
Laplacian Autoencoders for
Learning Stochastic Representations

Marco Miani1, Frederik Warburg1,
Pablo Moreno-Muñoz, Nicke Skafte Detlefsen, Søren Hauberg

{mmia, frwa, pabmo, nsde, sohau}@dtu.dk
Technical University of Denmark

https://github.com/FrederikWarburg/LaplaceAE

— Supplementary Material —
The supplementary material is organized as follows. First, we give more technical details on the
experiments. Second, we discuss the Laplace approximation and the “mean shift” issue encountered
in non-local maxima. Third, we elaborate more on the difference between related works and our
proposed method. Fourth, we present a much more thorough explanation of the proposed method
accompanied by relevant proofs. Fifth, we present more details on the hessian derivations.

A Experimental details

All experiments was conducted on one of the following datasets: MNIST (Lecun et al., 1998),
FASHIONMNIST (Xiao et al., 2017) and CELEBA (Liu et al., 2015). For training and testing the default
splits were used. For validation, we sampled 5000 data points randomly from the training sets. All
images were normalized to be in the [0, 1] range and for the CELEBA dataset the images were resized
to 64× 64 additionally.

If nothing else is stated, the models were trained with the following configuration: we used Adam
optimizer (Kingma and Ba, 2015b) with a learning rate of 0.001 and default Pytorch settings (Paszke
et al., 2019). The learning rate was adjusted using ReduceLROnPlateau learning rate scheduler with
parameters factor=0.5 and patience=5, meaning that the learning rate was halved whenever 5 epochs
had passed where the validation loss had not decreased. The mean squared error loss was used as the
reconstruction loss in all models. Models were trained until convergence, defined as whenever the
validation loss had not decreased for 8 epochs. Models trained on MNIST and FASHIONMNIST used a
batch size of 64 and on CELEBA a batch size of 128 was used.

Model-specific details:

• VAE: Models were trained with KL-scaling of 0.001. We use two encoders and two decoders,
such that the model has twice the number of parameters compared to the other models.

• MC-AE: Models were trained with dropout between all trainable layers with probability
p = 0.2. We keep the same dropout rate during testing.

• EMSEMBLE-AE: Each ensemble consists of 5 models, each initialized with a different
random seed.

• LAE (POSTHOC): For experiments with linear layers we used the Laplace Redux (Daxberger
et al., 2021) implementation. For convolutions, we found it necessary to use our proposed
hessian approximation. We use a diagonal approximation of the hessian in all experi-
ments. After fitting the hessian, we optimize for the prior precision using the marginal
likelihood (Daxberger et al., 2021). We use 100 MC sampling in all experiments.

1 Denotes equal contribution; author order determined by a simulated coin toss.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/FrederikWarburg/LaplaceAE

• LAE (ONLINE): We use the exact diagonal in experiments with linear layers and the mixed
diagonal approximation in all experiments with convolutional layers. We use a hessian
memory factor of 0.0001 and sample only 1 network per iteration. We found that it was not
necessary to optimize for the prior precision when trained online.

A.1 Hessian approximation

We use a linear encoder-decoder with three layers in the encoder and decoder, TANH activation
functions, and latent size 2. We choose this architecture as Laplace Redux (Daxberger et al., 2021)
supports various hessian approximations for this simple network. We use Laplace Redux for all
post-hoc experiments except for the approximate diagonal hessian.

A.2 Out-of-distribution

We use a convolutional encoder-decoder architecture. The encoder consisted of a CONV2D, TANH,
MAXPOOL2D, CONV2D, TANH, MAXPOOL2D, LINEAR, TANH, LINEAR, TANH, LINEAR, where the
decoder was mirrored but with nearest neighbour Upsampling rather than MAXPOOL2D. We used a
latent size of 2 in these experiments for all models.

A.3 Missing data imputation

To elaborate on the procedure, we reconstruct 5 samples from the half/fully masked image. For each of
these reconstructions, we make 5 more reconstructions and take the average of these reconstructions.
The intuition is that the first stage explores the multi-modal behavior of the reconstructions. In the
second stage, the uncertainty of the reconstructed digit is reduced, and each sample will reconstruct
the same modality. By averaging over these modalities, we achieve a more crisp reconstruction. We
use the same architecture as in the hessian approximation experiment.

A.4 Semi-supervised learning

For the experiments on MNIST, we use a single convergence checkpoint for each model. We use
the same model architecture as in the hessian approximation. We did 5 repetitions for each model
where we first sampled n labels from each of the 10 classes from the validation set, then embedded
the 10× n data points into latent space, trained a KNN classifier on the embedded points and finally
evaluated the accuracy of the classifier on the remaining validation set. This procedure was repeated
for different values of n in the [1, 100] range. For the stochastic encoders (VAE, MC-AE, LAE), we
repeated the embedding step 100 times with the goal that the uncertainty could help the downstream
classification. For the KNN classifier we use cross-validation (K = 2) to find the optimal number of
nearest neighbors.

For the experiments on CELEBA we repeated the exact same experiments but with a fixed value
if n = 10. Additionally, the classifier was changed to a multi-label version KNN-classifier to
accommodate the multiple binary features in the dataset. For CELEBA we use a convolutional
architecture. The encoder consists of 5 convolutional layers with TANH and MAXPOOL2D in between
each parametric layer. We use a latent size of 64. The decoder mirrors the encoder, but we replace
MAXPOOL2D with nearest neighbor upsampling.

B Laplace Approximation

Laplace approximation is an operator that maps local properties (derivatives) to global properties.
The idea is to infer a density on every point based on the curvature in a single point. This is done
through a Taylor expansion.

Given a vectorial space Θ of size D, let P (θ) be an arbitrary distribution on Θ and let θ∗ ∈ Θ be an
arbitrary point. Consider the second order Taylor expansion of the log density around θ∗

lnP (θ) = lnP (θ∗)+∇θ lnP (θ∗)(θ−θ∗)+
1

2
(θ−θ∗)⊤∇2

θ lnP (θ∗)(θ−θ∗)+O(∥θ−θ∗∥3),

2

where

[∇θ lnP (θ∗)]i =
∂

∂θi
lnP (θ)

∣∣∣∣
θ=θ∗

[∇2
θ lnP (θ∗)]ij =

∂2

∂θi∂θj
lnP (θ)

∣∣∣∣
θ=θ∗

.

are the first and second-order derivatives.

Note that if P (θ) is a Gaussian, then its log density is a second order polynomial and the second order
Taylor expansion is exact. This implies that starting from a Gaussian, the Laplace approximation can
infer the full exact density just from the values of ∇θ lnP and ∇2

θ lnP in a single point θ∗.

The main takeaway from the Laplace approximation is the strong, intrinsic, tie between the covariance
matrix and the negative inverse of the hessian of the log probability: −(∇2

θ lnP (θ∗))−1.

B.1 If θ∗ is a local maxima

If ∇θ lnP (θ∗) = 0 the Taylor expansion consists of only two terms and the Laplace derivation
is easier. We also present this in order to develop intuition, although this case is a subcase of the
non-local maxima case. In the next section, we will consider the more general setting.

Define the Gaussian

LAPLACEmax(θ
∗;P) := N

(
θ|µ = θ∗, σ2 = −(∇2

θ lnP (θ∗))−1
)
, (1)

which has density

Q(θ) :=
P (θ∗)

ZQ
e

1
2 (θ−θ∗)⊤(∇2

θ lnP (θ∗))−1(θ−θ∗),

where ZQ = P (θ∗)
√

(−2π)D det(∇2
θ lnP (θ∗)) is the normalizing constant. Then, Q(θ) is a good

approximation of P (θ) in the sense that

lnQ(θ) + lnZQ = lnP (θ∗) +
1

2
(θ − θ∗)⊤(∇2

θ lnP (θ∗))−1(θ − θ∗) ∼=

∼= lnP (θ∗) +
1

2
(θ − θ∗)⊤(∇2

θ lnP (θ∗))−1(θ − θ∗) +O(∥θ − θ∗∥3) =

= lnP (θ).

Notice that θ∗ is in a local maximum, which ensures that the hessian ∇2
θ lnP (θ∗) is negative semi-

definite. This in turn ensures that the normalizing constant ZQ exists and that LAPLACEmax(θ
∗;P) is

well defined.

B.2 If θ∗ is not a local maxima

In order to proceed to a similar derivation when ∇θ lnP (θ∗) ̸= 0, we first rearrange the terms in
the Taylor expansion. For a more compact notation, we write ∇ lnP instead of ∇θ lnP (θ∗) and
∇2 lnP instead of ∇2

θ lnP (θ∗).

lnP (θ) ∼= lnP (θ∗) +∇ lnP (θ − θ∗) +
1

2
(θ − θ∗)⊤∇2 lnP (θ − θ∗) =

= lnP (θ∗)− 1

2
∇ lnP⊤∇2 lnP−1∇ lnP

+
1

2
(θ − θ∗ +∇2 lnP−1∇ lnP)⊤∇2 lnP (θ − θ∗ +∇2 lnP−1∇ lnP) =

= lnP (θ∗)− 1

2
∇ lnP⊤∇2 lnP−1∇ lnP +

1

2
(θ − θ∗

1)
⊤∇2 lnP (θ − θ∗

1),

where we define the new point θ∗
1 as

θ∗
1 = θ∗ − (∇2

θ lnP (θ∗))−1∇θ lnP (θ∗). (2)

Define the Gaussian

LAPLACE(θ∗;P) := N
(
θ|µ = θ∗

1, σ
2 = −(∇2

θ lnP (θ∗)−1
)
, (3)

3

which has density

Q(θ) :=
P (θ∗)

ZQ
e−

1
2∇ lnP⊤∇2 lnP−1∇ lnP e

1
2 (θ−θ∗

1)
⊤(∇2

θ lnP (θ∗))−1(θ−θ∗
1),

where ZQ = P (θ∗)e−
1
2∇ lnP⊤∇2 lnP−1∇ lnP

√
(−2π)D det(∇2

θ lnP (θ∗)) is the normalizing con-
stant. Then, Q(θ) is a good approximation of P (θ) in the sense that

lnQ(θ) + lnZQ = lnP (θ∗)− 1

2
∇ lnP⊤∇2 lnP−1∇ lnP +

1

2
(θ − θ∗

1)
⊤∇2 lnP (θ − θ∗

1) =

= lnP (θ∗) +∇ lnP (θ − θ∗) +
1

2
(θ − θ∗)⊤∇2 lnP (θ − θ∗) ∼=

∼= lnP (θ∗) +∇ lnP (θ − θ∗) +
1

2
(θ − θ∗)⊤∇2 lnP (θ − θ∗) +O(∥θ − θ∗∥3) =

= lnP (θ).

We highlight four points:

(1) In order to ensure that the normalizing constant ZQ exists and consequently that LAPLACE(θ∗;P)
is well defined, the hessian ∇2

θ lnP (θ∗) must be negative semi-definite. Differently from the locally
maximal case, this is no longer guaranteed.

(2) The method is numerically unstable if ∇2
θ lnP (θ∗) has eigenvalues close to 0. This has been

empirically observed to commonly be the case (Sagun et al., 2016).

(3) We emphasize that the Taylor expansion is accurate around θ∗, but the Laplace Gaussian is
centered in θ∗

1. This is often referred to as “mean shift” and implies that the sampled parameters from
the normal distribution over weights are sampled far away from the actual mean.

(4) Now, assume lnP (θ) to be the composition of a function f(θ) and a loss l(f). If, as in our
setting, f is linear and l is concave, then lnP (θ) is concave, its hessian is guaranteed to be negative
semi-definite, and the Laplace approximation is well-defined.

C Extended related work

Our proposed method’s update rule resembles different methods in the literature. This is rather
interesting since, despite arriving at a similar algorithm, they follow different derivations. In this
section, we seek to explain the nuances between existing methods and ours.

It is useful to recall our precision update rule

Ht+1 = (1− α)Ht + Jθf
t
· (x)

⊤Σ−1
dataJθf

t
· (x) H0 = Σ−1

prior. (4)

To the best of our knowledge, a key conceptual difference with all related works in the literature
is Exact vs. Approximate Hessian: The second term on the RHS, J⊤Σ−1J is identical in all the
update formulations but comes from a different derivation. In the formulation of Daxberger et al.
(2021) (and others) this is an approximation of the hessian, that happens to guarantee negative
definiteness. In our formulation, this term comes from the linearization. This term is the exact hessian,
i.e. no approximation, such that negative definiteness is implied by the linearization. This results in a
more intuitive understanding of the linearization error.

C.1 Differences with Laplace Redux

Daxberger et al. (2021) specifically develop a post-hoc method, which assumes access to a MAP
parameter, nevertheless, they also present an online training scheme. This appears to be grounded in
ideas from second-order optimization, while ours is closer linked to the probabilistic model.

Neglecting their prior optimization procedure, Daxberger et al. (2021) considers

Ht+1 = Σ−1
prior + Jθf

t
· (x)

⊤Σ−1
dataJθf

t
· (x). (5)

We highlight two main differences.

4

Iteratively Updating the Hessian vs. Using an Uninformed Prior: In our formulation the first term
of the RHS is the previous precision, which we “discount” with a forgetting term α that comes from
the error inherited by moving away from the previous linearization. In the formulation of Daxberger
et al. (2021) this is a prior that is assumed to be in the form γ2I, where the scalar γ is optimized at
every step through maximization of the evidence (Eq. 6 in their paper). This evidence maximization
comes with some drawbacks: (1) It tends to make the Laplace approximation overconfident to outliers.
They partially address this issue by adding to the evidence an auxiliary term that depends on an OOD
dataset, penalizing it (Eq. 12 in their Appendix). (2) Besides inducing the avoidable need for an OOD
dataset, this technique has the same pitfall as VAEs, namely uncertainty should be a derived quantity,
not a learned one.

Computing the hessian at every iteration vs. every epoch: We update the hessian estimate every
iteration. In practice, Daxberger et al. (2021) updates the hessian every epoch. In principle, they
could update the hessian more regularly, but to the best of our knowledge, they do not explore this
path.

C.2 Differences with Variational Adaptive Newton Method

Khan et al. (2017) propose the following precision update rule

Ht+1 = Ht + αJθf
t
· (x)

⊤Σ−1
dataJθf

t
· (x). (6)

The updates are very similar to ours, where the only difference is that the scaling is made on the
Jacobian product instead of on the previous precision Ht. Both their and our updates are “additive”
in the sense that the magnitude is increasing, for them strictly monotonically, for us on average
depending on the magnitude of α. Thus, in both cases, the variance will approach 0 in the limit,
modeling epistemic uncertainty disappearing for infinitely long training.

Their update rule comes from the Variational Optimization setting, which can be viewed as an instance
of Variational Inference neglecting the KL term. They highlight strong similarities with Newton’s
method.

C.3 Differences with Noisy Natural Gradient

Zhang et al. (2017) propose the precision update rule

Ht+1 = (1− α)Ht + αJθf
t
· (x)

⊤Σ−1
dataJθf

t
· (x). (7)

Again, the update rule is very similar to ours, besides the scaling being applied to the Jacobian product.
They use a convex sum, which makes the update rule “norm preserving”. Thus, these updates have
very different asymptotic behavior than ours.

Their update rule comes from applying, in the context of Variational Inference, natural gradient to the
variational posterior distribution, instead of directly on the parameters space. The natural gradient is
deeply connected with LAE and natural parameters highlight the importance of updating the precision
matrix instead of the covariance.

They also extend their derivation to the KFAC approximation of the hessian (in place of the exact
diagonal), this is made through the use of matrix variate Gaussian. Despite not being considered in
this work, a similar derivation is in principle feasible in our setting.

C.4 Connection with Adam

Both Zhang et al. (2017) and Khan et al. (2017) highlight strong similarities with the Adam
method (Kingma and Ba, 2015a). We share these similarities and we highlight them too. The
“connection point” is a noisy version of Adam. Zhang et al. (2017) describe this method and call it
“Noisy Adam” (Algorithm 1 in their paper). The difference from the vanilla version is that at each
step, instead of using the current parameter, they use a noisy version of it. The noise magnitude is the
pseudo-second-order term (vt in the original Adam paper (Kingma and Ba, 2015b)).

We can then interpret Noisy Adam as an instance of our variational setting, specifically where the
expectation estimate Eq(θ)[·] is made through Monte Carlo estimation with N = 1 samples. Having
the methods in the same setting, we can compare them and highlight the two main differences.

5

First, we emphasize the difference is in the second order term. Similarly to Zhang et al. (2017) and
Khan et al. (2017), we use the diagonal of the hessian (technically the diagonal of the GGN), while
Adam uses the pointwise square of the gradient, which they call the second raw moment and is
intended as a cheaply computable approximation of the Hessian.

Another difference is that Adam applies the square root. This is a minor point since, as pointed out
by Zhang et al. (2017), this change may affect optimization performance, but does not change the
fixed points.

C.5 Connection with Bayes by Backpropagation

Bayes by Backprop (Blundell et al., 2015) can be viewed as a sample-based approximation of Laplace.
In order to show this relation, we recall two very powerful equations (Opper and Archambeau, 2009).
Specifically, let µ, Σ be the parameter of a Gaussian distribution q(θ) ∼ N (µ,Σ), and let V (θ) be
an arbitrary L2 integrable function (the log-likelihood in our case). Then, we are interested in the
derivatives of Eθ∼q[V (θ)]. By standard Fourier analysis and integration by part, we have

∇µEθ∼q[V (θ)] = Eθ∼q[∇θV (θ)], (8)

∇ΣEθ∼q[V (θ)] =
1

2
Eθ∼q[∇2

θV (θ)]. (9)

While the first equation is somehow trivial, the second highlight a very deep relationship. The LHS
can be rewritten as

∇ΣEθ∼q[V (θ)] = ∇ΣEϵ∼N (0,1)[V (µ+ ϵΣ)] = Eϵ∼N (0,1)[∇ΣV (µ+ ϵΣ)]. (10)

We can recognize that inside the expectation on the RHS is exactly the update rule for the variance in
the bayes by backprop method (Blundell et al., 2015). Thus, we can interpret bayes by backprop as
a one-sample Monte Carlo estimation of the expected value. The equations shows that in the limit
of infinite samples, the bayes by backprop update step ∇ΣV (µ+ ϵΣ) converges to the (averaged)
Laplace approximation step Eθ∼q[∇2

θV (θ)] up to a factor 2. This motivates both the power and the
instability of bayes by backprop.

D Model

D.1 Overview

Let X = RD be the data space, let Y = RD be the reconstruction space and let Θ = RP be
the parameter space. Let F = (Θ → (X → Y)) be the space of operators from Θ to the space of
operators from X to Y. We will denote a function f ∈ F applied to a parameter θ ∈ Θ as fθ : X 7→ Y.
This will represent, for example, a NN f with a specific set of parameter (weights) θ ∈ Θ, that maps
some data x ∈ X to some reconstruction fθ(x) = y ∈ Y.

Let X× Y×Θ× F be a probability space. The only assumption we make on this space is

p(y|x,θ, f) ∼ N (y|µ = fθ(x), σ
2 = Σ) ∀(x,θ, f) ∈ X×Θ× F (11)

where Σ ∈ M(RD × RD) is a fixed variance matrix. This is a common assumption for regression
tasks, and is sometimes referred to as the “data noise” or “reconstruction error”. In this paper, we fix
Σ = I, but the derivations hold for the general case. With only this assumption, the distribution is
undefined and multiple solutions can exist. Thus, we require more assumptions.

A dataset D = {xn} is a finite of infinite collection of data xn ∈ X that is assumed to follow a
certain, fixed but unknown, distribution

xn ∼ p(x). (12)

Sacrificing slim notation for the sake of clarity, we introduce an operator I : X 7→ Y. This represents
the ideal reconstruction for a given x. In the standard supervised setting, this would be the operator
(defined on the dataset only) that maps each data input to its label. In our unsupervised setting, where
X and Y are the same space, the operator I is simply the identity (Indeed they are not the same space,
they are isomorphic spaces that we identify through the operator I). Since I is the identity, it is often

6

neglected in the literature, which can lead to unclear and potentially ambiguous Bayesian derivations.
Thus, we choose to adopt this heavier, but more precise notation.

We assume access to a specific fNN ∈ F. Practically this will be our NN architecture, i.e. an operator
that, given a set of parameters θ ∈ Θ gives rise to a function from X to Y. Having fNN fixed, one
may consider f not to be stochastic anymore, we choose to still explicitly condition on f in order to
have a clearer notation in later stages. Note that, despite not being covered in this work, a proper
stochastic derivation also on the NN architecture should be feasible.

D.2 Objective

The NN’s parameter optimization process in this full Bayesian probabilistic framework can be viewed
as: given a fixed fNN ∈ F, namely the NN architecture, maximise the reconstruction probability of
I(xn) over the dataset D

Exn∼p(x)

[
p(y|xn, f

NN)
∣∣
y=I(xn)

]
=
∑

xn∈D
p(y|xn, f

NN)
∣∣
y=I(xn)

, (13)

where the untractable p(y|xn, f
NN) can be expanded in θ and thus related to our hypothesis (11) as

p(y|xn, f
NN) = Eθ∼p(θ|xn,fNN)

[
p(y|xn,θ, f

NN)
]
. (14)

Notice that the only unfixed quantity is the distribution on the parameters, which we will optimize
for. We are not interested in finding a datapoint-dependant distribution, but rather one that maximise
all reconstructions at the same time, i.e. p(θ|fNN) = p(θ|xn, f

NN). We can then frame Bayesian
optimization as: find a distribution on parameters such that

q(θ) ∈ arg max
p(θ|fNN)

∑
xn∈D

Eθ∼p(θ|fNN)

[
p(y|xn,θ, f

NN)
∣∣
y=I(xn)

]
(15)

= arg max
p(θ|fNN)

∑
xn∈D

Eθ∼p(θ|fNN)

[
p(I(xn)

∣∣N (fNN
θ (xn),Σ))

]
. (16)

Moreover, finding this optimum in the space ∆(Θ) of all distributions on Θ is not tractable. So, as
commonly done, we restrict ourselves to the subset G(Θ) ⊂ ∆(Θ) of Gaussians over Θ. Then, a
solution in our context is

q(θ) ∈ arg max
q∈G(Θ)

∑
xn∈D

Eθ∼q(θ)

[
p(I(xn)

∣∣N (fNN
θ (xn),Σ))

]
. (17)

We emphasize that this solution has no guarantees of being unique, but we are interested in finding
one of them.

D.3 Joint distribution for a fixed datapoint

Let us first get a better understanding of the joint distribution on Y×Θ conditional to a fixed datapoint
x ∈ X and a network architecture f ∈ F

p(y,θ|x, f). (18)

This distribution has two marginals
p(y|x, f) (19)

p(θ|x, f) (20)
and two conditionals

p(y|θ,x, f) (21)

p(θ|y,x, f). (22)
These four quantities must satisfy the system of two “recursive” equations

p(y|x, f) =
∫
Θ

p(y|θ,x, f)p(θ|x, f)dθ = (23)

= Eθ∼p(θ|x,f)[p(y|θ,x, f)]

7

p(θ|x, f) =
∫
Y
p(θ|y,x, f)p(y|x, f)dy = (24)

= Ey∼p(y|x,f)[p(θ|y,x, f)].
If these are satisfied then the joint is a well-defined distribution and we can apply Bayes rule

p(y|θ,x, f)p(θ|x, f) = p(y,θ|x, f) = p(θ|y,x, f)p(y|x, f) (25)
which in logarithmic form is

log p(y|θ,x, f) + log p(θ|x, f) = log p(θ|y,x, f) + log p(y|x, f). (26)
We can factor in the assumptions. The “data noise” assumption gives us one of the two conditionals:

p(y|θ,x, f) ∼ N (y|µ = fθ(x), σ
2 = Σ). (27)

The “Gaussian parameter” assumption gives us one of the two marginals:
p(θ|x, f) = qt(θ) ∼ N (θ|µ = θt, σ

2 = H−1
t). (28)

With these in place, the joint distribution is uniquely defined. The other marginal, by Eq. 23, is
p(y|x, f) = Eθ∼qt(θ)[p(y|N (fθ(x),Σ))] (29)

and the other conditional, by Bayes rule, is

p(θ|y,x, f) = p(y|θ,x, f)p(θ|x, f)
p(y|x, f)

. (30)

Despite being uniquely defined, the integral in Eq. 29 is, with a general f , intractable, and so is the
joint distribution.

But why do we even care? The intractability of p(y|x, f) in Eq. 29 may at first glance appear
irrelevant. This is the case, for instance, with bayes by backprop (Blundell et al., 2015) methods.
They simply need access to the gradient of this quantity. For this purpose, a simple Monte Carlo
estimate of the expectation is enough.

On the other hand, we are interested in recovering a meaningful distribution on parameters. This
imply that we aim at using Eq. 29 to enforce that Eq. 24 holds. For this purpose we need access to
the the density p(y|x, f), so a Monte Carlo estimate of Eq. 29 is not enough.

D.4 Linear f

Theorem 1. Given the data noise assumption from Eq. 27
p(y|θ,x, f) ∼ N (y|µ = fθ(x), σ

2 = Σ), (31)
given the Gaussian parameter assumption from Eq. 28 for some θt, Ht

p(θ|x, f) = qt(θ) ∼ N (θ|µ = θt, σ
2 = H−1

t), (32)
assume that f is linear in θ, i.e.

fθ(x) = f0(x) + Jf·(x)θ ∀θ ∈ Θ,∀x ∈ X. (33)
Then the joint distribution is Gaussian itself

p(θ,y|x, f) ∼ N ((θ,y)|µt,Σt) (34)
where

µt =

(
θt

fθt(x)

)
, and Σt =

(
H−1

t ΣJf·(x)
⊤

Jf·(x)Σ
(
Jf·(x)

⊤HtJf·(x)
)−1

+Σ

)
.

Proof. With the further assumption of linearity of f , we can explicitly carry out the integral in the
expectation in Eq. 29

p(y|x, f) = Eθ∼qt(θ)[p(y|N (fθ(x),Σ))] =

=

∫
Θ

p(y|N (fθ(x),Σ))q
t(θ)dθ =

=

∫
Θ

p(y|N (fθ(x),Σ))p(θ|N (θt,H
−1
t))dθ =

=

∫
Θ

p(y|N (f0(x) + Jf·(x)θ,Σ))p(θ|N (θt,H
−1
t))dθ =

= p(y|N (fθt(x), (Jf·(x)
⊤HtJf·(x))

−1 +Σ)).

We emphasize that as a consequence ∇2
θ log p(y|x, f) is not dependent on θt.

8

Having Theorem 1 in place, we can go back to our original problem. We need to deal with a fixed
non-linear architecture fNN . We can exploit Theorem 1 by defining f t: a linearization of fNN with
a first-order Taylor expansion around θt

f t
θ(x) := TAYLOR(fNN ,θt)(x) =

= fNN
θt

(x) + Jθf
NN
θt

(x)(θ − θt) (35)

and it holds that
fNN
θ (x) = f t

θ(x) +O(∥θ − θt∥2). (36)
Recalling Eq. 11 both for fNN and for f t

p(y|x,θ, fNN) ∼ N (y|µ = fNN
θ (x), σ2 = Σ) (37)

p(y|x,θ, f t) ∼ N (y|µ = f t
θ(x), σ

2 = Σ) (38)
that, together with Eq. 36, imply

N
(
y|µ = fNN

θ (x), σ2 = Σ
)
∼ N

(
y|µ = f t

θ(x) +O(∥θ − θt∥2), σ2 = Σ
)
, (39)

where we can interpret the unknown O(∥θ − θt∥2) as θ-dependent noise. More specifically, calling
γ > 0 the scalar constant of the O-term, we assume that

O(∥θ − θt∥2) ≈ ϵ(θ − θt)
2 where ϵ ∼ N (0, γI) (40)

and thus, from Eq. 39, we have

N
(
y|µ = fNN

θ (x), σ2 = Σ
)
∼ N (y|µ = f t

θ(x), σ
2 = Σ+ γ∥θ − θt∥2I). (41)

At this point, integrals are not analytically tractable, and thus a proper proof is not feasible, the
intuition is that this increased variance reflects in increased variance in p(θ|x, fNN)

∇2
θ log p(θ|x, fNN)

∣∣
θ=θt+1

≈ ∇2
θ log p(θ|x, f t)

∣∣
θ=θt+1

+ γ∥θt+1 − θt∥2, (42)

where we introduce a hyperparameter α > 0 to cope with this added variance. If we then assume the
Jacobian Jθf

NN to be a Lipschitz function, then the Lipschitz constant is an upper bound on γ, as
follows from the Taylor expansion of Eq. (35). If this Lipschitz constant is smaller than the inverse of
the gradient step 1/∥θt+1 − θt∥ (which is not an unreasonable assumption for the gradient ascent to
be stable) we have

γ∥θt+1 − θt∥2 ≈ ∥θt+1 − θt∥ (43)
that gives us a plausible order of magnitude for choosing the hyperparameter α.

Motivation: During training, we produce a sequence of Gaussians qt(θ) ∼ N (θt,H
−1
t) that we

assume to be the distribution p(θ|x, f t), at every step t ≥ 0. This distribution qt is then used for (1)
Gaussian derivation in the linear case, for (2) Monte Carlo sampling in the update rule θt → θt+1

and (3), as second order derivative, for update rule Ht → Ht+1.

Moreover, given that this distribution qt is our "best guess so far", we assume it to be also the
distribution p(θ|x, fNN). This, being fNN not linear, (1) cannot be used for Gaussian derivation,
(2) can reasonably be used for sampling (and thus we derive the improved update rule Eq. (52)), and
(3) can somehow be used as second order derivative (and thus we derive the improved update rule
Eq. (53)), but the latter requires some more care. That is why we introduce the parameter α.

D.5 Iterative learning

Our learning method produces a sequence of Gaussians

qt(θ) ∼ N (θ|µ = θt, σ
2 = H−1

t) (44)

and a sequence of linearized functions

f t = TAYLOR(fNN ,θt) (45)

for every t ≥ 0.

9

Initialization is trivially done using a Gaussian prior on the parameters.

θ0 = θprior H0 = (Σprior)−1 (46)

Iterative step is made in two steps. First, having access to θt, we “generate” the linearization f t.
Practically this is equivalent to computing the two quantities fNN

θt
(x) and Jθf

NN
θt

(x), that, together
with the value θt are actually equivalent to “generating” f t, as Eq. 35 shows.

Second, we compute the Gaussian parameters θt+1 and Ht+1.

Recalling our aim of maximizing the quantity Eq. (17), update on q(·) means, θt → θt+1, is ideally
made through gradient ascent steps on p(y|x, f)|y=I(x). As this is intractable, we instead do gradient
steps on the lower bound Ly of (the log of) Eq. 23

θt+1 = θt + λ∇θLy

∣∣∣
y=I(x)

(47)

where
Ly = Eθ∼p(θ|x,ft)[log p(y|θ,x, f t)] ≤ logEθ∼p(θ|x,ft)[p(y|θ,x, f t)] (48)

and so

∇θLy

∣∣
y=I(x) = Eθ∼p(θ|x,ft)

[
∇θ log p(y|θ,x, f t)

∣∣
y=I(x)

]
=

= Eθ∼qt(θ)

[
∇θ log p(I(x)

∣∣N (f t
θ(x),Σ))

]
. (49)

Recalling the Laplace approximation Eq. (3), the negative precision, −Ht+1, is ideally set to be the
the hessian of the log probability p(θ|x, f), evaluated in θt+1. As this is intractable we instead set it
to the hessian of the lower bound Lθ of (the log of) Eq. (24)

Ht+1 = −∇2
θLθ

∣∣∣
θ=θt+1

(50)

where
Lθ = Ey∼p(y|x,ft)[log p(θ|y,x, f t)] ≤ logEy∼p(y|x,ft)[p(θ|y,x, f t)] (51)

and so

∇2
θLθ

∣∣∣
θ=θt+1

= Ey∼p(y|x,ft)

[
∇2

θ log p(θ|y,x, f t)
∣∣∣
θ=θt+1

]
via Eq. (26)

= Ey∼p(y|x,ft)

[
∇2

θ log p(y|θ,x, f t)
∣∣∣
θ=θt+1

+∇2
θ log p(θ|x, f t)

∣∣∣
θ=θt+1

+

−∇2
θ log p(y|x, f t)

∣∣∣
θ=θt+1

]
via Theorem 1

= Ey∼p(y|x,ft)

[
∇2

θ log p(y|θ,x, f t)
∣∣∣
θ=θt+1

+∇2
θ log p(θ|x, f t)

∣∣∣
θ=θt+1

]
via the chain rule Eq. (55)

= Ey∼p(y|x,ft)

[
Jθf

t
· (x)

⊤∇2
y log p(y|θt+1,x, f

t)Jθf
t
· (x) +∇2

θ log p(θ|x, f t)
∣∣∣
θ=θt+1

]
via HP Eq. (11)

= Ey∼p(y|x,ft)

[
−Jθf

t
· (x)

⊤Σ−1Jθf
t
· (x) +∇2

θ log p(θ|x, f t)
∣∣∣
θ=θt+1

]
= −Jθf

t
· (x)

⊤Σ−1Jθf
t
· (x) +∇2

θ log p(θ|x, f t)
∣∣∣
θ=θt+1

= −Jθf
t
· (x)

⊤Σ−1Jθf
t
· (x) +∇2

θ log q
t(θ)

∣∣∣
θ=θt+1

= −Jθf
t
· (x)

⊤Σ−1Jθf
t
· (x)−Ht.

10

D.5.1 Improved update rule

As said, the update θt → θt+1 is ideally made through gradient ascent steps on p(y|x, f)|y=I(x),
but we instead use the tractable lower bound with f t. We can perform the same derivation using fNN

in place of f t. Assuming p(θ|x, fNN) ∼ qt(θ) for sampling, leads to the improved update rule

θt+1 = θt + λEθ∼qt(θ)

[
∇θ log p(I(x)

∣∣N (fNN
θ (x),Σ))

]
. (52)

Similarly, the negative precision −Ht+1 is ideally set to be the hessian of the log probability p(θ|x, f).
but instead, we use the tractable lower bound with f t. Here we cannot perform the same derivation,
since Theorem 1 does not hold anymore. Instead, we can rely on the estimate Eq. (42) to improve the
term

∇2
θ log p(θ|x, f t)

∣∣∣
θ=θt+1

= −Ht −→ ∇2
θ log p(θ|x, fNN)

∣∣∣
θ=θt+1

≈ −(1− α)Ht,

and this leads to the improved update rule

Ht+1 = (1− α)Ht + Jθf
t
· (x)

⊤Σ−1Jθf
t
· (x). (53)

E Fast Hessian

We are interested in computing the hessian of a loss function. For this purpose, the Jacobian of the
NN w.r.t. parameters plays a crucial role. In this section we develop a better understanding of this
object, we derive the backpropagation (also used by the BackPack library (Dangel et al., 2020)) and
finally, we explain our approximated backpropagation that allows linear scaling.

E.1 Jacobian of a Neural Network

Let us first define some terminology that we will need for chain rule derivations. A NN is a composition
of l functions f := fLl

◦ fLl−1
◦ . . . ◦ fL2

◦ fL1
:

x0 −−−−−→
fL1

x1 −→ . . . −→ xi−1 −−−−−→
fLi

xi −→ . . . −→ xl−1 −−−−−→
fLl

xl

where there are parametric and non-parametric function fLi . We here highlight two common
parametric functions and a common non-parametric function.

Parametric function such as a linear layer
xi = fLi

(xi−1) = ϕLi
xi−1 where ϕLi

∈ M(|xi|, |xi−1|)
or convolution
xi = fLi

(xi−1) = convfeat=ϕLi
(xi−1) where ϕLi

∈ M(in channel, out channel, feat height, feat width)

Non-parametric such as activation functions Li = tanh, ReLU . . .
xi = fLi

(xi−1) where |xi| = |xi−1|

What is conventionally called layer is actually a composition of two functions: a linear function and
an activation function. For sake of clarity in our derivation, we do not adopt this convention and we
use the word “layer” to indicate the singular “function” component of the NN.

Let us now consider a NN with w parametric layers and l − w activation layers
xl = fϕ(x0) = fLl

◦ · · · ◦ fL1
(x0) where ϕ = (ϕ1, . . . , ϕw),

and define the bijection
W : {1, . . . , w} −→ {i| s.t. Li is parametric layer} ⊆ {1, . . . , l}

p 7−→ i s.t. Li has parameters ϕp

from the subset of parametric layers to the corresponding index in ϕ = (ϕ1, . . . , ϕw).

The Jacobian w.r.t. the parameters Jϕfϕ(x0) ∈ M(|xl|, |ϕ1|+ · · ·+ |ϕw|) is a matrix with number-
of-output |xl| rows and number-of-parameters |ϕ| columns. For reference, just storing this matrix can
exceed memory limits even with the smallest autoencoder working on MNIST.

There are two ways of looking at this matrix: (1) row by row, that is output by output or (2)
block-of-columns by block-of-columns, that is layer by layer.

11

E.2 Jacobian per output

Each row of the Jacobian corresponds to the gradient w.r.t. the parameters of an element of the output

Jϕfϕ(x0) =

 ∇ϕ[fϕ(x0)]1
...

∇ϕ[fϕ(x0)]|xl|

This can be computed by defining |xl| loss functions

lossk(xl) := [xl]k for k = 1, . . . , |xl|

and backpropagating each of those to obtain one line at a time. The disadvantage of this formulation
is that we cannot reuse computation for one loss function to improve the computation of other loss
functions (they are independent). Moreover, we need to store all these rows at the same time in order
to compute J⊤J , which is computationally impractical.

E.3 Jacobian per layer

Each column of the Jacobian is the derivative of the output vector w.r.t. a single parameter. We can
then group the parameters (i.e. columns) layer by layer

Jϕfϕ(x0) =

(
Jϕ1

fϕ(x0) . . . Jϕw
fϕ(x0)

)

where Jϕpfϕ(x0) ∈ M(|xl|, |ϕp|). Let us focus on the computation of Jϕpfϕ(x0) for a fixed layer
p = 1, . . . , w. First notice that the parameters ϕp in fϕ = fLl

◦ . . . ◦ fL1 only appear in fLW(p)
and

so
∂fLi

∂ϕp
(xi−1) = 0 if i ̸= W(p).

Chain rule (informal)

∂fϕ(x0)

∂ϕp
=

∂xl

∂ϕp
=

=
∂xl

∂xl−1

∂xl−1

∂ϕp
=

=
∂xl

∂xl−1︸ ︷︷ ︸
layer l

w.r.t. input

∂xl−1

∂xl−2︸ ︷︷ ︸
layer l − 1
w.r.t. input

. . .
∂xW(p)+1

∂xW(p)︸ ︷︷ ︸
layer W(p) + 1

w.r.t. input

∂xW(p)

∂ϕp︸ ︷︷ ︸
layer W(p)

w.r.t. parameters

Chain rule (formal)

Jϕpfϕ(x0) =

 k=l∏
W(p)+1

Jxk−1
fLk

(xk−1)

 JϕpfLW(p)
(xW(p)−1) (54)

The intuition for the chain rule is that the Jacobian Jϕpfϕ(x0) is the composition of the Jacobians
w.r.t. input of subsequent layers times the Jacobian w.r.t. parameters of the specific layer. Thus, we
can reuse computation for one layer to improve the computation of other layers, specifically the
product of Jacobians w.r.t. input. Moreover, we can compute J⊤

p Jp layer by layer without ever storing
the full Jacobian.

E.3.1 Jacobian of a layer w.r.t. to input

The Jacobian of a standard linear layer w.r.t. to the input is

Jxp−1
fϕp

(xp−1) = ϕp

12

and this remains the same also in the case with a bias. The Jacobian of a convolutional layer w.r.t. to
the input is

Jxp−1convfeat=ϕp(xp−1) = M(convfeat=ϕp)

The Jacobian of the activation function depends on the specific choice. Recall that, for each layer i,
xi ∈ R|xi| is a vector

xi =
(
[xi]k

)
k=1,...,|xi|

where [xi]k ∈ R is the value in position k of the vector xi.

If Li is tanh

[xi]k = [fLi
(xi−1)]k = tanh([xi−1]k) =

e[xi−1]k − e−[xi−1]k

e[xi−1]k + e−[xi−1]k
for k = 1, . . . , |xi−1|

then

[Jxi−1fLi(xi−1)]kj = δkj
(
1− (tanh([xi−1]k))

2
)
= δkj

(
1− [xi]

2
k

)
for k, j = 1, . . . , |xi−1|.

If Li is ReLU

[xi]k = [fLi(xi−1)]k = ReLU([xi−1]k) = max(0, [xi−1]k) for k = 1, . . . , |xi−1|

then
[Jxi−1

fLi
(xi−1)]kj = δkj (1 if [xi−1]k > 0 else 0) for k, j = 1, . . . , |xi−1|.

E.3.2 Jacobian of a layer w.r.t. to parameters

The Jacobian of a standard linear layer w.r.t. to the parameters is

Jϕifϕi(xi−1) = I|xi| ⊗ xi−1 ∈ M(|xi|, |ϕi|)

and in the case with bias bi ∈ Rxi the Jacobian is

Jϕi,bifϕi,bi(xi−1) = I|xi| ⊗ [xi−1, 1] ∈ M(|xi|, |ϕi|+ |bi|)

The Jacobian of a convolutional layer w.r.t. to the parameters is

Jϕi
convfeat=ϕi

(xi−1) = Jϕi
convTfeat=rev(xi−1)

(ϕi) = M(convfeat=rev(xi−1))
T ∈ M(|xi|, |ϕi|)

and in the case with bias bi ∈ Roi the Jacobian is

Jϕi
convfeat=ϕi,bias=bi(xi−1) =

(
M(convfeat=rev(xi−1))

T
∣∣I) ∈ M(|xi|, |ϕi|+ |bi|)

E.4 Hessian of a Neural Network

Consider a function L : R|xl| → R from the output of the NN to scalar value. This later will be
interpreted as loss or likelihood, but for now, let us stick to the general case.

We are interested in the hessian of this scalar value w.r.t. the parameters of the NN

∇2
ϕ

(
L(fϕ(x0))

)
∈ M

(
w∑

p=1

|ϕi|,
w∑

p=1

|ϕi|

)
.

Similarly to the previous section, it is convenient to see this matrix as block matrices, separated
layer-wise

∇2
ϕL(fϕ(x0)) =

∇2
ϕ1
L(fϕ(x0))

∂2

∂ϕ1∂ϕ2
L(fϕ(x0)) . . . ∂2

∂ϕ1∂ϕw
L(fϕ(x0))

∂2

∂ϕ2∂ϕ1
L(fϕ(x0)) ∇2

ϕ2
L(fϕ(x0))

...
. . .

∂2

∂ϕw∂ϕ1
L(fϕ(x0)) ∇2

ϕw
L(fϕ(x0)

13

The first common assumption is to consider layers to be independent of each other, i.e.
∂2

∂ϕi∂ϕj
L(fϕ(x0)) = 0 ∀i ̸= j

Let us now fix a layer p = 1, . . . , w and focus on a single diagonal block.
∇2

ϕp
L(fϕ(x0)) ∈ M(|ϕp|, |ϕp|).

According to the chain rule

∇2
ϕp
L(fϕ(x0)) = Jϕp

fϕ(x0)
T · ∇2

xl
L(xl) · Jϕp

fϕ(x0)︸ ︷︷ ︸
=:G(ϕ)

+

|xl|∑
i=1

[∇xl
L(xl)]i · ∇2

ϕp
[fϕ(x0)]i (55)

The second term of the RHS is equal to 0 if the model perfectly fits the dataset, ∇xl
L(xl) = 0, OR if

f is linear in the parameters, Hϕp
[fϕ(x0)]i = 0.

The first term of the RHS of Eq. 55, G(ϕ), is in literature referred to as Generalized Gauss-Newton
(GGN) matrix. It can be computed efficiently thanks to the view of the Jacobian as layer by layer.
Using equation (54), the expression for the approximated hessian w.r.t. to ϕp is then

G(ϕ) = Jϕp
fϕ(x0)

T ·Hxl
L(xl) · Jϕp

fϕ(x0) =

= Jϕp
fT
LW(p)

 l∏
k=W(p)+1

Jxk
fT
Lk

Hxl
L(xl)

 k=l∏
W(p)+1

Jxk
fLk

 Jϕp
fLW(p)

and from this, we can build an efficient backpropagation algorithm.

Algorithm 1 Algorithm for JϕfT · ∇2L · Jϕf

M = ∇2
xl
L(xl)

for k = l, l − 1, . . . , 1 do
if Lk is parametric with ϕp (i.e. k = W(p)): then

Hp = Jϕp
f⊤
Lk

·M · Jϕp
fLk

end if
M = Jxk

f⊤
Lk

·M · Jxk
fLk

end for
return (H1, . . . ,Hw)

As it is written, each Hp is a matrix |ϕp|×|ϕp| so we technically obtain the hessian in a block-diagonal
form H1 0

. . .
0 Hw

if we are interested in the diagonal only, we can construct that by concatenation of the diagonals for
each Hp.

E.4.1 Fast approximated version of the Algorithm

The idea is to backpropagate only the diagonal of the matrix M , neglecting all the non-diagonal
elements. In a single backpropagation step, we have

M ′ = Jxpf
⊤
Lp

·M · JxpfLp

In order to backpropagate the diagonal only, we need to use the operator
diag(M) 7→ diag(M ′)

For linear layers and activation functions, this operator is trivial. For the convolutional layer it turns
out that this operator is itself a convolution

diag(M ′) = convfeat=ϕ
(2)
p
(diag(M))

where the kernel tensor ϕ(2)
p is the pointwise square of the kernel tensor ϕp.

14

Figure 1: Snapshots of optimization of a mixture of Gaussians with fixed means and component
weights (i.e. only variances are learned). We observe that variances of components far away from
data increase in order to push more probability mass to the region where data resides. The Gaussian
VAE should exhibit the same behavior in order to maximize data likelihood, but in practice, it does
not.

E.5 Hessian of a Reconstruction Loss

In the previous Algorithm, the backpropagated quantity is initialized as the hessian of the loss w.r.t.
the output of the NN ∇2

xl
L(xl), or, in an equivalent but more compact notation ∇2

fL(f). The value
of this hessian clearly depends on the specific choice of loss function L.

The most common choice of the likelihood for regression is the Gaussian distribution, while for
classification it is the Bernoulli distribution. The Gaussian log-likelihood is

L(f) := log p(x|µ=fθ(x), σ
2=σ2

d) = − 1

2σ2
d

∥x− fθ(x)∥2 − log(
√
2πσd) (56)

and its hessian is identity scaled with σd

∇2
f log p(x|µ=fθ(x), σ

2=σ2
d) = −(σd)

−2I (57)

The Bernoulli log-likelihood is

L(f) := log p(c|fθ(x)) = log[softmax(fθ(x))]c = [fθ(x)]c − log

(∑
i

e[fθ(x)]i

)
(58)

and its hessian can be written in terms of the vector π = softmax(fθ(x)) of predicted probabilities

∇2
f log p(c|fθ(x)) = −∇2

f log

(∑
i

e[fθ(x)]i

)
= diag(π)− ππT (59)

We highlight that both Hessians are independent on the label, and thus the GGN is equal to the Fisher
matrix, this is true every time p(y|fθ(x)) is an exponential family distribution with natural parameters
fθ(x). In this paper, we focus on the Gaussian log-likelihood, but we emphasize that the method is
not limited to this distribution.

F Intuition on optimization of variance in VAEs

One can imagine the Gaussian VAE as an infinite mixture of Gaussians (see e.g. Mattei and Frellsen
(2018) for an extensive discussion of this link) where the weights are fixed by the prior on the latent
space. To increase the probability of the training data p(x), optimizing the neural network will push
the probability mass from regions far away from training data to regions with training data. Thus, the
network should learn to have large variance far away from training data, and low variance close to
training data.

We illustrate this idea with a toy example (see snapshots in Fig. 1 or animation at https:
//frederikwarburg.github.io/gaussian_vae.html). In this example, we show a mixture
of Gaussian with components, where we optimize the variance (and fix the mean and the weights of
the mixture components). We see that the variance of the components far away from the training data
increases, whereas the variance of the component close to the data decreases. The opening example
of the paper demonstrates that the Gaussian VAE does not exhibit this behavior even if this is optimal
in terms of data likelihood.

15

https://frederikwarburg.github.io/gaussian_vae.html
https://frederikwarburg.github.io/gaussian_vae.html

References
C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural networks. In

Proceedings of the 32nd International Conference on International Conference on Machine Learning -
Volume 37, ICML’15, page 1613–1622. JMLR.org, 2015.

F. Dangel, F. Kunstner, and P. Hennig. BackPACK: Packing more into backprop. In International Conference on
Learning Representations (ICLR), 2020.

E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, and P. Hennig. Laplace Redux - Effortless
Bayesian deep learning. Advances in Neural Information Processing Systems (NeurIPS), 34, 2021.

M. E. Khan, W. Lin, V. Tangkaratt, Z. Liu, and D. Nielsen. Variational adaptive-newton method for explorative
learning, 2017. URL https://arxiv.org/abs/1711.05560.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and Y. LeCun, editors, 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015a. URL http://arxiv.org/abs/1412.6980.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference on Learning
Representations (ICLR), 2015b.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV), December 2015.

P.-A. Mattei and J. Frellsen. Leveraging the exact likelihood of deep latent variable models. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.
neurips.cc/paper/2018/file/0609154fa35b3194026346c9cac2a248-Paper.pdf.

M. Opper and C. Archambeau. The Variational Gaussian Approximation Revisited. Neural Computation, 21
(3):786–792, 03 2009. ISSN 0899-7667. doi: 10.1162/neco.2008.08-07-592. URL https://doi.org/10.
1162/neco.2008.08-07-592.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems (NeurIPS), pages 8024–8035. 2019.

L. Sagun, L. Bottou, and Y. LeCun. Eigenvalues of the hessian in deep learning: Singularity and beyond. arXiv
preprint arXiv:1611.07476, 2016.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning
algorithms, 2017.

G. Zhang, S. Sun, D. Duvenaud, and R. B. Grosse. Noisy natural gradient as variational inference. CoRR, 2017.
URL http://arxiv.org/abs/1712.02390.

16

https://arxiv.org/abs/1711.05560
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2018/file/0609154fa35b3194026346c9cac2a248-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/0609154fa35b3194026346c9cac2a248-Paper.pdf
https://doi.org/10.1162/neco.2008.08-07-592
https://doi.org/10.1162/neco.2008.08-07-592
http://arxiv.org/abs/1712.02390

	Experimental details
	Hessian approximation
	Out-of-distribution
	Missing data imputation
	Semi-supervised learning

	Laplace Approximation
	If bold0mu mumu subappendix* is a local maxima
	If bold0mu mumu subappendix* is not a local maxima

	Extended related work
	Differences with Laplace Redux
	Differences with Variational Adaptive Newton Method
	Differences with Noisy Natural Gradient
	Connection with Adam
	Connection with Bayes by Backpropagation

	Model
	Overview
	Objective
	Joint distribution for a fixed datapoint
	Linear f
	Iterative learning
	Improved update rule

	Fast Hessian
	Jacobian of a Neural Network
	Jacobian per output
	Jacobian per layer
	Jacobian of a layer w.r.t. to input
	Jacobian of a layer w.r.t. to parameters

	Hessian of a Neural Network
	Fast approximated version of the Algorithm

	Hessian of a Reconstruction Loss

	Intuition on optimization of variance in VAEs

