajanyan et al., 2021, Zhang et al., 2021, Xu
et al., 2021] that fine-tune on the training sets and report the results on the development sets.

NLI Datasets. We evaluate and probe the generalization ability of DPS on several Natural Language
Inference (NLI) tasks, including SNLI [Bowman et al., 2015], MNLI [Williams et al., 2018], MNLI-
M [Williams et al., 2018], RTE [Bentivogli et al., 2009], SICK [Marelli et al., 2014] and SciTail
[Khot et al., 2018]. All tasks are reported by Accuracy. Since the target datasets have different label
spaces, during the evaluation, we map predictions to each target dataset’s space (in Appendix E).

3.2 Experimental Setup

We use the pre-trained models and codes provided by HuggingFace* Wolf et al. [2020]. Appendix
C provides specific hyper-parameter details, and unless noted otherwise, we follow the default
hyper-parameter setup of HuggingFace.

3.3 Comparing Prior Methods for Few-Sample BERT Fine-tuning

3.3.1 Baseline

Mixout [Lee et al., 2020] is a stochastic parameter update technique based on the Bernoulli dis-
tribution for preventing catastrophic forgetting during fine-tuning. It randomly replaces the model
parameters with pre-trained parameters with a probability of p. R3F [Aghajanyan et al., 2021] is
motivated by trust region theory and injects parametric noise to the embedding of the pre-trained

*https://github.com/huggingface/transformers

5

 https://github.com/huggingface/transformers


representations. R-Dropout [Wu et al., 2021] minimizes the bidirectional KL-divergence between the
output distributions of two sub models sampled by Dropout. CHILD-TUNINGD [Xu et al., 2021]
utilizes the downstream task data to detect the most task-related parameters as the child network
and freezes the parameters in the non-child network to their pre-trained weights during fine-tuning.
Re-init [Zhang et al., 2021] re-initializes the pooler layers and the top L BERT Transformer layers
using the original BERT initialization, N (0,0.022).

3.3.2 Results

In this section, we compare DPS with a variety of fine-tuning regularization approaches on
BERTLARGE , following [Lee et al., 2020, Zhang et al., 2021, Xu et al., 2021]. The hyper-parameter
search spaces of different fine-tuning regularization methods are supplemented in Appendix D. Table 1
summarizes the experimental results. Firstly, we can notice that Mixout and CHILD-TUNINGD

achieve better results than vanilla fine-tuning, and perform nearly the best baseline Re-init, which
proves that fine-tuning a subnetwork while utilizing pre-trained weights is a competitive approach to
regularize the model. Secondly, our proposed straightforward DPS Dense outperforms all baselines
on average, which demonstrates that fine-tuning subnetworks adaptively is more effective. Since DPS
accumulates in-batch gradients to derive important sub-networks during fine-tuning, we also consider
DPS to be a more time-efficient approach than CHILD-TUNINGD, which utilizes Fisher Information
to derive important sub-network based on all training samples outside fine-tuning. Thirdly, it is easy
to find that DPS Mix achieves better results while further improving stability, especially on CoLA
with great std drop. This reveals that DPS can be effectively compatible with various fine-tuning
strategies, enabling better optimization of the model.

CoLA MRPC RTE STS-B Avg.
Methods ————— ————— ————— ————— —————

mean std mean std mean std mean std mean std
vanilla fine-tuning 64.11 1.33 90.80 1.77 70.69 2.83 89.92 0.61 78.88 1.64
Mixout 64.42 1.51 91.31 1.08 72.05 1.67 90.39 0.57 79.54 1.21
R3F 64.62 1.38 91.63 0.93 70.75 1.76 89.92 0.61 79.23 1.17
R-Dropout 64.14 1.58 91.87 0.78 70.24 2.83 90.25 0.49 79.13 1.42
CHILD-TUNINGD 64.85 1.32 91.52 0.81 71.69 1.95 90.42 0.44 79.62 1.13
Re-init 64.24 2.03 91.61 0.80 72.44 1.74 90.71 0.14 79.77 1.18
DPS Dense 64.98 1.08 91.50 0.83 73.14 1.97 90.51 0.55 80.03 1.11
DPS Mix 65.11 0.63 91.78 0.74 73.46 1.46 90.47 0.55 80.21 0.84

Table 1: We report the mean and standard deviation results of 10 random seeds. Avg. represents
the average score of the four tasks, the best results are bolded. The higher the mean value, the better
the effect; the smaller the standard deviation, the more stable the performance. Since R3F is not
applicable to the regression task (STS-B), we use the results of vanilla fine-tuning as the results of
R3F on STS-B.

3.4 Results on Out-of-Domain Generalization

Previous research has found that models trained on annotated datasets create superficial shortcut
features and do not generalize well to out-of-domain datasets [Belinkov et al., 2019]. Since DPS
possesses strong and stable performance, we also expect DPS can help to discover deeper semantic
features and achieve better generalization in transferring to out-of-domain datasets or other related
tasks. In detail, to evaluate out-of-domain generalization, we fine-tune BERTLARGE on medium-
sized 8K subsampled MNLI and SNLI datasets respectively, and directly evaluate the fine-tuned
models on several NLI datasets, including MNLI, MNLI-M, SICK, SciTail, SNLI, and RTE. The
experimental results are shown in Table 2. On the models trained on MNLI, DPS Dense/DPS mix
outperforms vanilla fine-tuning by 1.16/1.86 average score, and consistently outperforms CHILD-
TUNINGD by 0.32/1.05 average score. On the models trained on SNLI, although CHILD-TUNINGD

only brings a very slight improvement over vanilla fine-tuning, DPS Dense/DPS mix consistently
delivers a large improvement of 1.23/0.63 average score. All the above statistics can fully verify
that DPS can better explore deeper semantics and reduce superficial biases unique to source task
than vanilla fine-tuning and CHILD-TUNINGD. We also conclude that making the model closer to
real distribution for the source task may facilitate generalization ability better than freezing some
parameters as pre-trained weights like CHILD-TUNINGD.

6



Datasets MNLI SNLI
—————————————————— ——————————————————
vanilla CTD DPS Dense DPS Mix vanilla CTD DPS Dense DPS Mix

MNLI 77.51 78.01 77.59 77.75 66.43 67.26 67.32 66.81
MNLI-M 78.75 79.13 79.03 79.16 68.07 68.75 69.08 68.47
SICK 51.91 55.69 55.76 58.18 53.67 53.46 56.23 55.49
SciTail 79.70 79.86 79.35 80.36 78.22 77.17 78.42 77.80
SNLI 72.80 73.36 74.28 74.72 84.87 84.41 84.74 84.83
RTE 71.44 70.87 72.80 73.16 67.35 67.47 70.28 69.07
Avg. 72.01 72.82 73.14 73.87 69.78 69.79 71.01 70.41

Table 2: All models are trained on MNLI or SNLI and evaluated on the out-of-domain datasets. We
report the average results of three random seeds. CTD represents CHILD-TUNINGD.

3.5 Results on Low-Resource Scenarios

To further explore the generalization ability of DPS on extremely small datasets, we downsample eight
datasets in GLUE to 0.5K and 1K, and fine-tune them all on BERTLARGE . As illustrated in Table 3,
DPS outperforms vanilla fine-tuning by a large margin almost on all tasks in variable low-resource
scenarios, which demonstrates that DPS, as a novel fine-tuning technique, can effectively mitigate the
risk of overfitting, exploit model potential, and remove irrelevant features.

0.5K 1K
vanilla DPS Dense DPS Mix vanilla DPS Dense DPS Mix

Datasets ————— ————— ————— ————— ————— —————
mean std mean std mean std mean std mean std mean std

CoLA 26.01 13.2 39.42 11.8 40.58 10.6 47.97 5.62 52.89 2.50 53.34 2.35
MRPC 82.96 0.84 83.29 0.78 83.33 0.56 85.34 1.30 85.90 0.86 85.40 1.20
RTE 58.30 4.90 58.34 2.90 59.13 3.49 62.60 3.46 64.44 1.76 64.77 1.66
STS-B 81.77 2.69 83.38 1.55 83.60 1.18 85.86 1.34 87.15 1.77 87.02 1.04
SST-2 86.51 6.48 89.38 0.52 89.07 0.38 90.28 0.55 90.92 0.64 90.84 0.58
QNLI 76.82 2.09 77.09 1.75 76.73 1.92 81.61 1.32 82.58 1.19 82.66 1.26
QQP 71.68 1.90 74.43 1.35 74.20 1.42 76.96 1.50 77.81 0.57 77.71 0.31
MNLI 42.81 4.49 46.61 2.70 46.28 2.64 54.93 5.94 58.33 3.56 58.53 3.27
AVG 65.85 4.57 68.99 2.92 69.12 2.78 73.19 2.62 75.00 1.61 75.04 1.45

Table 3: Comparison between DPS and vanilla fine-tuning with varying low-resource scenarios
(0.5K,1K). We report the results of 10 random seeds and the best result of each task is bolded.

4 Analysis and Study

4.1 Effect of Subnetwork Size

[Lee et al., 2020] have explored the hyper-parameter p and verified that Mixout shows great perfor-
mance at many different probabilities p (Note that the larger p, the smaller the subnetwork). We
also wonder what will happen when DPS probabilities vary, so we plot the validation performance
distribution of CoLA and RTE of 10 random seeds when fine-tuning BERTLARGE across different
probabilities p ∈ {0.1, 0.2, 0.3, 0.4, 0.5} in Figure 2. Firstly, it is easy to find the overall performance
of DPS Dense/DPS Mix is better than CHILD-TUNINGD/Mixout across all probabilities, which
demonstrates fine-tuning subnetworks of the pre-trained model adaptively can better optimize the
model than fine-tuning an unchanged subnetwork or fine-tuning random subnetworks. Secondly,
compared to vanilla fine-tuning, there is a visible performance drop in CHILD-TUNINGD and
Mixout with some probabilities. However, DPS Dense/DPS Mix consistently outperforms vanilla
fine-tuning across all probabilities. These fully indicate that CHILD-TUNINGD and Mixout may fail
to capture important parameters in some sizes of the subnetwork, resulting in failed runs (we refer to
the average scores lower than vanilla as failed runs). However, Our proposed DPS can better capture
more task-relevant parameters, which in turn results in a consistent and stable improvement in all
sizes of the subnetwork. To further justify the effectiveness of DPS from another perspective, we
conduct a case study in Appendix A.

7



       0.1        0.2        0.3     0.4     0.5
Probability

61

62

63

64

65

66

67

Va
l M

C
C

vanilla
CHID-TUNINGD

DPS Dense

Mixout
DPS mix

(a) CoLA

       0.1        0.2        0.3     0.4     0.5
Probability

66

68

70

72

74

76

Va
l A

C
C

(b) RTE

Figure 2: Validation performance distribution of 10 random seeds when fine-tuning BERTLARGE

with vanilla fine-tuning, Mixout, CHILD-TUNINGD and DPS. Solid circles represent mean results,
hollow circles represent outliers.

4.2 Results on Different Pre-Trained Language Models

CoLA MRPC RTE STS-B Avg.
Models Methods ————— ————— ————— ————— —————

mean std mean std mean std mean std mean std
vanilla 64.11 1.33 90.80 1.77 70.69 2.83 89.92 0.61 78.88 1.64

BERT DPS Dense 64.98 1.08 91.50 0.83 73.14 1.97 90.51 0.55 80.03 1.11
DPS Mix 65.11 0.63 91.78 0.74 73.46 1.46 90.47 0.55 80.21 0.84

vanilla 66.82 1.16 92.96 0.41 85.61 1.02 92.31 0.12 84.43 0.68
RoBERTa DPS Dense 68.05 1.25 93.01 0.33 86.02 2.26 92.62 0.16 84.93 1.00

DPS Mix 68.81 1.33 93.27 0.27 85.74 1.16 92.57 0.17 85.10 0.73
vanilla 61.34 1.83 92.58 0.43 82.84 1.22 91.89 0.25 82.16 0.93

BART DPS Dense 64.56 1.92 92.54 0.52 85.28 0.87 92.38 0.22 83.69 0.88
DPS Mix 64.37 1.21 92.88 0.39 85.31 0.69 92.44 0.20 83.75 0.61

vanilla 65.83 14.5 93.00 0.42 89.25 0.88 90.36 6.56 84.66 5.59
ELECTRA DPS Dense 69.25 2.98 93.95 0.40 89.45 0.83 92.69 0.25 86.34 1.12

DPS Mix 70.41 2.01 93.58 0.33 90.03 0.76 92.65 0.28 86.67 0.84
vanilla 65.51 1.54 92.60 0.69 85.71 1.26 91.60 0.44 83.86 0.98

DeBERTa DPS Dense 67.38 0.93 93.07 0.22 86.86 0.91 92.25 0.40 84.89 0.62
DPS Mix 67.07 0.84 92.85 0.34 86.91 0.77 92.21 0.37 84.76 0.58

Table 4: We compare DPS and vanilla fine-tuning on five widely used PLMs and report the mean
and standard deviation results of 10 random seeds. Avg. represents the average score of the four
tasks, the best results are bolded.

In this subsection, we conduct experiments on the four tasks in GLUE on five different Pre-trained
Language Models (PLMs): BERTLARGE [Devlin et al., 2018], RoBERTaLARGE [Liu et al., 2019],
BARTLARGE [Lewis et al., 2019], ELECTRALARGE [Clark et al., 2020] and DeBERTaLARGE [He
et al., 2021]. The experimental results are shown in Table 4. In addition to the most classical model
BERT, DPS consistently achieves better results on both RoBERTa and ELECTRA trained on larger
pre-trained corpus and better pre-training tasks. DPS also improves a large magnitude on models with
various structures: DeBERTa (relative position encoding model) and BART (encoder-decoder model).
These fully demonstrate that DPS can bring a stable improvement regardless of model structure and
quality.

8



4.3 DPS with a Sufficient Number of Training Examples

In addition to few-sample datasets, we believe it is also worth exploring whether DPS can deliver
a boost with larger training sets. Therefore, we fine-tune BERTLARGE on two datasets in GLUE
with training samples over 50K, including SST-2 and QNLI. Since it has been stable to fine-tune
BERTLARGE with a sufficient number of training examples Devlin et al. [2018], Phang et al. [2018],
we focus on the expressiveness of the above two tasks. As the experimental results in the Table 5
noted, when the training samples are large enough, DPS not only doesn’t damage performance but
also brings certain improvements compared to other subnetwork optimizations. This indicates that
our proposed dynamic parameter selection algorithm is suitable for a wider range of data scenarios,
except for few-sample scenarios, and thus is superior than previous subnetwork optimizations.

Methods SST-2 QNLI
vanilla fine-tuning 93.23 (93.69) 92.31 (92.54)
Mixout 93.45 (93.80) 92.21 (92.45)
CHILD-TUNINGD 89.28 (94.04) 92.36 (92.58)
DPS Dense 93.77 (94.49) 92.61 (92.94)
DPS Mix 93.71 (94.16) 92.45 (92.72)

Table 5: Comparison between several fine-tuning methods and DPS with a sufficient number of
training examples datasets. We report mean (max) development scores of 10 random seeds, and the
best results are bolded.

4.4 Time Usage

Methods Vanilla Mixout R3F R-Dropout CHILD-TUNINGD DPS Dense DPS Mix
Time Usage x1.00 x1.18 x1.64 x1.64 x3.13 x1.12 x1.30

Table 6: Time usage for DPS and multiple fine-tuning regularization methods.

In this subsection, we investigate the computational efficiency of DPS. Specifically, we count the
time usage of DPS in fine-tuning the BERTLARGE on RTE and compare time usage with various
fine-tuning regularization methods, following [Lee et al., 2020]. We can notice from Table 6 that
although DPS introduces a slight additional computational costs than vanilla fine-tuning, DPS is about
25% much faster than R3F and R-Dropout, and about 240% much faster than CHILD-TUNINGD.
We also discuss memory consumption for above methods in Appendix F.

5 Conclusion

In this work, we propose a family of new fine-tuning techniques to fine-tune large-scale PLMs
adaptively: DPS Dense and DPS Mix, which respectively optimize full network update and stochastic
parameter update processes. Our methods outperform various fine-tuning approaches in terms of
stability and overall performance while saving computational costs a lot, and consistently improve
the generalization ability of fine-tuned models by a large margin. Extensive results and analysis show
that DPS can enhance largely on five different pre-trained language models meanwhile possessing
extremely stable performance across a wider range of subnetwork sizes. We believe that training
neural networks adaptively may have broader application scenarios. We leave this area of exploration
for future work.

6 Acknowledgements

We thank all reviewers for their constructive comments. This research is supported by the National
Key R&D Program under Grant No.2021ZD0110303, the National Natural Science Foundation of
China under Grant No. 62072007, 62192733, 61832009, 62192731, 62192730.

9



References

Alessandro Achille, Giovanni Paolini, and Stefano Soatto. Where is the information in a deep neural
network? arXiv preprint arXiv:1905.12213, 2019.

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta, Naman Goyal, Luke Zettlemoyer, and Sonal
Gupta. Better fine-tuning by reducing representational collapse. In ICLR, 2021.

Shun-ichi Amari. Neural learning in structured parameter spaces-natural riemannian gradient. In
NeurIPS, 1996.

Yonatan Belinkov, Adam Poliak, Stuart M Shieber, Benjamin Van Durme, and Alexander M Rush.
On adversarial removal of hypothesis-only bias in natural language inference. In StarSem, 2019.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing
textual entailment challenge. In TAC, 2009.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large annotated
corpus for learning natural language inference. In EMNLP, 2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In NeurIPS, 2020.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055, 2017.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training text
encoders as discriminators rather than generators. In ICLR, 2020.

Elliot J Crowley, Jack Turner, Amos Storkey, and Michael O’Boyle. Pruning neural networks: is it
time to nip it in the bud? 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2018.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith.
Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping.
arXiv preprint arXiv:2002.06305, 2020.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
IWP, 2005.

Ronald A Fisher. On the mathematical foundations of theoretical statistics. Philosophical transactions
of the Royal Society of London. Series A, containing papers of a mathematical or physical character,
222(594-604):309–368, 1922.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. In ICLR, 2021.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification. In
ACL, 2018.

Tushar Khot, Ashish Sabharwal, and Peter Clark. Scitail: A textual entailment dataset from science
question answering. In AAAI, 2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. In PNAS, 2017.

Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang. Mixout: Effective regularization to finetune
large-scale pretrained language models. In ICLR, 2020.

10



Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461,
2019.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization (2017). arXiv preprint
arXiv:1711.05101, 2019.

Rabeeh Karimi Mahabadi, Yonatan Belinkov, and James Henderson. Variational information bottle-
neck for effective low-resource fine-tuning. In ICLR, 2021.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and Roberto
Zamparelli. A sick cure for the evaluation of compositional distributional semantic models. In
LREC, 2014.

James Martens. New insights and perspectives on the natural gradient method. arXiv preprint
arXiv:1412.1193, 2014.

Marius Mosbach, Maksym Andriushchenko, and Dietrich Klakow. On the stability of fine-tuning
bert: Misconceptions, explanations, and strong baselines. In ICLR, 2021.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1301.3584, 2013.

Jason Phang, Thibault Févry, and Samuel R Bowman. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. arXiv preprint arXiv:1811.01088, 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. In EMNLP, 2016.

Nikhil Dandekar Shankar Iyer and Kornel Csernai. First quora dataset release: Question pairs.
https: // tinyurl. com/ y2y8u5ed , 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. In NeurIPS, 2020.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In EMNLP, 2013.

Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszár. Faster gaze prediction with
dense networks and fisher pruning. arXiv preprint arXiv:1801.05787, 2018.

Ming Tu, Visar Berisha, Martin Woolf, Jae-sun Seo, and Yu Cao. Ranking the parameters of deep
neural networks using the fisher information. In ICASSP, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In ICLR, 2019.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019.

11

https://tinyurl.com/y2y8u5ed


Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In NAACL, 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In EMNLP, 2020.

Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin, Wei Chen, Min Zhang, Tie-Yan Liu, et al. R-drop:
regularized dropout for neural networks. In NeurIPS, 2021.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, Baobao Chang, Songfang Huang, and Fei Huang.
Raise a child in large language model: Towards effective and generalizable fine-tuning. In EMNLP,
2021.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. In NeurIPS, 2019.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Weinberger, and Yoav Artzi. Revisiting few-sample
bert fine-tuning. In ICLR, 2021.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? Our limitations lie in inducing additional

training cost and memory overhead. We have discuss this in Sec. 4.4 and Appendix F.
(c) Did you discuss any potential negative societal impacts of your work? [No] We think

our methods will not lead to any negative societal impact.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We will upload
the code in the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We provide the details in Sec. 3.4, Sec. 3.5, Appendix C and
Appendix D.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report the running times below experimental tables in
main text.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Please refer to Appendix C.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We provide the

citations for each data and the url for open-souce code.
(b) Did you mention the license of the assets? [No] We use the publicly popular datasets

for each experiments.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

We do not provide new datasets.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We use public datasets.

12



(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] We use public datasets.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13


	Introduction
	Approach
	Background and Related Work
	Overview of DPS
	DPS Dense
	DPS Mix

	Experiments
	Datasets
	Experimental Setup
	Comparing Prior Methods for Few-Sample BERT Fine-tuning
	Baseline
	Results

	Results on Out-of-Domain Generalization
	Results on Low-Resource Scenarios

	Analysis and Study
	Effect of Subnetwork Size
	Results on Different Pre-Trained Language Models
	DPS with a Sufficient Number of Training Examples
	Time Usage

	Conclusion
	Acknowledgements

