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Abstract

Self-supervised learning techniques are celebrating immense success in natural
language processing (NLP) by enabling models to learn from broad language data
at unprecedented scales. Here, we aim to leverage the success of these techniques
for mental state decoding, where researchers aim to identify specific mental states
(e.g., the experience of anger or joy) from brain activity. To this end, we devise a
set of novel self-supervised learning frameworks for neuroimaging data inspired by
prominent learning frameworks in NLP. At their core, these frameworks learn the
dynamics of brain activity by modeling sequences of activity akin to how sequences
of text are modeled in NLP. We evaluate the frameworks by pre-training models on
a broad neuroimaging dataset spanning functional Magnetic Resonance Imaging
data from 11, 980 experimental runs of 1, 726 individuals across 34 datasets, and
subsequently adapting the pre-trained models to benchmark mental state decoding
datasets. The pre-trained models transfer well, generally outperforming baseline
models trained from scratch, while models trained in a learning framework based
on causal language modeling clearly outperform the others.

1 Introduction

In mental state decoding, researchers aim to identify certain mental states (e.g., deciding to accept or
reject a gamble or the experience of happiness or fear) from brain activity [1]. To this end, researchers
train predictive models to correctly identify (i.e., decode) these mental states from measured brain
activity. At first sight, this approach seems straightforward, yet researchers interested in training
mental state decoding models are faced with the challenge that individual neuroimaging datasets,
particularly functional Magnetic Resonance Imaging (fMRI) data, are often of high dimension and
low sample size, such that individual samples can comprise many hundred thousand dimensions while
individual datasets include only a few hundred samples for each of tens to hundreds of individuals.
In this setting, where the dimensionality of the data far exceed the number of samples, predictive
models are prone to overfitting, which severely limits any generalizable insights that can be gained
from training these models about the studied mental states and brain activity.

In spite of the low sample size of individual datasets, neuroimaging research has recently entered a
big data era, as individual researchers more frequently share their collected datasets publicly [2, 3].
In addition, several efforts have been made to standardize the data structure [4] and preprocessing [5]
of neuroimaging data. Together, these developments open up new possibilities for the application of
pre-training in neuroimaging at scale, by allowing for the pre-training of models on broad, public
neuroimaging data so that the resulting models can be adapted well to the datasets collected by
individual researchers, without the need for much new data.

A wealth of empirical evidence has demonstrated that models pre-trained on large neuroimaging
datasets achieve better mental state decoding performances on new data, while also requiring less
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training time and data, than models trained from scratch (e.g., [6, 7, 8, 9]). Yet, much of this work is
limited by either pre-training models on large but homogeneous datasets, such as data from many
individuals who all perform the same few tasks at the same few acquisition sites [10, 7] (jeopardising
the generalizability of the resulting models due to potential systematic biases in homogeneous datasets,
e.g., specific to the acquisition site or experimental paradigm [11, 12, 13, 14, 15]), or by requiring
highly-preprocessed input data (e.g., statistical maps summarizing the measured sequences of brain
activity [16]). In addition, researchers often use standard supervised pre-training tasks by tasking
models with identifying the specific mental state assigned to each sample of the data [6, 7, 10, 17].
While this kind of supervised training can be fruitful within individual neuroimaging datasets, it
is difficult to extend to many datasets, as neuroimaging researchers generally do not adhere to
standardized labeling schemes for mental states [18] when assigning labels to the mental states of
their experiments. Due to this lack of standardization, it is often unclear whether two datasets contain
the same or distinct mental states (for a detailed discussion, see [19]).

Here, we aim to overcome these limitations by leveraging recent advances in self-supervised learning
to pre-train deep learning (DL) models on broad neuroimaging data. In particular, we take inspiration
from natural language processing (NLP), where the application of self-supervised learning has led to
unprecedented breakthroughs in the adaptive capabilities of pre-trained models (e.g., [20, 21, 22, 23]),
and test whether modeling sequences of brain activity akin to sequences of text enables the learning of
generalizable representations of brain activity. To enable the application of NLP modeling techniques
to neuroimaging data, we represent sequences of brain activity akin to the embedded representation of
words in sequences of text in NLP [24, 25] by representing each measurement time point as a vector
that describes whole-brain activity as the activity of a set of functionally-independent brain networks
(s.t. each vector value indicates the activity of one of the networks at this point in time [26]).

Contributions. By representing sequences of brain activity similar to the embedded representation
of text in NLP, we are able to devise novel self-supervised learning frameworks for neuroimaging
data that are inspired by prominent learning frameworks in NLP, namely, sequence-to-sequence
autoencoding [27], causal language modeling [20], and masked language modeling [21]. We pre-train
DL models with these newly devised frameworks on a large-scale neuroimaging dataset comprising
fMRI data from 11, 980 experimental runs of 1, 726 individuals across 34 datasets. To our knowledge,
this represents one of the broadest neuroimaging datasets used for pre-training to date, spanning a
wealth of experimental conditions and a diverse set of acquisition sites. We evaluate the downstream
adaptation performance of the pre-trained models in two benchmark mental state decoding datasets
and show that models pre-trained in a learning framework based on causal language modeling clearly
outperform the others, while all pre-trained models generally outperform baseline models trained
from scratch. To enable others to build on this work, we make our code, training data, and pre-trained
models publicly available 1.

2 Methods overview

2.1 Input data: from brain volumes to brain networks

FMRI data are conventionally represented in four dimensions, such that the measured blood-oxygen-
level-dependent (BOLD) signal is indicated in temporal sequences S = {V1, ..., Vt} of 3-dimensional
volumes V 2 Rx⇥y⇥z that show the BOLD signal intensity for each spatial location of the brain (as
indicated by the three spatial dimensions x, y, and z). However, due to the strong spatial correlations
of brain activity, the measured BOLD signal is often summarized differently by representing it as a
set ⇥ = {✓1, ..., ✓n} of n brain networks (i.e., parcels) ✓, each describing the BOLD signal for some
subset of voxels vx,y,z ⇢ V with correlated activity patterns.

Here, we utilize such a functional parcellation of brain activity to represent the measured BOLD
signal, namely, Dictionaries of Functional Modes (DiFuMo), which was recently proposed by [28]
and learned across millions of fMRI volumes. DiFuMo defines ⇥ through a sparse dictionary matrix
D 2 Rp⇥n containing n p-dimensional networks (where each dimension indicates a voxel v 2 V ,
flattened over the three spatial dimensions). The BOLD signal of volume Vt is then described as
a linear combination of these networks by the use of weights ↵t 2 Rn, such that Vt = D↵t and
↵t = D†Vt, where D† indicates the pseudo-inverse of D: D† = (DTD)�1DT 2 Rn⇥p. In this

1github.com/athms/learning-from-brains
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Figure 1: Proposed self-supervised learning frameworks for neuroimaging data, inspired by NLP.

work, we utilize the DiFuMo parcellation with n = 1024 networks, such that the resulting parcellated
BOLD data X 2 Rt⇥n describe the measured BOLD signal of each of these networks for each
time point t of the input sequence S. This representation of the input data is analogous to the
embedded representation of sentences in NLP, where each word is represented by some embedding
vector [24, 25].

2.2 Self-supervised learning frameworks: modeling sequences of brain activity akin to
sequences of text

We first establish several commonalities among the frameworks before describing them individually
in more detail (for an overview, see Fig. 1).

2.2.1 Commonalities among frameworks

First, each framework takes as input a parcellated BOLD sequence X 2 Rt⇥n (with t time points for
n networks) as well as the corresponding sampling frequency (i.e., repetition time or TR) at which
the BOLD data were collected (typically in the range of 0.7 s to 4 s).

Second, all frameworks linearly project the parcellated BOLD sequence X into an embedding
representation EX 2 Rt⇥e: EX

t,e = be +
P

n Xt,nwn,e, where w 2 Rn⇥e and b 2 Re indicate
weights and biases, thereby reducing the dimensionality of the input: Rt⇥n ! Rt⇥e.

Third, to account for any differences in the sampling frequency of the BOLD sequences, the frame-
works add one of r learnable TR embeddings ETR 2 Rr⇥e to each time point t 2 EX . Each TR
embedding corresponds to one possible time point k of the input. We set r = 1, 500 with a time
increment of 0.2 s between subsequent TR embeddings, such that k 2 0, 0.2, ..., 300 s. For example,
for an input sequence of 21 s that was collected at a TR of 0.7 s, we first round each time point
t 2 0, 0.7, ..., 21 to the closest k and then add the corresponding ETR

k to EX
k . Note that we always

label time points relative to the beginning of an input sequence, such that time point k = 0 is assigned
to the first sequence element. Importantly, TR embeddings carry different information than the
position embeddings commonly used in transformer models [29] because the same position in an
input can correspond to different time points, depending on the sampling frequency at which the data
were collected.
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Fourth, all frameworks utilize standard sequence-to-sequence DL model architectures f(·) that take
some embedded sequence Ein 2 Rt⇥e as input, e.g., defined as the sum of input and TR embeddings:
Ein = {EX

t + ETR
t }t2EX

, and predict a corresponding output sequence f(Ein) 2 Rt⇥e.

Fifth, during upstream learning, the output sequence f(Ein) is linearly projected back to the dimen-
sionality of the parcellated BOLD sequence X , such that X̂t,n = bn +

P
e f(E

in)t,ewe,n, where w
and b again indicate weights and biases. This step is crucial, as all proposed learning frameworks
involve reconstructing X (or parts of X) after some of its elements have been masked or it has been
encoded in a lower-dimensional representation. To measure reconstruction performance, we utilize
the mean absolute difference between the parcellated BOLD sequence X and its reconstruction X̂:
Lrec =

1
n(J)

P
j2J |Xj � X̂j |, where J indicates the set of elements that is to be reconstructed and

n(J) the number of elements in J .

Sixth, for downstream adaptation to a new mental state decoding task, the frameworks utilize a
simple decoding head p(·), composed of a dense hidden layer with e model units (one for each
embedding dimension, with tanh activation) as well as a softmax output layer with one model unit
i for each considered mental state in the data. p(x)i therefore indicates the probability that input x
belongs to mental state i. Consequently, all frameworks treat the decoding task as a multinomial
classification problem and use a standard cross entropy loss objective: Lcls = �

P
i yi log p(x)i,

where yi indicates a binary variable that equals 1 if i is the correct mental state and 0 otherwise.

2.2.2 Autoencoding

The autoencoding framework is inspired by recurrent neural machine translation models (e.g., [27]).
These models take as input some text sequence, encode this sequence in a lower-dimensional repre-
sentation, and predict an output sequence from the lower-dimensional encoding (e.g., a translation to
another language).

Accordingly, the autoencoding framework uses a standard recurrent autoencoder architecture fa(·),
with an encoder and decoder part, each comprised of a stack of long short-term memory (LSTM [30])
units. The encoder e(·) takes Ein as input and encodes it in a lower-dimensional representation
h 2 Re. The decoder d(·) then takes h as input and predicts a corresponding output sequence
d(h) 2 Rt⇥e, such that fa(Ein) = d(h). Our encoder is composed of a stack of bidirectional LSTM
units, whereas the decoder is build from a stack of unidirectional LSTM units. Note that we apply
residual connections between the LSTM units in a stack: Let LSTM i and LSTM (i+1) be the i-th
and (i+1)-th LSTM units in a stack (with weights wi and wi+1). At the t-th step of an input sequence,
the inputs and outputs of units i and (i+ 1) are defined as: hi

t, c
i
t = LSTM i(hi

t�1, c
i
t�1, x

i�1
t�1;w

i);
xi
t = hi

t+xi�1
t�1; hi+1

t+1, c
i+1
t+1 = LSTM i+1(hi+1

t , ci+1
t , xi

t;w
i+1), where xi

t 2 Re represents the input
to LSTM i at step t, whereas hi

t 2 Re and cit 2 Re represent hidden and cell state respectively. We
define the sequence encoding h that is forwarded to the decoder as the mean of the final hidden states
of the two LSTM units contained in the encoder’s final bidirectional LSTM unit.

Upstream learning. During pre-training, we jointly train the encoder and decoder to reconstruct
the parcellated BOLD sequence X by minimizing its mean absolute difference to the reconstructed se-
quence X̂ (see section 2.2.1): min 1

t

Pt
i=1

1
n

Pn
j=1 |X̂i,j �Xi,j |. We also apply teacher-forcing [31]

by using Ein in 50% of the cases as each next input for the decoder instead of its own preceding
output.

Adaptation. To adapt the autoencoding framework to a new decoding task, we forward h as input
to a corresponding decoding head p(·) (see section 2.2.1), thereby omitting the decoder d(·).

2.2.3 Causal sequence modeling (CSM)

The causal sequence modeling (CSM) framework is inspired by recent advances in causal language
modeling [20], where models are trained to predict the next word in a text sequence. Specifically,
these models receive some text sequence as input, represented as a matrix X 2 Rn⇥e with n words
each encoded by an e-dimensional vector, where the last sequence element (representing the last
word) is masked, for example, by replacing it with a learned mask embedding Emsk 2 Re (e.g.,
"When it rains, it [msk]"). The model’s task is then to predict the masked word. In causal language
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modeling, models are thereby solely concerned with the part of the input sequence that precedes the
masked word.

To adapt causal language modeling to neuroimaging data, we first mask the last time point T of
a parcellated BOLD sequence X by replacing it with a learnable mask embedding Emsk before
transforming X to Ein by means of linear projection and the addition of TR embeddings ETR. In line
with recent advances in causal language modeling, we utilize a standard transformer decoder model
fd(·) (based on the GPT architecture [20]) in this learning framework 2. As transformer models are
not aware of the ordering of their input, we further add learnable position embeddings Epos 2 Rp⇥e

to Ein, each representing one of p possible positions in the input sequence (we set p = 512 for all
transformer models). Given Ein, the transformer decoder model predicts a corresponding output
sequence fd(Ein) 2 Rt⇥e in the form of the hidden states at the output of its last layer.

Upstream learning. In line with causal language modeling, the upstream objective of the CSM
framework is to reconstruct the masked last time point T of the parcellated BOLD sequence X by
minimizing the mean absolute difference to its reconstruction X̂T : min 1

n

Pn
i=1 |X̂T,i �XT,i|.

Adaptation. During downstream adaptation, we attach a learnable classification embedding
Ecls 2 Rn to the end of BOLD parcellation X and forward the resulting prediction f(Ein)T+1 to a
corresponding decoding head p(·) (see section 2.2.1).

2.2.4 Sequence-BERT

The Sequence-BERT framework is based on recent advances in bidirectional masked language
modeling, particularly BERT [21]. BERT is trained to jointly solve a masked-language-modeling and
next-sentence-prediction task. To this end, BERT receives two masked sentences Sa (e.g., "The sky
is [msk].") and Sb (e.g., "The [msk] is shining.") as input, in which some fraction of words have been
randomly masked. BERT is then asked to i) predict the masked words (masked-language-modeling)
and ii) determine whether Sb follows Sa (next-sentence-prediction). In contrast to causal language
modeling, masked language modeling is considered as a bidirectional learning task, as the model
is not just concerned with the parts of the input that precede a masked word but also the parts that
follow it.

To adapt BERT to neuroimaging data, we first sample two input sequences Xa 2 Rta⇥n and
Xb 2 Rtb⇥n from the data (with lengths ta and tb). In 50% of the cases, the two sequences represent
sequential parts of the same underlying BOLD sequence, while in the other 50% of cases, the two
sequences are randomly sampled from two distinct BOLD sequences. Due to the strong temporal
autocorrelation of BOLD data, we randomly leave a gap of 1-5 TRs (generally corresponding to
a gap of 1 to 20 s) between the two sequences when sampling them from the same underlying
BOLD sequence (to encourage the models to consider the entire input sequences and not just their
connecting time points). In line with BERT, we next randomly mask time points of each sequence
(with a probability of 20%) by replacing them with a learnable mask embedding Emsk. We also
attach a separation embedding Esep 2 Rn to the end of each sequence (to indicate their endpoints)
and a classification embedding Ecls to the beginning of Sa (for the next-sentence-prediction task;
see upstream learning below) 3. The resulting versions of Xa and Xb are then linearly projected
to obtain respective BOLD embeddings EXa

and EXb

to which we further add TR and position
embeddings ETR and Epos as well as sequence ID embeddings Eid 2 R2⇥e to indicate each of
the two input sequences. The resulting embedding representation Ein = [{EXa

t + ETR
t + Epos

t +

Eid
1 }t2ta , {EXb

t + ETR
t + Epos

t + Eid
2 }t2tb ] is then forwarded to a standard transformer encoder

model fe(·) (based on the BERT architecture [21]), which outputs a corresponding output sequence
fe(Ein) 2 Rt⇥e in the form of the hidden states at the output of its final layer.

Upstream learning. Similar to BERT, we define the upstream objective of the Sequence-BERT
framework as the sum of the learning objectives of its two tasks: In line with masked-language-

2While the described input masking procedure is not needed for transformer decoder models, due to their
causal attention mechanism, we chose this formulation of the task to ensure that the CSM framework also
generalizes to other model architectures.

3We use the same learnable "dummy" TR embedding (see section 2.2.1 and Fig. 1) for any elements that are
inserted into an input sequence during training (e.g., for classification or separation embeddings).
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modeling, we define the first objective as the reconstruction loss Lrec for all masked time points J :
Lrec =

1
n(J)

P
j2J

1
n

Pn
i=1 |Xj,i � X̂j,i|. In line with next-sentence-prediction, we define the other

objective as the binary cross entropy loss for a decoding head that receives f(Ein)1 (corresponding
to the transformer output for classification embedding Ecls) as input and predicts probability p that
Xb follows Xa: Lcls = �y log p � (1 � y) log(1 � p), where y indicates a binary variable that
equals 1 if the two sequences come from the same fMRI run and 0 otherwise.

Adaptation. During downstream adaptation, we forward the transformer’s output for classification
embedding fe(Ein)1 as input to a corresponding decoding head p(·) (see section 2.2.1).

2.2.5 Network-BERT

All so far presented frameworks model their input on the level of the individual time points of a
sequence by trying to reconstruct the parcellated whole-brain BOLD signal for specific time points.
Yet, the dynamics of brain activity data can also be viewed differently by focusing on the interaction
of network activities over time instead of on the distribution of whole-brain activity at individual time
points. Consequently, we created a variant of the Sequence-BERT framework that randomly (at a rate
of 10%) masks the activity time courses of individual networks n in the parcellated BOLD sequence
X by replacing them with a learnable network mask embedding Emsk 2 Rt (instead of masking
whole-brain activity at individual time points). With the exception of the masking procedure, the
Network-BERT and Sequence-BERT frameworks are identical.

Upstream learning. During upstream learning, Network-BERT uses the same cross-entropy loss
Lcls as Sequence-BERT and adds it to a variant of the reconstruction loss that measures reconstruction
performance for the masked network time courses J : Lrec =

1
n(J)

P
j2J

1
t

Pt
i=1 |Xi,j � X̂i,j |.

Adaptation. During downstream adaptation, Network-BERT forwards the transformer’s output for
classification embedding fe(Ein)1 to a respective decoding head p(·) (see section 2.2.1).

2.3 Training details

We train all models with stochastic gradient descent and the ADAM optimizer (with �1 = 0.9,
�2 = 0.999, and ✏ = 1e�8) [32], if not reported otherwise. We also apply a linear learning rate decay
schedule (with a warmup phase of 1% of the total number of training steps), gradient norm clipping
at 1.0, and L2-regularisation (weighted by 0.1).

During upstream learning, we set the maximum learning rates to 2e�4, 5e�4, 1e�4, and 1e�4 for the
autoencoding, CSM, Sequence-BERT, and Network-BERT frameworks, respectively (based on the
learning rates used in corresponding NLP studies [20, 21, 27]), and randomly sample sequences X
of 10 to 55 TRs from our upstream fMRI runs. For the Sequence- and Network-BERT frameworks,
each sequence is split into two sequences Xa

i and Xb
i of equal length (with a randomly sampled gap

of 1 to 5 TRs between the two sequences) and Xb
i randomly exchanged (with 50% probability) with

another Xb
j (where i 6= j).

During downstream adaptation, we begin training with the pre-trained model parameters and allow
all parameters to be changed freely during training. Input sequences are drawn from the downstream
fMRI runs according to the on- and offset defined for each experimental trial (with durations generally
ranging between 2 and 30 s), when accounting for the temporal delay of the hemodynamic response
function.

Compute resources. Upstream training was performed on Google Compute Engine n1-highmem-
64 nodes with four Nvidia Tesla P100 GPUs, 64 CPU threads, and 416 GB RAM memory, while
downstream adaptations were performed on compute nodes of the Texas Advanced Computing Center
with one Nvidia 1080-TI GPU, 32 CPU threads, and 128 GB RAM memory. Training times varied
depending on model size but were generally in the range of 1 to 3 days for upstream learning and 0.5
to 3 hours for downstream adaptations.
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3 Experiments

3.1 Datasets

All unprocessed fMRI data used in this study are publicly available through OpenNeuro.org [3] and
the Human Connectome Project (HCP [33]). For an overview of our preprocessing, see Appendix
A.3.

3.1.1 Upstream: 11, 980 fMRI runs from 1, 726 individuals across 34 datasets

Figure 2: Number of individ-
uals and average number of
runs per individual of each up-
stream dataset.

Our upstream dataset comprises 11, 980 fMRI runs from 1, 726 in-
dividuals and 34 datasets (see Fig. 2 and Appendix Table A1). To
our knowledge, this represents one of the broadest fMRI datasets
used for pre-training in neuroimaging to date, spanning many acqui-
sition sites and a diverse set of experimental conditions and domains.
A few prominent examples of included datasets are The Midnight
Scan Club [34], Individual Brain Charting [35], Amsterdam Open
MRI collection [36], BOLD5000 [37], and the Narratives collec-
tion [38]. We split the upstream data into distinct training and
evaluation datasets by randomly designating 5% of the fMRI runs
of each included fMRI dataset as evaluation data (at a minimum of 2
runs per dataset) and using the rest of the runs for training. At each
evaluation step, we randomly sample 640, 000 sequences from the
evaluation dataset.

3.1.2 Downstream:
benchmark datasets with many mental states

To evaluate the adaptation performance of the pre-trained models, we utilize two benchmark mental
state decoding datasets that span a wide range of mental states, namely, task-fMRI data from the
HCP [33] and the Multi-Domain Task Battery (MDTB [39]). Our HCP dataset spans 100 participants
and 19 distinct mental states across seven experimental tasks (see Appendix A.2). For each task,
two fMRI runs were collected. We also include two resting state fMRI runs per HCP participant, in
which individuals simply rest in the fMRI without any particular task, increasing the total number
of mental states to 20. The MDTB dataset spans 24 individuals and 26 experimental tasks, which
participants performed across two scanning sessions with eight fMRI runs per session. Due to the
strong similarity of the experimental conditions within individual experimental tasks of the MDTB,
we define each of its tasks as one target mental state (see Appendix A.2).

3.2 Hyper-parameter evaluation: larger embeddings but not deeper models

In our first experiment, we compared the performance of different model hyper-parameter settings in
each framework. Specifically, we evaluated three different embedding dimensions e (192, 384, and
768; see section 2.2.1) and three different model depths (2, 4, and 6 hidden layers for the encoder
and decoder parts of the autoencoding framework and 4, 8, and 12 hidden layers for the transformer
models). In line with other work [40], we scaled the number of attention heads n↵ per layer of
the transformer models with the embedding dimension, such that n↵ = e

64 . We trained one model
for each point of the resulting 9-point grid of each framework for 200, 000 training steps, using a
mini-batch size of 256 sequences. Overall, model performances improved (in terms of validation
loss) with larger embedding dimensions but not with model depth (Fig. 3). We therefore decided
to continue all further analyses with models comprising 768 embedding dimensions and 2 hidden
layers for the encoder and decoder parts of the autoencoding framework and 4 hidden layers for the
transformer models.

3.3 Upstream performance: models learn well in all frameworks

In our second experiment, we fully pre-trained one model in each framework according to our
previously selected set of hyper-parameters (see section 3.2) by training models for 300, 000 training
steps at a mini-batch size of 768 sequences. All models learned well over the course of their training,
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Figure 3: Hyper-parameter evaluation. Model performances improve with larger embedding dimen-
sions but not with model depth. Note that we do not plot the evaluation loss for the Sequence-BERT
variant with 12 hidden layers and 768 embedding dimensions because the loss of this model variant
did not meaningfully change over the course of its training (see Appendix B.1).

Figure 4: Upstream learning. Models learn well in each framework, with gradually decreasing
training and evaluation losses.

with gradually decreasing training and validation losses (Fig. 4). Note that the transformer model
trained in the CSM framework slightly overfitted the upstream data, whereas the gap in training and
evaluation performance of the autoencoding framework results from the application of teacher-forcing
during training (see section 2.2.2).

We also evaluated the brain activity reconstruction performance (as measured by Lrec; see sec-
tion 2.2.1) of the final models for different parts of the brain and found that they exhibited similar
overall distributions of reconstruction error throughout the brain, with relatively higher errors in the
posterior parietal, occipital, and cingulate cortices as well parts of the limbic system (see Appendix
B.2).

3.4 Adapting pre-trained language models does not yield upstream performance gains

Given that the formatting of our input data is highly similar to the embedded representation of
sentences in language modeling, where each word of a sentence is represented by an embedding
vector [41, 21], we next tested whether adapting pre-trained language models to our upstream data
would yield meaningful performance gains, when compared to training models from scratch. To this
end, we adapted pre-trained language model variants of GPT-2 [41] and BERT [21] (with 12 hidden
layers and an embedding dimension of 768; as provided by Hugging Face’s Transformer library [42])
to our upstream dataset (see Appendix B.3). The upstream validation performance of these two
language models did not meaningfully improve upon the performance of our models trained from
scratch (see section 3.3), at final upstream validation losses of 0.73 (CSM with GPT-2) and 0.80
(Sequence-BERT with BERT) (Appendix Fig. B3).

3.5 Downstream adaptation: CSM outperforms other frameworks

Lastly, in our fourth experiment, we evaluated the downstream adaptation performance of our pre-
trained models in two benchmark mental state decoding datasets (HCP and MDTB; see section 3.1.2).
To gauge the effectiveness of pre-training, we adapted the pre-trained models to varying sizes of
the downstream datasets by randomly assigning individuals to distinct training, validation, and test
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datasets. Specifically, for each evaluated dataset size, we first randomly selected 10 (HCP) and 3
(MDTB) individuals whose data we use for validation, and 20 (HCP) and 9 (MDTB) other individuals
whose data we use for testing, before randomly sampling the given number of individuals whose
data we use for training (1 to 48 (HCP) and 11 (MDTB)) from the remaining pool of individuals.
We then adapted each pre-trained model with varying learning rates and numbers of training steps
to the training data (see Appendix B.4) and used the model variant that achieved the highest final
mental state decoding accuracy in the validation data for any further analyses (for an overview of
validation decoding accuracies, see Appendix Fig. B6 and B7). For comparison, we also trained a
linear baseline model (inline with the state-of-the-art in mental state decoding [43]) and a variant of
our decoding head p(·) that we applied directly to the parcellated BOLD sequences X (see Appendix
B.5).

Table 1: HCP test decoding performances. Models are trained on varying training dataset sizes
(N = 1, 3, 6, 12, 24, 48 individuals) and tested on a distinct dataset (Ntest = 20). F1-scores are
macro-averaged and reported with standard errors. Bold font indicates best metric value. Asterisks
indicate meaningfully better predictive accuracy than the respective second-best model in a McNemar
test at ↵ = 0.00083 (multiple-comparison corrected: 0.005/6).

Framework Metrics N = 1 N = 3 N = 6 N = 12 N = 24 N = 48
Linear Acc, F1 24.2(±.69), 19.1 29.0(±.72), 27.1 34.2(±.75), 31.8 46.3(±.79), 47.0 51.8(±.79), 54.8 51.9(±.79), 55.6
p(X) Acc, F1 53.5(±.79),59.0 54.1(±.79), 59.5 53.9(±.79), 59.4 56.0(±.78), 60.8 34.9(±.75), 39.9 50.2(±.79), 56.5
Autoencoding Acc, F1 60.2(±.77), 47.7 69.3(±.73), 60.6 75.6(±.68), 67.4 82.9(±.60), 77.0 88.1(±.51), 84.1 91.5(±.44), 88.1
CSM Acc, F1 64.1(±.76)⇤, 51.4 81.2(±.62)⇤,72.9 86.8(±.54)⇤,81.0 90.1(±.47)⇤,85.8 92.7(±.41)⇤,89.2 94.8(±.35)⇤,92.0
Seq-BERT Acc, F1 39.5(±.77), 16.0 37.2(±.76), 21.6 52.1(±.79), 38.7 73.6(±.70), 65.6 73.4(±.70), 65.9 89.2(±.49), 84.5
Net-BERT Acc, F1 36.9(±.76), 11.9 45.8(±.79), 31.4 59.0(±.78), 43.5 73.4(±.70), 64.4 82.8(±.60), 76.5 89.8(±.48), 85.2

Table 2: MDTB test decoding performances. Conventions as in Table 1 (Ntest = 9).
Framework Metrics N = 1 N = 3 N = 6 N = 11
Linear Acc, F1 56.1(±.47), 42.2 70.2(±.44), 65.6 75.6(±.41), 72.9 78.1(±.39), 77.7
p(X) Acc, F1 71.8(±.43), 65.4 74.5(±.42), 70.0 77.6(±.40), 76.7 68.0(±.44), 59.8
Autoencoding Acc, F1 68.8(±.44), 55.8 78.4(±.39), 70.8 83.4(±.35), 77.8 86.7(±.32), 83.4
CSM Acc, F1 77.1(±.40)⇤,69.9 85.1(±.34)⇤,83.1 88.5(±.30)⇤,87.1 90.0(±.29)⇤,89.7
Seq-BERT Acc, F1 63.1(±.46), 36.9 75.6(±.41), 57.9 82.5(±.36), 72.5 86.3(±.33), 79.6
Net-BERT Acc, F1 71.6(±.43), 54.7 81.1(±.37), 72.1 84.6(±.34), 78.8 87.5(±.32), 84.3

The pre-trained models clearly outperformed the linear baseline model across all training dataset sizes,
while their performances also scaled well with the number of individuals in the training data (Tables 1
and 2; at chance-levels of 5.0% (HCP) and 3.9% (MDTB)). Overall, the transformer decoder model
trained in the CSM framework clearly outperformed the other models by achieving the highest test
decoding accuracies throughout all evaluated sizes of the training dataset. The other pre-trained
models performed on par with the decoding head p(·) in smaller training dataset sizes ( 6 (HCP)
and  3 (MDTB) individuals), while clearly outperforming it in larger training datasets. For the
HCP data, for which other reported decoding performances exist in the literature, the pre-trained
models performed on par with models trained on much larger datasets (often comprising data of many
hundred individuals [10, 7, 6, 44]), which generally report test decoding accuracies between 80%
and 93%.

A feature ablation analysis of the models’ accurate mental state decoding decisions in both datasets
further revealed that these decisions strongly depend on the activity of the occipital and inferior
temporal cortex as well as parts of the pre- and postcentral gyrus (see Appendix B.6).

We also tested whether the reported downstream model performances are stable over the non-
deterministic aspects of their training [45] by replicating our adaptation analysis with different
random seeds and splits of the data (see Appendix B.7). This replication confirmed our results,
yielding final test decoding accuracies that were not meaningfully different from our initial analysis
(see Appendix Tables A3, A4, A5, A6).

4 Conclusion

In this work, we propose a set of novel self-supervised learning frameworks for neuroimaging data
that are inspired by prominent learning frameworks in NLP. By the use of these frameworks, we
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are able to pre-train DL models on broad, public neuroimaging data, comprising many individuals,
experimental domains, and acquisition sites. The pre-trained models generalize well to benchmark
mental state decoding datasets and generally outperform baseline models trained from scratch, while
models pre-trained in a causal sequence modeling framework clearly outperform the others. We hope
that this work will inspire others to explore the benefits and limitations of pre-training in functional
neuroimaging at scale, using techniques from self-supervised learning.

Limitations. This work neglects a key aspect of mental state decoding, namely, the ability to draw
inferences about the association between the decoded mental states and input brain activity from the
trained models. First empirical evidence indicates that attribution methods from explainable artificial
intelligence (XAI [46]) research are well-suited to provide insights in the mental state decoding
decisions of DL models [19, 47]. Further, this work does not provide any insights into how the
proposed self-supervised learning frameworks compare to contrastive learning techniques, which
have demonstrated great empirical success in computer vision [48] and medical imaging [49].

Potential negative social impact. We are currently not aware of any direct negative social impacts
that could follow from pre-training DL models on public neuroimaging data that are de-identified
and collected and shared with human consent in a way approved by institutional review boards.
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(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] see section 4 and Appendix A.1
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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