
A Omitted Details from the Main Body

A.1 Previous Work

Classification with multiple labels is extensively studied and, for the setting with bounded 𝑘, PAC
learnability is well-understood [Nat89, BCHL95, SSBD14, DSBDSS11]. The works of [VC71,
BEHW89] provide a fundamental dichotomy/equivalence between the finiteness of the VC dimension
and binary classification (PAC learnability). [NT88] and [Nat89] extend the PAC framework to the
multiclass setting by providing the notions of the Graph and the Natarajan dimension. When the
number of labels 𝑘 is a finite constant, then these two dimensions both characterize PAC learnability
since Ndim(ℋ) ≤ Gdim(ℋ) ≤ Ndim(ℋ) · 𝑂(log(𝑘)) [DSBDSS11]. Afterwards, [BCHL95]
and [HL95] provide a combinatorial abstraction which captures as special cases e.g., the Graph
and Natarajan dimensions and Pollard’s pseudo-dimension. In this general setting, [BCHL95]
identify the notion of Ψ-distinguishers that characterize PAC learnability when 𝑘 is bounded. More
to that, uniform convergence still applies when the number of classes is bounded and, so, PAC
learning provides the ERM principle for algorithm design. We remark the situation gets much more
complicated when the number of labels is not bounded [DSS14, BCD+22, RBR09, DSBDSS11]. For
instance, [DSS14] show that the ERM principle does not apply in this case. In a recent breakthrough,
[BCD+22] show that the DS dimension captures learnability and the Natarajan dimension provably
fails to achieve this.

A.2 Assumption on Cardinality ofℋ

We briefly discuss why the assumption that |ℋ| > 𝑘 + 2 comes without loss of generality. If
ℋ contains either a single hypothesis or contains some hypotheses which have no conflict, i.e.,
ℎ(𝑥) ̸= ℎ′(𝑥) everywhere, then Pr(𝑥,𝑦)∼𝑃 [̂︀ℎ𝑛(𝑥) ̸= 𝑦] = 0 is trivially achievable for all 𝑛. Now, if
|ℋ| ≤ 𝑘 + 2 but does not fall in the above two cases, thenℋ is learnable at an optimal exponential
rate. To see this, let 𝜖 be the minimal error among all hypotheses ℎ ∈ ℋ with non-zero error. The
probability that there exists a hypothesis with error 𝜖 that makes no mistakes in the 𝑛 training data
is at most |ℋ|(1− 𝜖)𝑛 using the union bound. Thus a learning algorithm that outputs any classifier̂︀ℎ𝑛 ∈ ℋ that correctly classifies the training set satisfies E[Pr(𝑥,𝑦)∼𝑃 [̂︀ℎ𝑛(𝑥) ̸= 𝑦]] ≤ 𝐶 exp(−𝑐𝑛)
with 𝐶 = 𝐶(ℋ, 𝑃 ) and 𝑐 = 𝑐(ℋ, 𝑃 ). Moreover, this is optimal due to Proposition 1.

A.3 Future Directions

We deal with the settings of universal learning and partial concept classes, two fundamental questions
[BHM+21, AHHM22] which are witnessed in real-life applications, nevertheless the classical theory
fails to explain. Our results raise various interesting questions for future work (apart from Open
Question 1). First, it would be interesting to extend our results to the agnostic setting. Second, for the
universal setting, we believe it is an important next step to shed light towards multiclass learning with
unbounded labels (whose uniform learnability was recently characterized by [BCD+22]). Moreover,
for the partial concepts setting, the work of [AHHM22] leaves numerous fascinating open questions
for the binary setting that can be asked in the multiclass setting too. In general, our work along with
its seminal binary counterparts [BHM+21, AHHM22] shows that the algorithmic landscape occuring
in practice is quite diverse and the ERM principle is provably insufficient. It is important to come up
with principled algorithmic strategies that bring theory closer to practice.

B Preliminaries

In this section we discuss more extensively the Preliminaries from Section 1.4.

B.1 Complexity Measures

We first state the classical definition of the Littlestone-dimension [Lit88] that characterizes learnability
in the online setting.

Definition 5 (Littlestone dimension). Consider a complete binary tree 𝑇 of depth 𝑑 + 1 whose
internal nodes are labeled by points in 𝒳 and edges by {0, 1}, when they connect the parent to the
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right, left child, respectively. We say thatℋ ⊆ {0, 1}𝒳 Littlestone-shatters 𝑇 if for every root-to-leaf
path 𝑥1, 𝑦1, 𝑥2, 𝑦2, . . . , 𝑥𝑑, 𝑦𝑑, 𝑥𝑑+1 there exists some ℎ ∈ ℋ such that ℎ(𝑥𝑖) = 𝑦𝑖, 1 ≤ 𝑖 ≤ 𝑑. The
Littlestone dimension is denoted by Ldim(ℋ) is defined to be the largest 𝑑 such thatℋ Littlestone-
shatters such a binary tree of depth 𝑑+1. If this happens for every 𝑑 ∈ N we say that Ldim(ℋ) =∞.

The above definition naturally extends to multiple labels [DSBDSS11]; we denote the multiclass
Littlestone dimension by Ldim𝑘(·). We next recall the well-known notion of VC dimension that
characterizes PAC-learnability of binary concept classes [VC71].

Definition 6 (VC dimension). We say thatℋ ⊆ {0, 1}𝒳 VC-shatters a sequence {𝑥1, . . . , 𝑥𝑛} ∈ 𝒳𝑛

if {ℎ(𝑥1), . . . , ℎ(𝑥𝑛) : ℎ ∈ ℋ} = {0, 1}𝑛. The VC-dimension of 𝑆 is denoted by VCdim(ℋ) and is
defined to be the largest 𝑑 such that ℋ VC-shatters some sequence of length 𝑑. If this happens for
every 𝑑 ∈ N we say that VCdim(ℋ) =∞.

When moving toℋ ⊆ {0, . . . , 𝑘}𝒳 , 𝑘 > 1, there are many different extensions of the VC-dimension
that have been considered in the literature. We recall the definition of two of them that are important
in our work, the Natarajan dimension [Nat89] and the Graph dimension [NT88, Nat89].

Definition 7 (Natarajan dimension). We say that ℋ ⊆ {0, . . . , 𝑘}𝒳 N-shatters a sequence
{𝑥1, . . . , 𝑥𝑛} ∈ 𝒳𝑛 if there exist two colorings 𝑠(0), 𝑠(1) such that 𝑠(0)(𝑥𝑖) ̸= 𝑠(1)(𝑥𝑖),∀𝑖 ∈ [𝑛], and
∀𝐼 ⊆ [𝑛] there exists some ℎ ∈ ℋ with ℎ(𝑥𝑖) = 𝑠(0)(𝑥𝑖), 𝑖 ∈ 𝐼 and ℎ(𝑥𝑖) = 𝑠(1)(𝑥𝑖), 𝑖 ∈ [𝑛] ∖ 𝐼 .
The Natarajan dimension is denoted by Ndim(ℋ) and is defined to be the largest 𝑑 for which ℋ
N-shatters a sequence of length 𝑑. If this happens for every 𝑑 ∈ N we say that Ndim(ℋ) =∞.

Definition 8 (Graph dimension). We say that ℋ ⊆ {0, . . . , 𝑘}𝒳 G-shatters a sequence
{𝑥1, . . . , 𝑥𝑛} ∈ 𝒳𝑛 if there exists a coloring 𝑠(0) such that ∀𝐼 ⊆ [𝑛] there exists some ℎ ∈ ℋ
with ℎ(𝑥𝑖) = 𝑠(0)(𝑥𝑖), 𝑖 ∈ 𝐼 and ℎ(𝑥𝑖) ̸= 𝑠(0)(𝑥𝑖), 𝑖 ∈ [𝑛] ∖ 𝐼 . The Graph dimension is denoted by
Gdim(ℋ) and is defined to be the largest 𝑑 for which ℋ G-shatters a sequence of length 𝑑. If this
happens for every 𝑑 ∈ N we say that Gdim(ℋ) =∞.

Notice that if 𝑘 = 2 the definitions of the Natarajan dimension and the Graph dimension are equivalent
to the definition of the VC-dimension.

Remark 2. We underline that the above definitions can be naturally extended to the partial concepts
setting. For instance, we say that ℋ ⊆ {0, 1, ⋆}𝒳 VC-shatters a set 𝑆 if every binary pattern is
realized by some ℎ ∈ ℋ. For further details, see [AHHM22].

B.2 One-Inclusion Hypergraph Algorithm

We next review a fundamental result which is a crucial ingredient in the design of our algorithms,
namely the one-inclusion hypergraph algorithm Aℋ for the class ℋ ⊆ [𝑘]𝒳 [HLW94, RBR09,
DSS14, BCD+22]. This algorithm gets as input a training set (𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛) realizable byℋ
and an additional example 𝑥. The goal is to predict the label of 𝑥. In this sense, the one-inclusion
graph constitutes a transductive model in machine learning. The idea is to construct the one-inclusion
(hyper)graph of ℋ|𝑥1,...,𝑥𝑛,𝑥 ⊆ [𝑘]𝑛+1. The nodes of this graph are the equivalence classes of ℋ
induced by the examples 𝑥1, ..., 𝑥𝑛, 𝑥. For the binary classification case, two equivalence classes are
connected with an edge if the nodes differ by exactly one element 𝑥 of the 𝑛+1 points and 𝑥 appears
only once in (𝑥1, ..., 𝑥𝑛, 𝑥). For the case 𝑘 > 1, the hyperedge set is is generalized accordingly.
Having created the one-inclusion graph, the goal is to orient the edges; the crucial property is that
good orientations of this graph yield low error learning algorithms. Here, an orientation is good if the
maximum out-degree of the graph is small. Intuitively, if the maximum out-degree of any node is 𝑀 ,
then this can yield a prediction for the label 𝑥 with 𝑛+ 1 training samples with permutation mistake
bound at most 𝑀/(𝑛+ 1).

Lemma 1 (One-Inclusion Hypergraph Algorithm (See Lemma 17 of [BCD+22])). Let 𝒳 = [𝑛] with
𝑛 ∈ N, 𝑘 be positive constant andℋ ⊆ [𝑘]𝑛 be a class with Natarajan dimension Ndim(ℋ) <∞.
There exists an algorithm A : 2[𝑘]

𝑋 × (𝑋 × [𝑘])𝑛−1 ×𝑋 such that

1

𝑛!

∑︁
𝜎∼𝒰(S𝑛)

[A(ℋ, 𝜎(1), ℎ(𝜎(1)), ..., 𝜎(𝑛−1), ℎ(𝜎(𝑛−1)), 𝜎(𝑛)) ̸= ℎ(𝜎(𝑛))] ≤ Ndim(ℋ) log(𝑘)
𝑛

,

for any ℎ ∈ ℋ.
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B.3 Ordinals

The discussion of ordinals is borrowed from [BHM+21]. For a thorough treatment of the subject, the
interested reader is referred to [HJ99, Sie58].

We consider some set 𝑆. A well ordering of 𝑆 is defined to be any linear ordering < so that every
non-empty subset of 𝑆 contains a least element. For example, the set of natural numbers N along
with the usual ordering is well-ordered, whereas [0, 1] is not (take, e.g., 𝑆 = (0, 1), then it is clear
that there is not a least element in 𝑆.)

We say that two-well ordered sets are isomorphic if there exists a bijection between the two which
preserves the ordering. There is a canonical way to construct “equivalence classes” of well-ordered
sets, called ordinals, so that every well-ordered set is isomorphic to exactly one such ordinal. In that
sense, ordinals uniquely encode well-ordered sets in the same way as cardinals uniquely encode sets.
We denote the class of all ordinals by ORD.

An important property of ordinals is that every pair of well-ordered sets is either isomorphic, or
one of them is isomorphic to an initial segment of the other. This fact induces an ordering over the
ordinals. To be more precise, we say that for two ordinals 𝛼, 𝛽 ∈ ORD we have that 𝛼 < 𝛽 if 𝛼 is
isomorphic to an initial segment of 𝛽. The defining property of ordinals is that every ordinal 𝛽 is
isomorphic to the set of ordinals that precede it, i.e., {𝛼 : 𝛼 < 𝛽}. Moreover, the ordering < is itself
a well-ordering over the ordinals. This is because every non-empty set of ordinals contains a least
element and it has a least upper bound.

Given the above discussion, we can see that ordinals provide a set-theoretic extension of natural
numbers. This is because every ordinal 𝛽 has a successor 𝛽 + 1, which is the smallest ordinal
that is larger that 𝛽. Thus, we can create a list of all ordinals: the first elements in the least are
0, 1, 2, . . ., which are all the finite ordinals where we identify each number 𝑘 with the well-ordered set
{0, . . . , 𝑘 − 1}. We let the “smallest” infinite ordinal be 𝜔. This can be identified with the family of
all natural numbers along with their natural ordering. The way to count past infinity is the following:
we write 0, 1, 2 . . . , 𝜔, 𝜔+ 1, 𝜔+ 2, . . . , 𝜔+ 𝜔, . . . , and we denote the smallest uncountable ordinal
with 𝜔1.

A concept that is defined by ordinals and is useful for proving the guarantees of our algorithms in the
Gale-Stewart games is that of transfinite recursion. Roughly speaking, this principle states that if we
have a “recipe”, which is given sets of “objects” 𝑂𝛼, indexed by all ordinals 𝛼 < 𝛽, defines a new set
of “objects” 𝑂𝛽 and has access to a “base set” {𝑂𝛼 : 𝛼 < 𝛼0}, then 𝑂𝛽 is uniquely defined for all
ordinals 𝛽. To give an example, this concept helps us define addition 𝛾+𝛽 between two ordinals. We
set 𝛾 + 0 = 𝛾 and 𝛾 + 1 to be the successor of 𝛾. We continue inductively and define for any 𝛽 the
addition 𝛾 + 𝛽 = sup{(𝛾 + 𝛼) + 1 : 𝛼 < 𝛽}. Following this principle we can define an arithmetic
in the ordinals.

B.4 Well-founded Relations and Ranks

We continue the above discussion by extending the notion of a well-ordering to a more general type
of orders, and we introduce the notion of rank, which is important for the derivation of the winning
strategies in the Gale-Stewart games. We follow the presentation from [BHM+21]. The classical
reference for this topic is [Kec12].

We define a relation ≺ on a set 𝑆 by an arbitrary subset 𝑅≺ ⊆ 𝑆 × 𝑆 and we let 𝑥 ≺ 𝑦 if and only
if (𝑥, 𝑦) ∈ 𝑅≺. An element 𝑥 of (𝑆,≺) is called minimal if there is no 𝑥′ ∈ 𝑆 with 𝑥′ ≺ 𝑥. The
relation is called well-founded if every non-empty subset of 𝑆 has a minimal element.

We associate every well-founded relation on 𝑆 with a rank function 𝜌≺ : 𝑆 → ORD, which is defined
by the following transfinite recursion: we let 𝜌≺(𝑥) = 0 if 𝑥 is the minimal element of 𝑆 and we
let 𝜌≺(𝑥) = sup{𝜌≺(𝑦) + 1 : 𝑦 ≺ 𝑥}. Intuitively, the rank of some element 𝑥 quantifies how far
away it is from the minimal element. The following property of rank justifies the name “transfinite
recursion”.

Remark 3. Any element 𝑥 ∈ 𝑆 has a well defined rank. This is because the transfinite recursion
defines 𝜌≺(𝑥) as soon as all 𝜌≺(𝑦) is defined, for all 𝑦 ≺ 𝑥. Indeed, if 𝜌(𝑥) is undefined it means that
𝜌≺(𝑥

′) is also undefined, for some 𝑥′ ≺ 𝑥. Repeating this for 𝑥′ constructs an infinitely decreasing
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chain of elements in 𝑆, which contradicts the fact that≺ is well-founded, since an infinitely decreasing
chain does not contain a minimal element.

We give some examples that help develop some intuition about the notion of the rank of a well-
founded relation. Even though a well-founded relation does not admit an infinitely decreasing chain,
it can contain finite chains of arbitrary length. Essentially, the rank of some element 𝜌≺(𝑥) measures
the length of a decreasing chain starting from 𝑥.

Example 1. As a warmup, consider the case where 𝜌≺(𝑥) = 𝑘, where 𝑘 is a finite ordinal. Then,
there exists some 𝑥1 ≺ 𝑥 such that 𝜌≺(𝑥1) = 𝑘 − 1. Continuing in the same manner, we can see that
we can create a decreasing chain of length 𝑘 + 1.

Example 2. Moving on, assume that 𝜌≺(𝑥) = 𝜔. Recall that 𝜔 is the smallest infinite ordinal. This
means that any 𝑦 ≺ 𝑥 has rank 𝜌≺(𝑦) = 𝑘, for some finite number 𝑘. Hence, starting from 𝑥 we
can create a decreasing chain of arbitrary length, but this length is determined when we fix the first
element of the chain.

Example 3. Now assume that 𝜌≺(𝑥) = 𝜔 + 𝑘, for some finite number 𝑘. Then, we can create
𝑥 ≻ 𝑥1 ≻ . . . ≻ 𝑥𝑘, with 𝜌≺(𝑥𝑘) = 𝜔. Thus, the length of the chain is determined after we pick
𝑥𝑘+1.

Example 4. A slightly more involved example is the case where 𝜌≺(𝑥) = 𝜔 + 𝜔. As a first element
in the chain, we pick some 𝑥1 ≺ 𝑥 with 𝜌≺(𝑥1) = 𝜔 + 𝑘, for some finite 𝑘. Then, we continue as in
the previous example. So in this case, the length of the chain is determined by two choices.

B.5 Measurability

This short exposition is mainly from [BHM+21]. A Polish space is a separable topological space
that can be metrized by a complete metric. For example, the 𝑛-dimensional Euclidean space, any
compact metric space, any separable Banach space are Polish spaces.

Definition 9 (See [BHM+21]). A concept class ℋ ⊆ [𝑘]𝒳 on a Polish space 𝒳 is said to be
measurable if there is a Polish space Θ and Borel-measurable map ℎ : Θ × 𝒳 → [𝑘] so that
ℋ = {ℎ(𝜃, ·) : 𝜃 ∈ Θ}.

Roughly, a subset 𝐵 of a Polish space 𝒳 is universally measurable if it is measurable with respect to
every complete probability measure on 𝒳 .

Definition 10 (Universally Measurable). Let ℱ be the Borel 𝜎-field on a Polish space 𝒳 . For any
probability measure 𝜇, denote by ℱ𝜇 the completion of ℱ with respect to 𝜇, that is, the collection of
all subsets of 𝒳 that differ from a Borel set at most on a set of zero probability. A set 𝐵 ⊆ 𝒳 is called
universally measurable if 𝐵 ∈ ℱ𝜇 for every probability measure 𝜇. Similarly, a function 𝑓 : 𝒳 → 𝒴
is called universally measurable if 𝑓−1(𝐵) is universally measurable for any universally measurable
set 𝐵.

Let 𝒳 ,𝒴 be Polish spaces, and let 𝑓 : 𝒳 → 𝒴 be a continuous function. It holds that 𝑓 is Borel
measurable, that is, 𝑓−1(𝐵) is a Borel subset of 𝒳 for any Borel subset 𝐵 of 𝒴 . A subset 𝐵 ⊆ 𝒳 of
a Polish space is called analytic if it is the image of some Polish space under a continuous map. The
complement of an analytic set is called coanalytic. A set is Borel if and only if it is both analytic and
coanalytic. The following is a consequence of Choquet’s Capacitability Theorem.

Fact 1. Every analytic (or coanalytic) set is universally measurable.

An important property of analytic sets is that they help us establish measurability of uncountable
unions of measurable sets.

We now state a very important result regarding well-founded relations on Polish spaces. We let 𝒳
be a Polish space and ≺ a well-found relation on 𝒳 . We say that ≺ is analytic if 𝑅≺ ⊆ 𝒳 × 𝒳 is
an analytic set. The following theorem, known as Kunen-Martin [Kec12, Del77], bounds the rank
function of such a relation.

Theorem 7. Let ≺ be an analytic well-founded relation on a Polish space 𝒳 . Then, its rank function
satisfies sup𝑥∈𝒳 𝜌≺(𝑥) ≤ 𝜔1.
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B.6 Gale-Stewart Games

We add a short discussion about GS games from [BHM+21]. We refer to their work for further details
and pointers. Fix sequences of sets 𝒳𝑡,𝒴𝑡 for 𝑡 ≥ 1. We consider infinite games between two players:
in each round 𝑡 ≥ 1, the first player P𝐴 selects an element 𝑥𝑡 ∈ 𝒳𝑡, and then player P𝐿 selects an
element 𝑦𝑡 ∈ 𝒴𝑡. The rules of the game are determined by specifying a set𝒲 ⊆

∏︀
𝑡≥1(𝒳𝑡 × 𝒴𝑡) of

winning sequences for P𝐿. That is, after an infinite sequence of consecutive plays 𝑥1, 𝑦1, 𝑥2, 𝑦2, . . .,
we say that P𝐿 wins if (𝑥1, 𝑦1, 𝑥2, 𝑦2, . . .) ∈ 𝒲; otherwise, P𝐴 is declared the winner of the game.

A strategy is a rule used by a given player to determine the next move given the current position of
the game. A strategy for P𝐴 is a sequence of functions 𝑓𝑡 :

∏︀
𝑠<𝑡(𝒳𝑠 × 𝒴𝑠)→ 𝒳𝑡 for 𝑡 ≥ 1, so that

P𝐴 plays 𝑥𝑡 = 𝑓𝑡(𝑥1, 𝑦1, . . . , 𝑥𝑡−1, 𝑦𝑡−1) in round 𝑡. Similarly, a strategy for P𝐿 is a sequence of
𝑔𝑡 :

∏︀
𝑠<𝑡(𝒳𝑠 × 𝒴𝑠) × 𝒳𝑡 → 𝒴𝑡 for 𝑡 ≥ 1, so that P𝐿 plays 𝑦𝑡 = 𝑔𝑡(𝑥1, 𝑦1, . . . , 𝑥𝑡−1, 𝑦𝑡−1, 𝑥𝑡) in

round 𝑡. A strategy for P𝐴 is called winning if playing that strategy always makes P𝐴 win the game
regardless of what P𝐿 plays; a winning strategy for P𝐿 is defined analogously. The crucial question
follows:

When do winning strategies exist in infinite two-player games?

The simplest assumption was introduced by [GS53]: we call 𝒲 finitely decidable if for every
sequence of plays (𝑥1, 𝑦1, 𝑥2, 𝑦2, . . .) ∈ 𝒲 , there exists 𝑛 <∞ so that

(𝑥1, 𝑦1, . . . , 𝑥𝑛, 𝑦𝑛, 𝑥
′
𝑛+1, 𝑦

′
𝑛+1, 𝑥

′
𝑛+2, 𝑦

′
𝑛+2, . . .) ∈ 𝒲

for all choices of 𝑥′
𝑛+1, 𝑦

′
𝑛+1, 𝑥

′
𝑛+2, 𝑦

′
𝑛+2, . . . In words, that “𝒲 is finitely decidable” means that if

P𝐿 wins, then she knows that she won after playing a finite number of rounds. Conversely, in this
case P𝐴 wins the game precisely when P𝐿 does not win after any finite number of rounds.

An infinite game whose set𝒲 is finitely decidable is called a Gale-Stewart game. The main result
behind GS games follows.
Proposition. In any Gale-Stewart game, either P𝐴 or P𝐿 has a winning strategy.

The above existential result provides no information, however, about the complexity of the winning
strategies. In particular, it is completely unclear whether winning strategies can be chosen to be
measurable. The next lemma addresses this concern.
Lemma 2 (Theorem B.1 of [BHM+21]). Let {𝑋𝑡}𝑡≥1 be Polish spaces and {𝑌𝑡}𝑡≥1 be countable
sets. Consider a Gale-Stewart game whose set𝒲 ⊆

∏︀
𝑡≥1(𝑋𝑡 × 𝑌𝑡) of winning strategies for P𝐿 is

finitely decidable and coanalytic. Then there is a universally measurable winning strategy.

For an extensive exposition on game values which connect ordinals with the positions of the game,
i.e., the sequences of choices between the two players, we refer to [BHM+21].

C Universal Multiclass Learning: The Proof of Theorem 2

In this section, we prove Theorem 2 which then directly gives us Theorem 1 as well. Our text is
organized as follows:

• In Appendix C.1, we analyze the exponential rates case for multiclass learning. We introduce
the notion of the multiclass Littlestone tree and prove Theorem 8.

– In order to achieve this, we first analyze the problem from an adversarial online
perspective in Appendix C.1.1. The main result in this section is Theorem 9.

– The above result is in the adversarial setting and hence we have to transform this online
algorithm into a statistical one, i.e., we have to move from the adversarial setting to the
probabilistic setting. This is done is Appendix C.1.2. We provide the analysis of our
final algorithm in Theorem 10.

• In Appendix C.2, we show that a class with infinite multiclass Littlestone tree cannot be
learned at a rate faster than linear.

• In Appendix C.3, we introduce the notion of a Natarajan-Littlestone tree and we prove
Theorem 12.
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– In Appendix C.3.1, we provide the important notion of a Natarajan-Littlestone game
which guarantees the existence of an eventually correct algorithm when the class does
not have an infinite NL tree.

– In Appendix C.3.2, we introduce the notion of an NL pattern in the data and using the
above algorithm as a pattern avoidance function.

– The behavior of the pattern avoidance algorithm in the probabilistic setting is given in
Appendix C.3.3.

– The final linear rate algorithm can be found at Appendix C.3.4.
• In Appendix C.4, the final lower bound which is related to arbitrarily slow rates (see

Theorem 14).
• In Appendix C.5, we provide the notion of a Graph-Littlestone tree and give a sufficient

condition for learning with a linear rate. More to that, we propose Open Question 1.

C.1 Exponential Rates for Multiclass Learning

For a sequence 𝑦 = (𝑦1, 𝑦2, ...), we denote 𝑦≤𝑘 = (𝑦1, ..., 𝑦𝑘). We may also usually identify
elements of {0, 1}𝑑 with strings or a prefix of a sequence of length 𝑑. We begin with a formal
definition of a crucial combinatorial measure, namely the multiclass Littlestone tree of a classℋ.
Definition 11 (Multiclass Littlestone Tree). A multiclass Littlestone tree forℋ ⊆ {0, 1, ..., 𝑘}𝒳 is a
complete binary tree of depth 𝑑 ≤ ∞ whose internal nodes are labeled by 𝒳 , and whose two edges
connecting a node to its children are labeled by two different elements in [𝑘], such that every path of
length at most 𝑑 emanating from the root is consistent with a concept ℎ ∈ ℋ. Typically, a multiclass
Littlestone tree is a collection⋃︁

0≤ℓ<𝑑

{︀
𝑥𝑢 : 𝑢 ∈ {0, 1}ℓ

}︀
= {𝑥∅} ∪ {𝑥0, 𝑥1} ∪ {𝑥00, 𝑥01, 𝑥10, 𝑥11} ∪ ...

such that for every path 𝑦 ∈ {0, 1}𝑑 and finite 𝑛 < 𝑑, there exists ℎ ∈ ℋ so that ℎ(𝑥𝑦≤ℓ
) = 𝑠𝑦≤ℓ+1

for 0 ≤ ℓ ≤ 𝑛, where 𝑠𝑦≤ℓ+1
is the label of the edge connecting the nodes 𝑥𝑦≤ℓ

and 𝑥𝑦≤ℓ+1
. We say

thatℋ has an infinite multiclass Littlestone tree if there is a multiclass Littlestone tree forℋ of depth
𝑑 =∞.

To give some intuition about this construction we state some of its properties. First, it is crucial to
note that a class ℋ with a finite multiclass Littlestone tree can have infinite multiclass Littlestone
dimension. In fact, a class has finite multiclass Littlestone dimension if the depth of the tree admits
a uniform upper bound. However, it may be the case that the class admits an unbounded tree, in
the sense that for any finite depth, there exists a tree of that depth; nevertheless the class does not
have an infinite tree. Second, a class with a finite multiclass Littlestone tree may contain trees with
infinite paths (e.g., a class that contains the constant mapping ℎ = 1 can shatter the rightmost path
at an infinite depth). Finally, a class with finite multiclass Littlestone tree cannot have a tree with
an infinite complete binary subtree, since one could use only this subtree and obtain an infinite tree.
Essentially, this tree captures “how infinite” the multiclass Littlestone dimension of ℋ is: even if
there is no uniform bound on the multiclass Littlstone dimension ofℋ, wheneverℋ does not have an
infinite tree we know that for any 𝑆 =

⋃︀
0≤ℓ<𝑑

{︀
𝑥𝑢 : 𝑢 ∈ {0, 1}ℓ

}︀
there is some 𝑛*(𝑆) <∞, which

depends on the sequence 𝑆, so that the tree can be shattered up to level 𝑛*(𝑆).

The goal of this section is to prove the next result.
Theorem 8 (Exponential rates). If ℋ ⊆ [𝑘]𝒳 does not have an infinite multiclass Littlestone tree,
then for any distribution 𝑃 ,ℋ is learnable with an exponential optimal rate.

In order to prove this result, two steps are required: first, it suffices to show that no class of hypotheses
can be learned in a rate faster than exponential (lower bound) and second, we have to show that
not having an infinite multiclass Littlestone tree is a sufficient for learning at an exponential rate
condition (upper bound). Hence, these two directions tightly characterize universal learnability at
exponential rates for multiclass classification.

For the lower bound, the argument is essentially the same as in [BHM+21]. Let us first give
some intuition. If the distribution is supported on a finite number of points, e.g., two, there is an
exponentially small probability that all the 𝑛 samples will contain the same point (𝑥, 𝑦), so it will
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not help the learner distinguish between the functions ℎ ∈ ℋ that label this point correctly. For
completeness, we present the argument formally.

Proposition 1 (Exponential Rates (Lower Bound)). Fix ℋ ⊆ {0, 1, ..., 𝑘}𝒳 . For any learning
algorithm ̂︀ℎ𝑛, there exists a realizable distribution 𝑃 over 𝒳 × {0, 1, ..., 𝑘} such that E[er(̂︀ℎ𝑛)] ≥
Ω(2−𝑛) for infinitely many 𝑛. This means thatℋ is not learnable at rate faster than exponential.

Proof. Recall that |ℋ| > 𝑘 + 2. Hence, there are ℎ0, ℎ0 ∈ ℋ and 𝑥, 𝑥′ ∈ 𝒳 such that ℎ0(𝑥) =

ℎ1(𝑥) = 𝑦 and ℎ0(𝑥
′) = 𝑦0 ̸= ℎ1(𝑥) = 𝑦1. We fix some learning algorithm ̂︀ℎ𝑛 and two distributions

𝑃0, 𝑃1 where 𝑃𝑖 {(𝑥, 𝑦)} = 1
2 , 𝑃𝑖 {(𝑥, 𝑦𝑖)} = 1

2 , 𝑖 ∈ {0, 1}. We let 𝐼 ∼ Bernoulli(1/2) and given I,
we let (𝑋1, 𝑌1), (𝑋2, 𝑌2), . . . be i.i.d. samples from 𝑃𝐼 and (𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛) are the training
samples for ̂︀ℎ𝑛 and (𝑋𝑛+1, 𝑌𝑛+1) is the test point. Then, we have that

E[Pr(̂︀ℎ𝑛(𝑋𝑛+1) ̸= 𝑌𝑛+1|{𝑋𝑡, 𝑌𝑦}𝑛𝑡=1, 𝐼)] ≥
1

2
Pr(𝑋1 = . . . = 𝑋𝑛, 𝑋𝑛+1 = 𝑥′) = 2−𝑛−2 .

We also have that

E[Pr(̂︀ℎ𝑛(𝑋𝑛+1) ̸= 𝑌𝑛+1|{𝑋𝑡, 𝑌𝑦}𝑛𝑡=1, 𝐼)]

=
1

2

∑︁
𝑖∈{0,1}

E[Pr(̂︀ℎ𝑛(𝑋𝑛+1) ̸= 𝑌𝑛+1|{𝑋𝑡, 𝑌𝑦}𝑛𝑡=1, 𝐼 = 𝑖)|𝐼 = 𝑖] .

Thus, for every 𝑛, there exists some 𝑖𝑛{0, 1} such that for (𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛) i.i.d. from 𝑃𝑖𝑛 it
holds that

E[er𝑃𝑖𝑛
(̂︀ℎ𝑛)] ≥ 2−𝑛−2 .

Hence, there exists some fixed 𝑖 ∈ {0, 1} such that E[er𝑃𝑖
(̂︀ℎ𝑛)] ≥ 2−𝑛−2 for infinitely many 𝑛.

We continue with the upper bound, i.e., the design of an algorithm that learns ℋ ⊆ [𝑘]𝒳 at an
exponentially fast rate when its multiclass Littlestone tree is not infinite. Our approach consists of
two main steps. First, we consider the classical online adversarial setting where a learner has to
guess the label of a point that is presented to her by an adversary. We prove that ifℋ does not have
an infinite multiclass Littlestone tree, there is a strategy the learner can employ that makes a finite
number of mistakes. Then, given such a strategy, we prove that there is an algorithm in the statistical
setting which achieves exponential learning rates. The details are outlined in the subsequent sections.

C.1.1 Viewing Exponential Rates in an Online Setting

In order to design our algorithms, we have to consider the following setting. We introduce the
multiclass online learning game (Figure 3) that has been studied extensively (see e.g., [DSBDSS11]).
In this game, there are two players, the adversary that chooses features and reveals them to the second
player, the learner whose goal is to guess a label for the given example. The learner makes a mistake

1. The adversary picks a point 𝑥𝑡 ∈ 𝒳 .
2. The learner guesses a value ̂︀𝑦𝑡 ∈ [𝑘]

3. The adversary chooses the value 𝑦𝑡 as true label so that 𝑦𝑡 = ℎ(𝑥𝑡) for some ℎ ∈ ℋ
that is consistent with the previous examples (𝑥𝑝, 𝑦𝑝) for any 𝑝 ≤ 𝑡.

Figure 3: Realizable Online Setting

in round 𝑡 whenever the guess ̂︀𝑦𝑡 differs from the true label 𝑦𝑡. The goal of the learner is to minimize
her loss and the adversary’s intention is to provoke many errors to the learner.

We say that the concept class ℋ is online learnable if there exists a strategy ̂︀𝑦𝑡 =̂︀𝑦𝑡(𝑥1, 𝑦1, ..., 𝑥𝑡−1, 𝑦𝑡−1, 𝑥𝑡) that makes a mistake only finitely many times, regardless of what
realizable sequence is presented by the adversary. Notice that compared to the classical online
learning setting that asks for a bounded number of mistakes 𝑑, we settle for a more modest goal. The
main result in this setting is the following.
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Theorem 9 (Strategies in the Adversarial Setting). For any concept classℋ ⊆ [𝑘]𝒳 , the following
dichotomy occurs.

1. If ℋ does not have an infinite multiclass Littlestone tree, then there is a strategy for the
learner that makes only finitely many mistakes against any adversary.

2. Ifℋ has an infinite multiclass Littlestone tree, then there is a strategy for the adversary that
forces any learner to make a mistake in every round.

Before the formal proof, we provide a proof sketch. The adversary’s strategy is clear. Whenever the
learner predicts a label, she must choose a different label that will cause the learner to make a mistake
in that round; an infinite Littlestone tree is exactly the combinatorial structure the adversary is looking
for. On the other hand, since there is no infinite multiclass Littlestone tree, the learner’s predictions
should lead her to a leaf of the Littlestone tree that is defined by her interaction with the learner. This is
established by a variant of the (multiclass) Standard Optimal Algorithm (SOA) [Lit88, DSBDSS11],
which works wheneverℋ has a finite multiclass Littlestone dimension 𝑑. To gain some intuition, it is
instructive to consider the first step of her algorithm. The learner is presented with a point 𝑥1 and she
picks the label 𝑦1 = argmax𝑦∈[𝑘] Ldim𝑘(ℋ𝑥1,𝑦). It is easy to see that there is at most one 𝑦 such
that Ldim𝑘(ℋ𝑥1,𝑦) = 𝑑; if there were two of them then Ldim𝑘(ℋ) = 𝑑+ 1. Thus, by picking the
one that induces the subset of the hypothesis class with the largest Littlestone dimension, the learner
either does not make a mistake or gets closer to a leaf of the tree.

In our universal setting, this approach does not work immediately since it may be the case that the
multiclass Littlestone tree is not infinite but the associated class has infinite multiclass Littlestone
dimension. To this end, we have to introduce the ordinal multiclass Littlestone dimension, which
quantifies “how infinite” the multiclass Littlestone dimension is. Hence, the learner’s strategy will
be to play according to the ordinal Standard Optimal Algorithm. The intuition is similar as in the
classical setting, but the proof becomes more involved. To establish the result, we follow the approach
of [BHM+21] and define a more general infinite game 𝒢 between the learner and the adversary and
prove that it belongs to the family of the so-called Gale-Stewart games. Then, we leverage results
from the theory of Gale-Stewart games and [BHM+21] in order to show that the ordinal SOA makes
a finite number of mistakes wheneverℋ does not have an infinite multiclass Littlestone tree. Let us
continue with the proof.

Proof of Theorem 9. We first introduce a two-player game 𝒢 that is played in discrete timesteps
𝑡 = 1, 2, . . . between the adversary and the learner.

1. The adversary picks a point 𝜅𝑡 =
(︁
𝜉𝑡, 𝑦

(0)
𝑡 , 𝑦

(1)
𝑡

)︁
∈ 𝒳 × [𝑘]× [𝑘] and reveals it to the

learner.
2. The learner chooses a point 𝜂𝑡 ∈ {0, 1}.

Figure 4: Adversarial Setting - 2-Player Game

The learning player wins in some finite round 𝑡 if ℋ
𝜉1,𝑦

(𝜂1)
1 ,...,𝜉𝑡,𝑦

(𝜂𝑡)
𝑡

= ∅. The adversary wins if
the game continues indefinitely (i.e., the class of consistent hypotheses fromℋ never gets empty) .
Clearly, the set of winning strategies for the learning player is

𝒲 = {(𝜅,𝜂) ∈ (𝒳 × [𝑘]× [𝑘]× {0, 1})∞ : ∃ 1 ≤ 𝑡⋆ <∞ such that ℋ
𝜉1,𝑦

(𝜂1)
1 ,...,𝜉𝑡⋆ ,𝑦

(𝜂𝑡⋆ )

𝑡⋆
= ∅} .

We now recall an important theorem (see Appendix B.6) about Gale-Stewart games: In any Gale-
Stewart game, exactly one of the adversary player and the learning player has a winning strategy.

Equipped with Appendix B.6, we can show that the adversary has a winning strategy if and only
if ℋ has an infinite multiclass Littlestone tree (provided that 𝒢 is a Gale-Stewart game). This is
summarized in the next claim.

Claim 1. The game 𝒢 is a Gale-Stewart game and the adversary has a winning strategy in 𝒢 if and
only if the hypothesis classℋ has an infinite multiclass Littlestone tree.
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Proof. It is clear from the definition of 𝒲 that every winning strategy of the learner is finitely
decidable, hence 𝒢 is a Gale-Stewart game. For the other part of the claim, notice that ifℋ has an
infinite multiclass Littlestone tree, then the adversary’s strategy is to present the learner at step 𝑡
the point of the tree at depth 𝑡 that is consistent with the execution of the game so far along with
the labels of the edges that connect it with its children. By the definition of the tree, this strategy
ensures that the game will keep going on forever. For the other direction, assume that the adversary
has a winning strategy 𝜅𝜏 (𝜂1, . . . , 𝜂𝜏−1) ∈ 𝒳 × [𝑘] × [𝑘]. Then, define the multiclass Littlestone
tree 𝒯 = {𝑥𝑢 : 0 ≤ 𝑘 < ∞,𝑢 ∈ {0, 1}𝑘} where 𝑥𝜂1,...,𝜂𝜏−1

= 𝜉𝜏 (𝜂1, . . . , 𝜂𝜏−1) where the
labels that connect 𝑥𝜂1,...,𝜂𝜏−1

with its left, right children are 𝑦(0)𝜏 (𝜂1, . . . , 𝜂𝜏−1), 𝑦
(1)
𝜏 (𝜂1, . . . , 𝜂𝜏−1),

respectively. We can see that 𝒯 is infinite since this is a winning strategy for the adversary.

Having shown the above statement, we are ready to establish the desired dichotomy in the online
game. Assume first thatℋ has an infinite multiclass Littlestone tree {𝑥𝑢}. The adversary’s strategy is
defined inductively based on the path followed so far in the game: In round 𝑡, set 𝑏𝑡 = (𝑏1, ..., 𝑏𝑡−1) ∈
{0, 1}𝑡−1 denote the path parsed so far in the tree by the two players. Then, the adversary picks
𝑥𝑡 = 𝑥𝑏𝑡

. After the learner reveals her choice ̂︀𝑦𝑡, the worst case adversary chooses as a response
the branch of the Littlestone tree which does not correspond to the learner’s choice (the adversary
may even have two choices). By the definition of the tree, this chosen label is valid since there exists
some ℎ ∈ ℋ that realizes the path (𝑥𝑏1 , ..., 𝑥𝑏𝑡−1

, 𝑥𝑡). Moreover, this choice provokes a mistake to
the learning player and this is true for any round. Hence, there is a strategy for the adversary that
forces any learner to make a mistake in every round.

For the other direction, assume that the classℋ does not have an infinite multiclass Littlestone tree.
Before we describe the winning strategy of the learner, we need to introduce the notion of ordinal
multiclass Littlestone dimension. We will assign an ordinal to every finite multiclass Littlestone tree.
For some preliminaries on ordinals and transfinite recursion, we refer to [BHM+21]. The rank is
defined by a partial order ≺. We set 𝑡′ ≺ 𝑡 if 𝑡′ is a multiclass Littlestone tree that extends 𝑡 by one
level, i.e., 𝑡 is obtained from 𝑡′ by removing its leaves. A multiclass Littlestone tree 𝑡 is minimal if it
cannot be extended to a multiclass Littlestone tree of larger depth. For such a tree, we set rank(𝑡) = 0.
If the tree 𝑡 is non-minimal, then it can be extended and this is quantified using transfinite recursion
by

rank(𝑡) = sup{rank(𝑡′) + 1 : 𝑡′ ≺ 𝑡} .
The rank is well-defined as long as ℋ has no infinite multiclass Littlestone tree (since ≺ is well-
founded). In particular, we define

Ldim𝑘(ℋ) =

{︃ −1 ifℋ is empty ,
Ω ifℋ has an infinite multiclass Littlestone tree ,
rank(∅) otherwise .

The strategy is chosen so that Ldim𝑘(ℋ𝑥1,𝑦1,...,𝑥𝑡,𝑦𝑡
) decreases in every round and the learner

that follows this strategy will win the game, since the ordinals do not admit an infinite decreasing
chain. We note that this statement at first is purely existential via the theory of Gale-Stewart
games. We next shortly provide a “constructive” way to compute the winning strategy of the
learning player in the set of games we consider. Let us describe the winning strategy: The learner
invokes the ordinal (multiclass) Standard Optimal Algorithm and chooses the label 𝑦𝑡 (given 𝑥𝑡) that
maximizes the ordinal multiclass Littlestone dimension, i.e., 𝑦𝑡 = argmax𝑦∈[𝑘] Ldim𝑘(𝑉

𝑦
𝑡 ), where

= 𝑉 𝑦
𝑡 = {ℎ ∈ ℋ𝑥1,𝑦1,...,𝑥𝑡−1,𝑦𝑡−1 : ℎ(𝑥𝑡) = 𝑦}. The ordinal SOA at round 𝑡 = 1, 2, ... with initial

set 𝑉0 = ℋ works as follows:

1. Receive 𝑥𝑡.

2. For any 𝑦 ∈ [𝑘], let 𝑉 𝑦
𝑡 = {ℎ ∈ 𝑉𝑡−1 : ℎ(𝑥𝑡) = 𝑦}.

3. Predict ̂︀𝑦𝑡 ∈ argmax𝑦∈[𝑘] Ldim𝑘(𝑉
𝑦
𝑡 ), where Ldim𝑘 is the ordinal multiclass Littlestone

dimension.

4. Receive true answer 𝑦𝑡 and set 𝑉𝑡 = 𝑉 𝑦𝑡

𝑡 .

This algorithm drives the game in a win-win phenomenon for the learner in every round: If the
adversary forces the learner to a mistake, then she will “prune” the tree and set the learner closer
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to winning the game. Otherwise, the learner will be correct and will not incur any loss. In order to
show that the ordinal SOA makes a finite number of mistakes, we couple the online game with a
Gale-Stewart game. The idea is that every time the learner makes a mistake in the online game on
point 𝑥𝑡, we advance the Gale-Stewart game by one round where we pretend that 𝜉𝜏 = 𝑥𝑡, 𝑦

(0)
𝜏 =̂︀𝑦𝑡, 𝑦(1)𝜏 = 𝑦𝑡, 𝜂𝜏 = 𝑦𝑡. Notice that if the learner makes an infinite number of mistakes in the

online game using the ordinal SOA, then the Gale-Stewart game can proceed infinitely. Hence, to
conclude the proof, we need to show that in this coupled game, there is some finite point 𝜏* such
thatℋ

𝜉1,𝑦
(𝜂1)
1 ,...,𝜉𝜏⋆ ,𝑦

(𝜂𝜏⋆ )

𝜏⋆
= ∅. The following result helps us establish that. In fact, the next lemma

follows from [BHM+21](Proposition B.8) by choosing the value of the game being the ordinal
multiclass Littlestone dimension.

Lemma 3 (See Proposition B.8 of [BHM+21]). Assume thatℋ does not contain an infinite multiclass
Littlestone tree. Then, for any choices of the adversary 𝜅1, . . . , 𝜅𝑡−1 up to round 𝑡 and for any choice
𝜅𝑡 = (𝜉𝑡, 𝑦

(0)
𝑡 , 𝑦

(1)
𝑡 ) in round 𝑡 there is a choice 𝜂𝑡 of the learner such that

Ldim𝑘

(︂
ℋ

𝜉1,𝑦
(𝜂1)
1 ,...,𝜉𝑡−1,𝑦

(𝜂𝑡−1)

𝑡−1 ,𝜉𝑡,𝑦
(𝜂𝑡)
𝑡

)︂
< Ldim𝑘

(︂
ℋ

𝜉1,𝑦
(𝜂1)
1 ,...,𝜉𝑡−1,𝑦

(𝜂𝑡−1)

𝑡−1

)︂
.

The previous result shows that for every 𝜉𝑡 there is at most one label ℓ𝑡 ∈ [𝑘] such that

Ldim𝑘

(︂
ℋ

𝜉1,𝑦
(𝜂1)
1 ,...,𝜉𝑡−1,𝑦

(𝜂𝑡−1)

𝑡−1 ,𝜉𝑡,ℓ𝑡

)︂
= Ldim𝑘

(︂
ℋ

𝜉1,𝑦
(𝜂1)
1 ,...,𝜉𝑡−1,𝑦

(𝜂𝑡−1)

𝑡−1

)︂
.

Indeed, assume that there are two such labels ℓ𝑡, ℓ′𝑡 for some 𝜉𝑡. Then, if the adversary proposes the
point (𝜉𝑡, ℓ𝑡, ℓ′𝑡), there is no choice 𝜂𝑡 of the learner that decreases that ordinal Littlestone dimension
in this round, which leads to a contradiction. Hence, the learner can pick any label as long as it
is not the one that maximizes the ordinal Littlestone dimension. This is exactly how the coupled
Gale-Stewart game proceeds, so we know that every time the learner makes a mistake in the online
game the ordinal Littlestone dimension of the coupled game decreases. Since ordinals that are less
than Ω do not admit infinitely decreasing chains, we get the desired result.

C.1.2 Moving from the Adversarial Setting to the Probabilistic Setting

The measurability of the winning strategies and of the learning algorithm developped in the previous
section constitutes an important detail, extensively discussed in [BHM+21], in order to move from
the adversarial setting to the probabilistic one. We provide the next useful result.
Lemma 4. Let 𝒳 be Polish, 𝑘 ∈ N be a finite constant and ℋ ⊆ [𝑘]𝒳 be measurable. Then, the
Gale-Stewart game 𝒢 of Figure 4 has a universally measurable winning strategy.

Proof. It suffices to prove that the set 𝒲 of the winning strategies for the learning player in the
Gale-Stewart game is coanalytic (see Lemma 2). Equivalently, we will prove that the set of winning
strategies of the adversary𝒲𝑐 is analytic, where

𝒲𝑐 = {(𝜅,𝜂) ∈ (𝒳 × [𝑘]× [𝑘]× {0, 1})∞ : ℋ
𝜉1,𝑦

(𝜂1)
1 ,...,𝜉𝑡,𝑦

(𝜂𝑡)
𝑡
̸= ∅ for all 𝑡 <∞} .

This set is equal to

𝒲𝑐 =
⋂︁

1≤𝜏<∞

⋃︁
𝜃∈Θ

⋂︁
1≤𝑡≤𝜏

{(𝜅,𝜂) ∈ (𝒳 × [𝑘]× [𝑘]× {0, 1})∞ : ℎ(𝜃, 𝜉𝑡) = 𝑦
(𝜂𝑡)
𝑡 } .

The set {(𝜃,𝜅,𝜂) : ℎ(𝜃, 𝜉𝑖) = 𝑦
(𝜂𝑗)
𝑖 } =

⋃︀
(𝑦

(0)
𝑖 ,𝑦

(1)
𝑖 )∈[𝑘]×[𝑘],𝑦

(0)
𝑖 ̸=𝑦

(1)
𝑖
{(𝜃, 𝜉,𝜂) : ℎ(𝜃, 𝜉𝑖) = 𝑦

(𝜂𝑗)
𝑖 } is

a Borel set using the standard measurability assumption of Definition 9. The set𝒲𝑐 is analytic since
the two intersections are over countable sets and the union is a projection of a Borel set.

Crucially the above result states that the winning strategy 𝜂𝑡 of the learning player is measurable.
However, the previous proof made use of the ordinal multiclass SOA algorithm, whose measurability
is not directly implied. To this end, we modify the adversarial algorithm to handle the measurability
issue. The modification follows:
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1. Initialize 𝜏 ← 1, 𝐺 = Clique(𝑉 = [𝑘]), 𝑓(·, ·, ·)← 𝜂1(·, ·, ·) ◁ 𝜏 is the mistake
counter

2. For every round 𝑡 ≥ 1 :

(a) Observe 𝑥𝑡

(b) For any 𝑦 ̸= 𝑦′ with 𝑦, 𝑦′ ∈ [𝑘], orient the edge (𝑦, 𝑦′) of 𝐺 according to
𝑓(𝑥𝑡, 𝑦, 𝑦

′)

(c) Let 𝐺′ the directed clique
(d) Predict ̂︀𝑦𝑡 ← argmax𝑦∈[𝑘] outdeg(𝑦;𝐺

′)

(e) If ̂︀𝑦𝑡 ̸= 𝑦𝑡, let 𝜉𝜏 ← 𝑥𝑡, 𝑓(·, ·, ·)← 𝜂𝜏+1(𝑥1, 𝑦1, . . . , 𝑥𝜏 , 𝑦𝜏 , ·, ·, ·), 𝜏 ← 𝜏 + 1

Figure 5: Measurable Modification of Online Learning Algorithm for Exponential Rates

The above algorithm makes use of a tournament procedure. The algorithm is a measurable function
since (i) the winning strategy of the learner is measurable and (ii) the countable maximum of
measurable functions is measurable. This algorithm can be used in order to show that ifℋ does not
have an infinite multiclass Littlestone tree, then the above algorithm makes only a finite number of
mistakes against any adversary. Essentially, this is due to the fact that when the winning strategy
has converged to a zero-mistake prediction rule (which occurs after a finite number of mistakes),
the tournament procedure will always output the correct label for the observed example. Hence, the
algorithm will eventually make a finite number of mistakes in the adversarial setting.

The algorithm of Figure 5 works in the adversarial setting. We first show that it also applies to the
probabilistic setting (and this is why we require the above measurability discussion). The proof is
quite similar to Lemma 4.3 of [BHM+21].
Lemma 5 (From Adversarial to Probabilistic). For any distribution 𝑃 over 𝒳 × [𝑘] and for the
learning algorithm ̂︀𝑦𝑡 : 𝒳 → [0, 1] of Theorem 9, we have

Pr
𝑆𝑡

[︂
Pr

(𝑥,𝑦)∼𝑃
[̂︀𝑦𝑡(𝑥) ̸= 𝑦] > 0

]︂
→ 0 𝑎𝑠 𝑡→∞ ,

where 𝑆𝑡 is the training set (𝑥1, 𝑦1, ..., 𝑥𝑡−1, 𝑦𝑡−1) of the algorithm.

Proof. Since the distribution 𝑃 is realizable, there exists a sequence of functions ℎ𝑘 ∈ ℋ so that

Pr
(𝑥,𝑦)∼𝑃

[ℎ𝑘(𝑥) ̸= 𝑦] <
1

2𝑘
.

Let us fix 𝑡 ≥ 1. We have that
∞∑︁
𝑘=1

Pr[∃𝑠 ≤ 𝑡 : ℎ𝑘(𝑋𝑠) ̸= 𝑌𝑠] ≤ 𝑡

∞∑︁
𝑘=1

Pr
(𝑋,𝑌 )∼𝑃

[ℎ𝑘(𝑋) ̸= 𝑌 ] <∞ ,

where the first inequality is due to union bound. By Borel-Cantelli, with probability one, there
exists for every 𝑡 ≥ 1 a hypothesis ℎ ∈ ℋ so that ℎ(𝑋𝑠) = 𝑌𝑠 for all 𝑠 ≤ 𝑡. Hence, the sequence
𝑋1, 𝑌1, 𝑋2, 𝑌2, ... is a valid input for the online learning game with probability one. In particular, we
make use of the following statement: Ifℋ does not have an infinite multiclass Littlestone tree, then
there is a strategy for the learner that makes only finitely many mistakes against any adversary. This
is proved in Theorem 9. The existence of a winning strategy ̂︀𝑦𝑡 for the learning player implies that
the time 𝑇 where the player makes a mistake is

𝑇 = sup{𝑠 ∈ N : ̂︀𝑦𝑠−1(𝑋𝑠) ̸= 𝑌𝑠}
is a random variable that is finite with probability one. Moreover, the online learner is selected so
that it is changed only when a loss is observed. This means that ̂︀𝑦𝑠 = ̂︀𝑦𝑡 for all rounds 𝑠 ≥ 𝑡 ≥ 𝑇 .

We now employ the law of large numbers in order to understand the asymptotic behavior of the online
learner:

Pr

[︂
Pr

(𝑥,𝑦)∼𝑃
[̂︀𝑦𝑡(𝑥) ̸= 𝑦] = 0

]︂
= Pr

[︃
lim

𝑆→∞

1

𝑆

𝑡+𝑆∑︁
𝑠=𝑡+1

1{̂︀𝑦𝑡(𝑋𝑠) ̸= 𝑌𝑠} = 0

]︃
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and this probability is at least the probability of this event and of the event that 𝑇 ≤ 𝑡, i.e.,

Pr

[︂
Pr

(𝑥,𝑦)∼𝑃
[̂︀𝑦𝑡(𝑥) ̸= 𝑦] = 0

]︂
≥ Pr

[︃
lim

𝑆→∞

1

𝑆

𝑡+𝑆∑︁
𝑠=𝑡+1

1{̂︀𝑦𝑡(𝑋𝑠) ̸= 𝑌𝑠} = 0, 𝑇 ≤ 𝑡

]︃
= Pr[𝑇 ≤ 𝑡] ,

where the last inequality follows from the observation that since 𝑠 ≥ 𝑡 and 𝑡 is greater than the critical
time 𝑇 then the first event occurs with probability one. This implies that

Pr

[︂
Pr

(𝑥,𝑦)∼𝑃
[̂︀𝑦𝑡(𝑥) ̸= 𝑦] = 0

]︂
≥ Pr[𝑇 ≤ 𝑡]

and so

Pr

[︂
Pr

(𝑥,𝑦)∼𝑃
[̂︀𝑦𝑡(𝑥) ̸= 𝑦] > 0

]︂
≤ lim

𝑡→∞
1−Pr[𝑇 ≤ 𝑡] = 0 .

The above result guarantees that the expected error of the learning algorithm tends to zero as 𝑡 goes to
infinity, i.e., we have established that that E[er(̂︀𝑦𝑡)]→ 0 as 𝑡→∞. This means that the ordinal SOA
is a consistent algorithm in the statistical setting. However, this fact is not enough to establish the
exponential convergence rate. We follow the approach of [BHM+21] to come up with an algorithm
that achieves this guarantee. The first step is to observe that there is some distribution-dependent 𝑡⋆
such that Pr[er(̂︀𝑦𝑡⋆) > 0] < 1/4. If we were to know this 𝑡⋆ one way to get the exponential rates is
the following: We divide the training set into Θ(𝑛/𝑡⋆) batches and we get one classifier ̂︀𝑦𝑖𝑡⋆ for every
batch. Afterwards, we output as classifier the multiclass majority vote among the classifiers.
Theorem 10 (Exponential Rates). Assume that classℋ ⊆ [𝑘]𝒳 does not have an infinite multiclass
Littlestone tree. Then,ℋ admits a learning algorithm that achieves an exponentially fast rate.

Proof. Consider the sequence ̂︀𝑡𝑛 which satisfies the properties of Lemma 6. Consider the collection
of the learners A𝑖,𝑛 := ̂︀𝑦𝑖̂︀𝑡𝑛 : 𝒳 → [𝑘] for any 1 ≤ 𝑖 ≤ ⌊ 𝑛

2̂︀𝑡𝑛 ⌋ and 𝑛 ∈ N. Let us fix a time 𝑡 ∈ 𝑇 ⋆,
where 𝑇 ⋆ is the set of good estimates of the critical time 𝑡⋆ (see Lemma 6). We have that

Pr

⎡⎣ 1

⌊ 𝑛2𝑡⌋

⌊ 𝑛
2𝑡 ⌋∑︁
𝑖=1

1

{︂
Pr

(𝑥,𝑦)∼𝑃

[︀̂︀𝑦𝑖𝑡(𝑥) ̸= 𝑦
]︀
> 0

}︂
>

7

16

⎤⎦ ≤ exp
(︁
−
⌊︁
𝑛/(2𝑡⋆)

⌋︁
/128

)︁
,

using Hoeffding’s inequality. The above probability is over the sequence of all the training sets and
essentially states that the “bad” event that the misclassification error is non-zero holds for the majority
of the trained algorithms ̂︀𝑦𝑖𝑡 with exponentially small probability. Conversely, except on an event of
exponentially small probability, we have that Pr(𝑥,𝑦)∼𝑃 [̂︀𝑦𝑖𝑡(𝑥) ̸= 𝑦] = 0 for the majority of 𝑖. Recall
that the above discussion holds for a chosen good 𝑡. We have to understand how well our learners
A𝑖,𝑛 perform. To this end, we have that

Pr

[︂
Pr

(𝑥,𝑦)∼𝑃
[A𝑖,𝑛(𝑥) ̸= 𝑦] > 0 for the majority of 𝑖 ≤ ⌊𝑛/(2̂︀𝑡𝑛)⌋]︂

≤ Pr
[︀̂︀𝑡𝑛 /∈ 𝑇 ⋆

]︀
+Pr

[︂
∃𝑡 ∈ 𝑇 ⋆ : Pr

(𝑥,𝑦)∼𝑃
[̂︀𝑦𝑖𝑡(𝑥) ̸= 𝑦] > 0 for the majority of 𝑖 ≤ ⌊𝑛/(2̂︀𝑡𝑛)⌋]︂

≤ 𝐶(𝑃 ) exp(−𝑐(𝑃 ) · 𝑛) + 𝑡⋆ · exp
(︁
−
⌊︁
𝑛/(2𝑡⋆)

⌋︁
/128

)︁
.

This implies that the majority of our learners A𝑖,𝑛 will not incur loss except on an event of exponen-
tially small probability. As a result, the majority vote of these classifiers is almost surely correct on a
random sample from the distribution 𝑃 over 𝒳 × [𝑘]. Hence, we have that

E

[︂
Pr

(𝑥,𝑦)∼𝑃
[Maj((A𝑖,𝑛(𝑥))𝑖) ̸= 𝑦]

]︂
≤ Pr

[︂
Pr

(𝑥,𝑦)∼𝑃
[Maj((A𝑖,𝑛(𝑥))𝑖) ̸= 𝑦] > 0

]︂
≤ 𝐶(𝑃 ) exp(−𝑐(𝑃 ) · 𝑛) + 𝑡⋆ · exp

(︁
−
⌊︁
𝑛/(2𝑡⋆)

⌋︁
/128

)︁
.

This concludes the proof.
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Lemma 6. For any 𝑛 ∈ N, there exists a universally measurable ̂︀𝑡𝑛 = ̂︀𝑡𝑛(𝑋1, 𝑌1, ..., 𝑋𝑛, 𝑌𝑛) whose
definition does not depend on 𝑃 so that the following holds. Set the critical time 𝑡⋆ ∈ N be such that

Pr

[︂
Pr

(𝑥,𝑦)∼𝑃
[̂︀𝑦𝑡⋆(𝑥) ̸= 𝑦] > 0

]︂
≤ 1/8 ,

where the probability is over the training set of the algorithm ̂︀𝑦𝑡. There exist 𝐶, 𝑐 > 0 that depend on
𝑃, 𝑡⋆ but not 𝑛 so that

Pr[̂︀𝑡𝑛 ∈ 𝑇 ⋆] ≥ 1− 𝐶𝑒−𝑐𝑛 .

where the probability is over the training of the estimator ̂︀𝑡𝑛 and 𝑇 ⋆ is the set

𝑇 ⋆ =

{︂
1 ≤ 𝑡 ≤ 𝑡⋆ : Pr

[︂
Pr

(𝑥,𝑦)∼𝑃
[̂︀𝑦𝑡(𝑥) ̸= 𝑦] > 0

]︂
≤ 3/8

}︂
,

where the probability is over the training of ̂︀𝑦𝑡.
Proof. We split the training set into two sets. The idea is to use the first one to train the learning
algorithm and the other set to estimate the generalization error. For each 1 ≤ 𝑡 ≤ ⌊𝑛2 ⌋ and
1 ≤ 𝑖 ≤ ⌊ 𝑛2𝑡⌋, we let ̂︀𝑦𝑖𝑡(𝑥) = ̂︀𝑌𝑡+1(𝑋(𝑖−1)𝑡+1, 𝑌(𝑖−1)𝑡+1, 𝑋𝑖𝑡, 𝑌𝑖𝑡, 𝑥)

be the output of the learning algorithm that is trained on batch 𝑖 of the data. For every fixed 𝑡, the
data that the classifiers

{︀̂︀𝑦𝑖𝑡}︀𝑖≤⌊𝑛/2𝑡⌋ are trained on are independent of each other and of the second

half of the training set. This means that we can view every
{︀̂︀𝑦𝑖𝑡}︀𝑖≤⌊𝑛/2𝑡⌋ as an independent draw of

the distribution of ̂︀𝑦𝑡. To estimate the generalization error of the algorithm we use the second half of
the training set. We let

𝑒𝑡 =
1

⌊𝑛/2𝑡⌋

⌊𝑛/2𝑡⌋∑︁
𝑖=1

1{̂︀𝑦𝑖𝑡(𝑋𝑠) ̸= 𝑌𝑠 for some 𝑛/2 ≤ 𝑠 ≤ 𝑛} .

Now observe that, with probability one,

𝑒𝑡 ≤ 𝑒𝑡 =
1

⌊𝑛/2𝑡⌋

⌊𝑛/2𝑡⌋∑︁
𝑖=1

1

{︂
Pr

(𝑋,𝑌 )∼𝑃
[̂︀𝑦𝑖𝑡(𝑋) ̸= 𝑌 ] > 0

}︂
.

We define ̂︀𝑡𝑛 = inf{𝑡 ≤ ⌊𝑛/2⌋ : ̂︀𝑒𝑡 < 1/4}, where we assume that inf ∅ =∞.

We now want to bound the probability that ̂︀𝑡𝑛 > 𝑡⋆. Using Hoeffding’s inequality we get that

Pr
[︀̂︀𝑡𝑛 > 𝑡⋆

]︀
≤ Pr

[︂̂︀𝑒𝑡⋆ ≥ 1

4

]︂
≤Pr

[︂
𝑒𝑡⋆ ≥

1

4

]︂
=

= Pr

[︂
𝑒𝑡⋆ −

1

8
≥ 1

8

]︂
= Pr

[︂
𝑒𝑡⋆ −E[𝑒𝑡⋆ ] ≥

1

8

]︂
≤ 𝑒−⌊𝑛/2𝑡⋆⌋/32 .

This implies that ̂︀𝑡𝑛 ≤ 𝑡⋆ except for an event with exponentially small probability.

Moreover, for all 1 ≤ 𝑡 ≤ 𝑡⋆ that Pr
[︀
Pr(𝑥,𝑦)∼𝑃 [̂︀𝑦𝑡(𝑥) ̸= 𝑦] > 0

]︀
> 3

8 , there is some 𝜖 > 0 such
that Pr

[︀
Pr(𝑥,𝑦)∼𝑃 [̂︀𝑦𝑡(𝑥) ̸= 𝑦] > 𝜖

]︀
> 1

4 + 1
16 (this holds by continuity). Now fix some 1 ≤ 𝑡 ≤ 𝑡⋆

such that Pr
[︀
Pr(𝑥,𝑦)∼𝑃 [̂︀𝑦𝑡(𝑥) ̸= 𝑦] > 0

]︀
> 3

8 (if it exists). Then, using Hoeffding’s inequality
again we get that

Pr

⎡⎣ 1

⌊𝑛/2𝑡⌋

⌊𝑛/2𝑡⌋∑︁
𝑖=1

1

{︂
Pr

(𝑥,𝑦)∼𝑃
[̂︀𝑦𝑖𝑡(𝑥) ̸= 𝑦] > 𝜖

}︂
<

1

4

⎤⎦ ≤ 𝑒⌊𝑛/2𝑡
⋆⌋/128 .

Whenever 𝑓 is a function such that Pr(𝑥,𝑦)∼𝑃 [𝑓(𝑥) ̸= 𝑦] > 𝜖, then

Pr [𝑓(𝑋𝑠) ̸= 𝑌𝑠 for some 𝑛/2 ≤ 𝑠 ≤ 𝑛] ≥ 1− (1− 𝜖)
𝑛/2

.
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As we mentioned before, {̂︀𝑦𝑖𝑡}𝑖≤⌊𝑛/2𝑡⌋ are independent of (𝑋𝑠, 𝑌𝑠)𝑠>𝑛/2. Thus, applying a union
bound we get that the probability that all ̂︀𝑦𝑖𝑡 that have Pr(𝑥,𝑦)∼𝑃 [̂︀𝑦𝑖𝑡(𝑥) ̸= 𝑦] > 𝜖 make at least one
error on the second half of the training set is

Pr

⎡⎣⌊𝑛/2𝑡⌋∑︁
𝑖=1

1

{︂
Pr

(𝑥,𝑦)∼𝑃
[̂︀𝑦𝑖𝑡(𝑥) ̸= 𝑦] > 𝜖

}︂
≤

⌊𝑛/2𝑡⌋∑︁
𝑖=1

1{̂︀𝑦𝑖𝑡(𝑋𝑠) ̸= 𝑌𝑠 for some 𝑛/2 < 𝑠 ≤ 𝑛}

⎤⎦ ≥ 1−
⌊︁ 𝑛
2𝑡

⌋︁
(1− 𝜖)

𝑛/2
.

Thus, we get that

Pr[̂︀𝑡𝑛 = 𝑡] ≤ Pr

[︂̂︀𝑒𝑡 < 1

4

]︂
≤
⌊︁𝑛
2

⌋︁
(1− 𝜖)

𝑛/2
+ 𝑒−⌊ 𝑛

2𝑡⋆
⌋/128.

Using the previous estimates and applying a union bound, we get that

Pr[̂︀𝑡𝑛 /∈ 𝑇 ⋆] ≤ 𝑒−⌊𝑛/2𝑡⋆⌋/32 + 𝑡⋆
⌊︁𝑛
2

⌋︁
(1− 𝜖)

𝑛/2
+ 𝑡⋆𝑒−⌊𝑛/2𝑡⋆⌋/128 ≤ 𝐶𝑒−𝑐𝑛,

for some constants 𝐶, 𝑐 > 0. Note that 𝐶 = 𝐶(𝑃, 𝑡⋆) and 𝑐 = 𝑐(𝑃, 𝑡⋆).

C.2 Infinite Multiclass Littlestone Trees and Rates

We next show that ifℋ has an infinite mutliclass Littlestone tree, then there exists a significant drop
in the rate: any learning algorithm ℋ cannot be faster than linear. Our proof follows the approach
in [BHM+21].
Theorem 11. Assume that ℋ ⊆ {0, 1, ..., 𝑘}𝒳 has an infinite multiclass Littlestone tree. Then,
for any learning algorithm ̂︀ℎ𝑛, there exists a realizable distribution 𝑃 over 𝒳 × [𝑘] such that
E[er(̂︀ℎ𝑛)] ≥ Ω(1/𝑛) for infinitely many 𝑛. This means that ℋ is not learnable at rate faster than
linear, i.e., 𝑅(𝑛) ≥ 1/𝑛.

Let us provide some intuition. We will make use of the probabilistic method. We are going to define
a distribution over probability distributions so that, with positive probability over this choice of the
random object, any learning algorithm will have an expected error of order Ω(1/𝑛). This positive
probability implies that there exists such a distribution and hence the above result holds true. The
key idea is that we are going to associate any random distribution 𝑃𝑦 with a branch 𝑦 of the infinite
multiclass Littlestone tree. Given a finite number of samples from this distribution, only a finite part
of this infinite path will be discovered; hence any algorithm after the “revealed path” must guess
whether this random path goes left or right. This implies that the algorithm will err with probability
1/2 when it observes a point that lies deeper in the branch than the training examples.

Proof. Fix any learner ̂︀ℎ𝑛 and an infinite multiclass Littlestone tree forℋ. Fix also a random branch
𝑦 = (𝑦1, 𝑦2, ...) of this tree, where the sequence is an i.i.d. sequence of fair Bernoulli coins. We
introduce the random distribution over 𝒳 × {0, 1, ..., 𝑘} as

𝑃𝑦((𝑥𝑦≤ℓ
, 𝑧ℓ+1)) =

1

2ℓ+1
, ℓ ≥ 0 ,

where 𝑧ℓ+1 ∈ {0, 1, ..., 𝑘} is the label of the edge connecting 𝑥𝑦≤ℓ
to its child according to the chosen

path 𝑦. For any 𝑛 <∞, there exists a hypothesis ℎ ∈ ℋ so that

ℎ(𝑥𝑦≤ℓ
) = 𝑧ℓ+1

for 0 ≤ ℓ ≤ 𝑛. This is due to the construction of a multiclass Littlestone tree. We have that

er𝑦(ℎ) = Pr
(𝑥,𝑧)∼𝑃𝑦

[ℎ(𝑥) ̸= 𝑧] ≤
∑︁
ℓ>𝑛

2−ℓ−1 ,

which goes to 0 as 𝑛→∞. This implies that 𝑃𝑦 is realizable for every infinite branch 𝑦 ∈ {0, 1}∞.
Let us draw (𝑋,𝑍), (𝑋1, 𝑍1), (𝑋2, 𝑍2), ... i.i.d. samples from 𝑃𝑦 . Moreover, the mapping 𝑦 → 𝑃𝑦

is measurable. The first sample corresponds to the test sample and the other samples deal with
the training phase. Moreover, let 𝑇, 𝑇1, 𝑇2, ... be i.i.d. Geometric random variables with success
probability 1/2 starting at 0. We can set
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1. 𝑋 = 𝑥𝑦≤𝑇 , 𝑍 = 𝑧𝑇+1 and

2. 𝑋𝑖 = 𝑥𝑦≤𝑇𝑖
, 𝑍𝑖 = 𝑧𝑇𝑖+1.

Crucially, on the event that {𝑇 = ℓ,max{𝑇1, ..., 𝑇𝑛} < ℓ}, the value of ̂︀ℎ𝑛(𝑋) is conditionally
independent of 𝑧ℓ+1 given 𝑋, (𝑋1, 𝑍1), ..., (𝑋𝑛, 𝑍𝑛). We next have that

Pr[̂︀ℎ𝑛(𝑋) ̸= 𝑍, 𝑇 = ℓ,max{𝑇1, ..., 𝑇𝑛} < ℓ] = Pr[̂︀ℎ𝑛(𝑋) ̸= 𝑍ℓ+1, 𝑇 = ℓ,max{𝑇1, ..., 𝑇𝑛} < ℓ] .

This is equal to

E[Pr
𝑍
[̂︀ℎ𝑛(𝑋) ̸= 𝑍|𝑋, (𝑋1, 𝑍1), ..., (𝑋𝑛, 𝑍𝑛)]1{𝑇 = ℓ,max{𝑇1, ..., 𝑇𝑛} < ℓ}]

Now conditional on this event, any algorithm will err with probability 1/2 (since it will guess the
value at random). Hence, this quantity is lower bounded by

1

2
Pr[𝑇 = ℓ,max{𝑇1, ..., 𝑇𝑛} < ℓ] = 2−ℓ−2(1− 2−ℓ)𝑛 .

We are free now to pick ℓ. Choosing ℓ = ℓ𝑛 := ⌈1 + log(𝑛)⌉, we have that 1/2ℓ > 1/(4𝑛) and
(1 − 2−ℓ)𝑛 ≥ 1/2. Our goal is to apply the reverse Fatou lemma. This can be done since almost
surely, we have that

𝑛Pr[̂︀ℎ𝑛(𝑋) ̸= 𝑍, 𝑇 = ℓ𝑛|𝑦] ≤ 𝑛Pr[𝑇 = ℓ𝑛] = 𝑛2−ℓ𝑛−1 ≤ 1/4 .

Hence, we can apply the reverse Fatou lemma and get

E

[︂
lim sup
𝑛→∞

𝑛Pr[̂︀ℎ𝑛(𝑋) ̸= 𝑍, 𝑇 = ℓ𝑛|𝑦]
]︂
≥ lim sup

𝑛→∞
𝑛Pr[̂︀ℎ𝑛(𝑋) ̸= 𝑍, 𝑇 = ℓ𝑛] > 1/32 .

But, almost surely, it holds that

E[er𝑦(̂︀ℎ𝑛)|𝑦] = Pr[̂︀ℎ𝑛(𝑋) ̸= 𝑍|𝑦] ≥ Pr[̂︀ℎ𝑛(𝑋) ̸= 𝑍, 𝑇 = ℓ𝑛|𝑦] .

So, combining the above inequalities

E

[︂
lim sup
𝑛→∞

𝑛E[er𝑦(̂︀ℎ𝑛)]

]︂
> Ω(1) .

Hence, there must exist a realization of 𝑦 so that E[er𝑦(̂︀ℎ𝑛)] = Ω(1/𝑛) infinitely often. Choosing
𝑃 = 𝑃𝑦 completes the proof.

The above result states that a class which does not have exponential rates cannot be learned faster
than linearly. However, it is not clear if even linear rates are achievable. The next section deals with
this case.

C.3 Linear Learning Rates and Natarajan-Littlestone Trees

We introduce a novel combinatorial measure, the Natarajan-Littlestone (NL) tree, which essentially
combines the structure of the Natarajan dimension and the Littlestone dimension.

Definition 12. A Natarajan-Littlestone (NL) tree forℋ ⊆ [𝑘]𝒳 of depth 𝑑 ≤ ∞ consists of a tree⋃︁
0≤ℓ<𝑑

{𝑥𝑢 ∈ 𝒳 ℓ+1, 𝑢 ∈ {0, 1} × {0, 1}2 × ...× {0, 1}ℓ}

and two colorings 𝑠(0), 𝑠(1) mapping each position 𝑢𝑖 ∈ 𝑢 for any node with pattern 𝑢 ∈ {0, 1} ×
... × {0, 1}ℓ for 𝑖 ∈ {0, 1, ..., ℓ} and ℓ ∈ {0, 1, ..., 𝑑 − 1} of the tree to some color {0, 1, ..., 𝑘}
such that for every finite level 𝑛 < 𝑑, the subtree 𝑇𝑛 = ∪0≤ℓ≤𝑛{𝑥𝑢 = (𝑥0

𝑢, ..., 𝑥
ℓ
𝑢) : 𝑢 ∈ {0, 1} ×

{0, 1}2 × ...× {0, 1}ℓ} satisfies the following:

1. At any point 𝑥𝑖
𝑢 ∈ 𝑥𝑢 ∈ 𝑇𝑛, it holds 𝑠(0)(𝑥𝑖

𝑢) ̸= 𝑠(1)(𝑥𝑖
𝑢) and
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2. for any path 𝑦 ∈ {0, 1} × ...× {0, 1}𝑛+1, there exists a concept ℎ ∈ ℋ so that ℎ(𝑥𝑖
𝑦≤ℓ

) =

𝑠(0)(𝑥𝑖
𝑦≤ℓ

) if 𝑦𝑖ℓ+1 = 1 and ℎ(𝑥𝑖
𝑦≤ℓ

) = 𝑠(1)(𝑥𝑖
𝑦≤ℓ

) otherwise, for all 0 ≤ 𝑖 ≤ ℓ and
0 ≤ ℓ ≤ 𝑛, where

𝑦≤ℓ = (𝑦01 , (𝑦
0
2 , 𝑦

1
2), ..., (𝑦

0
ℓ , ..., 𝑦

ℓ−1
ℓ )), 𝑥𝑦≤ℓ

= (𝑥0
𝑦≤ℓ

, ..., 𝑥ℓ
𝑦≤ℓ

) .

We say thatℋ has an infinite NL tree if it has a NL tree of depth 𝑑 =∞.

We note that in the above definition we identify the color 𝑠(0)(𝑥𝑖
𝑦≤ℓ) with the (unique) position of

this point 𝑥𝑖
𝑦≤ℓ (since typically the coloring is over positions). For short, we will call the colorings

𝑠(0), 𝑠(1) used in the above definition everywhere different and denote by 𝑠(0) ̸= 𝑠(1). As a sanity
check, one can verify that ifℋ has an infinite NL tree, then it has an infinite multiclass Littlestone
tree. In fact, one can construct the latter tree by choosing only one point from any node of the infinite
NL tree.

The main result of this section is the next theorem.
Theorem 12. Assume that ℋ ⊆ [𝑘]𝒳 does not have an infinite Natarajan-Littlestone tree. Then,
there exists an algorithm that learnsℋ at a linear rate.

C.3.1 The Natarajan-Littlestone Game

In a similar manner as in the exponential rates setting, we need to come up with a function that
is correct after a finite number of steps 𝑛* and this implies that some appropriate data-dependent
complexity measure ofℋ is finite. The first step towards establishing the desired result is to introduce
the following two-player game between an adversary and a learning player.

1. The adversary picks 𝑡 points and two everywhere different colorings of these 𝑡 points
𝜉𝑡 =

(︁
𝜉
(0)
𝑡 , ..., 𝜉

(𝑡−1)
𝑡 , 𝑠

(0)
𝑡 , 𝑠

(1)
𝑡

)︁
∈ 𝒳 𝑡 × [𝑘]𝑡 × [𝑘]𝑡 and reveals them to the learner.

2. The learner chooses a pattern 𝜂𝑡 = (𝜂
(0)
𝑡 , ..., 𝜂

(𝑡−1)
𝑡 ) ∈ {0, 1}𝑡.

Figure 6: Adversarial Setting - 2-Player NL Game

Let Ξ𝑡 = {𝜉(0)1 , 𝜉
(0)
2 , 𝜉

(1)
2 , ..., 𝜉

(0)
𝑡 , . . . , 𝜉

(𝑡−1)
𝑡 , 𝑠

(0)
1 , 𝑠

(1)
1 , . . . , 𝑠

(0)
𝑡 , 𝑠

(1)
𝑡 } be the sets of all points and

colorings chosen by the adversary after 𝑡 rounds, for some finite integer 𝑡. The learning player wins
the game in round 𝑡 if the classℋ𝑡 = ℋ𝜉1,𝜂1,...,𝜉𝑡,𝜂𝑡

= ∅, whereℋ0 = ℋ andℋ𝑡 = ℋ𝜉1,𝜂1,...,𝜉𝑡,𝜂𝑡
is

the set {︃
ℎ ∈ ℋ so that ℎ(𝜉

(𝑖)
𝑧 ) = 𝑠

(0)
𝑧 (𝜉

(𝑖)
𝑧 ) if 𝜂(𝑖)𝑧 = 0

ℎ(𝜉
(𝑖)
𝑧 ) = 𝑠

(1)
𝑧 (𝜉

(𝑖)
𝑧 ) if 𝜂(𝑖)𝑧 = 1

for 0 ≤ 𝑖 < 𝑧, 𝑧 ∈ [1..𝑡]

}︃
.

Note that the collection of valid functions decreases as the game proceeds, i.e.,ℋ𝑡 ⊆ ℋ𝑡−1. The next
lemma guarantees the existence of a winning strategy for the learner in the game.
Lemma 7. If ℋ ⊆ [𝑘]𝒳 has no infinite NL tree, then there is a universally measurable winning
strategy for the learning player in the game 𝒢.

Proof. The first point is that the 2-player game of Figure 6 is Gale-Stewart. This follows by the
observation that the set of winning sequences of the learning player is finitely decidable, since the
membership of (𝜉,𝜂) in the set is witnessed by a finite subsequence. Hence, exactly one of the two
players has a winning strategy in the game (see Appendix B.6).

The second point is that the class ℋ has an infinite NL tree if and only if the adversary player
has a winning strategy in the game. Suppose that ℋ has an infinite NL tree. The adversary can
adopt the strategy iteratively by setting 𝜉𝑡(𝜂1, ..., 𝜂𝑡−1) = (𝑥𝜂1,...,𝜂𝑡−1 , 𝑠

(0)
𝜂1,...,𝜂𝑡−1 , 𝑠

(1)
𝜂1,...,𝜂𝑡−1) ∈

𝒳 𝑡×[𝑘]𝑡×[𝑘]𝑡. Hence, the adversary traverses the infinite tree and, by construction of the NL tree, the
setℋ𝜉1,𝜂1,...,𝜉𝑡,𝜂𝑡

never gets empty for any sequence of patterns 𝜂 and 𝑡 <∞. Thus, this is a winning
strategy for the adversary player. In the opposite direction, assume that the adversary has a winning
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strategy. Then, she can construct an infinite NL tree by setting (𝑥𝜂1,...,𝜂𝑡−1
, 𝑠

(0)
𝜂1,...,𝜂𝑡−1 , 𝑠

(1)
𝜂1,...,𝜂𝑡−1) =

𝜉𝑡(𝜂1, ..., 𝜂𝑡−1) for any possible binary pattern. Note that since the strategy is winning, the class
ℋ𝜉1,𝜂1,...,𝜉𝑡,𝜂𝑡 ̸= ∅ for any 𝑡 ∈ N and this means that for any level of the tree, there exists two
everywhere different colorings that witness the patterns.

Using the second point, we have that the learning player has a winning strategy in the game if the
classℋ has no infinite NL tree. To show that this strategy is also universally measurable, it suffices
to show that the set of winning sequences for the learning player is coanalytic. The set of winning
strategies for the adversary is

𝒲𝑐 =

{︃
((𝜉, 𝑠(0), 𝑠(1)),𝜂) ∈

∞⋃︁
𝑡=1

((𝒳 𝑡 × [𝑘]𝑡 × [𝑘]𝑡)× {0, 1}𝑡) : ℋ𝜉1,𝜂1,...,𝜉𝑡,𝜂𝑡 ̸= ∅ for all 𝑡 <∞

}︃
.

The set𝒲𝑐 is equal to⋂︁
1≤𝑡<∞

⋃︁
𝜃∈Θ

⋂︁
1≤ℓ≤𝑡

{︃
((𝜉, 𝑠(0), 𝑠(1)),𝜂) :

ℎ(𝜃, 𝜉
(𝑖)
𝑧 ) = 𝑠

(0)
𝑧 (𝜉

(𝑖)
𝑧 ) if 𝜂(𝑖)𝑧 = 0

ℎ(𝜃, 𝜉
(𝑖)
𝑧 ) = 𝑠

(1)
𝑧 (𝜉

(𝑖)
𝑧 ) if 𝜂(𝑖)𝑧 = 1

for 0 ≤ 𝑖 < 𝑧, 𝑧 ∈ [ℓ]

}︃
.

In words, this set contains all the states of the game, for any timestep 𝑡, so that there exists a parameter
in Θ and some 𝑘-colorings 𝑠(0), 𝑠(1) which are everywhere different, that are 𝑁 -consistent with some
hypothesis in the class. Also, note that the set{︃

((𝜉, 𝑠(0), 𝑠(1)),𝜂) :
ℎ(𝜃, 𝜉

(𝑖)
𝑧 ) = 𝑠

(0)
𝑧 (𝜉

(𝑖)
𝑧 ) if 𝜂(𝑖)𝑧 = 0

ℎ(𝜃, 𝜉
(𝑖)
𝑧 ) = 𝑠

(1)
𝑧 (𝜉

(𝑖)
𝑧 ) if 𝜂(𝑖)𝑧 = 1

for 0 ≤ 𝑖 < 𝑧, 𝑧 ∈ [ℓ]

}︃
=⋂︁

1≤𝑧≤ℓ

⋂︁
0≤𝑖<𝑧

{︁
((𝜉, 𝑠(0), 𝑠(1)),𝜂) : ℎ(𝜃, 𝜉(𝑖)𝑧 ) = 𝑠(0)𝑧 (𝜉(𝑖)𝑧 ) if 𝜂(𝑖)𝑧 = 0

}︁
∩

{︁
((𝜉, 𝑠(0), 𝑠(1)),𝜂) : ℎ(𝜃, 𝜉(𝑖)𝑧 ) = 𝑠(1)𝑧 (𝜉(𝑖)𝑧 ) if 𝜂(𝑖)𝑧 = 1

}︁
=⋂︁

1≤𝑧≤ℓ

⋂︁
0≤𝑖<𝑧

{︁
((𝜉, 𝑠(0), 𝑠(1)),𝜂) : ℎ(𝜃, 𝜉(𝑖)𝑧 ) = 𝑠

(𝜂(𝑖)
𝑧 )

𝑧 (𝜉(𝑖)𝑧 )
}︁
.

Recall that a Borel set is any set in a topological space that can be formed from open sets through
the operations of countable union, countable intersection, and relative complement. By the measura-

bility assumption of Definition 9, the set
{︁
(𝜃, (𝜉, 𝑠(0), 𝑠(1)),𝜂) : ℎ(𝜃, 𝜉

(𝑖)
𝑧 ) = 𝑠

(𝜂(𝑖)
𝑧 )

𝑧 (𝜉
(𝑖)
𝑧 )
}︁

which
corresponds to the subspace of the product space of Θ and the space of all infinite sequences
((𝜉, 𝑠(0), 𝑠(1)),𝜂) whose (𝑧, 𝑖)-th term is consistent with some hypothesis ℎ is Borel measurable
(note that the sequence (𝑠(0), 𝑠(1)),𝜂) uniquely induces a sequence of labels over [𝑘] on which we
apply the measurability definition). Moreover, the following hold: (i) the two intersections over 𝑡
and ℓ are countable, (ii) the union over 𝜃 is a projection of a Borel set and (iii) the union over the
colorings is countable (it is even finite given 𝑡). This implies that𝒲 is coanalytic.

C.3.2 Pattern Avoidance Algorithm

Our learning algorithm for the linear rates case will be built over the notion of data patterns and
pattern avoidance functions. In the exponential rates setting, we focused on the case where the learner
is successful if she makes a finite number of mistakes. In the case of linear rates, this is replaced with
controlling the model complexity, i.e., we have to understand how expressive the classℋ is. We will
say that a sequence 𝑥1, 𝑦1, 𝑥2, 𝑦2, ... in (𝒳 × [𝑘])∞ is consistent withℋ ⊆ [𝑘]𝒳 if, for every finite
𝑡 <∞, there exists ℎ ∈ ℋ such that ℎ(𝑥𝑖) = 𝑦𝑖 for all 𝑖 ≤ 𝑡.

We next introduce the crucial notion of pattern. Intuitively, the expressivity of a hypothesis classℋ
is proportional to the length of the “patterns” realized by concepts inℋ. Hence, by controlling the
length of the realizable patterns, we can obtain learners forℋ.
Definition 13. Given a sequence 𝑆 = (𝑥1, 𝑦2, 𝑥2, 𝑦2, ...) ∈ (𝒳 × [𝑘])∞ that is consistent with ℋ,
the binary string 𝑏𝑡 ∈ {0, 1}𝑡 of length 𝑡 is a Natarajan-Littlestone pattern (or simply a pattern) if
there exists a subsequence of consecutive terms 𝑆′ = (𝑥𝑧+𝑖, 𝑦𝑧+𝑖)𝑖∈[𝑡] of length 𝑡 for some 𝑧 ∈ N
so that there exist two 𝑘-colorings everywhere different 𝑠(0), 𝑠(1) of the elements (𝑥𝑧+𝑖)𝑖∈[𝑡] with
𝑠(0)(𝑥𝑧+𝑖) = 𝑦𝑧+𝑖 if 𝑏𝑡 = 0 and 𝑠(1)(𝑥𝑧+𝑖) = 𝑦𝑧+𝑖 if 𝑏𝑡 = 1.
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We are going to use the winning strategy of the learning player of the game of Figure 6 in order to
design an algorithm that avoids NL patterns in the data. This is exactly the intuition behind the design
of the Gale-Stewart game of Figure 6. The learner predicts a binary string 𝜂𝑡 ∈ {0, 1}𝑡 with goal
that this pattern is not realized by the classℋ, i.e., it is not a NL pattern with respect to a sequence
consistent withℋ. Intuitively, the reason we are aiming for forbidden patterns is the following: before
witnessing the realizable sequence we have no control over the complexity of the hypothesis classℋ,
since its Natarajan dimension can be infinite. However, leveraging the fact that there is no infinite
NL-tree we show that for every realizable sequence 𝑆 there is some (sequence-dependent) 𝑛*(𝑆)
such that the class ℋ𝑥1,𝑦1,...,𝑥𝑛* ,𝑦𝑛* of the concepts that agree on the first 𝑛* terms has Natarajan
dimension that is bounded by 𝑂(𝑛*). This is because if we can produce a forbidden pattern for every
𝑥-tuple of length 𝑛* we know that the Natarajan dimension of this class is bounded by 𝑛*.

The algorithm will get as input a data sequence consistent withℋ and will identify patterns in the
data. In particular, the algorithm works as follows: For any finite pattern length 𝑡, the algorithm
traverses the data sequence in consecutive blocks of length 𝑡 and in each such block it tries all the
everywhere different colorings for the points and uses the universally measurable winning strategy
of the learning player to obtain a guess for a forbidden NL pattern for each of these colorings. The
algorithm then checks if at least one of the pairs of colorings and forbidden patterns are actually
realized by the data. If this is the case (i.e., the guess was false), the algorithm adds a new point 𝜉𝑡 in
its list of “bad points” and continues searching for patterns of larger length. If the guess was correct
and the pattern is not realized in this block, it continues with the same pattern size in the next block.

The algorithm operates as follows. We remark that we can construct the strategy 𝜂𝑡 of the learner by
invoking a notion of ordinal NL dimension in a similar manner as in the exponential rates case.

1. Initialize the pattern length ℓ0 = 1.
2. At every time step 𝑡 ≥ 1 :

(a) Set 𝐿 := ℓ𝑡−1 and create a list 𝑆𝐿 of all the possible pairs of everywhere different
colorings of 𝐿 elements.

(b) Set 𝑗 := 1 be the index that traverses the list 𝑆𝐿.

(c) Set 𝑠(0) := 𝑆𝐿[𝑗](0), 𝑠
(1) := 𝑆𝐿[𝑗](1).

(d) Compute pattern 𝑏𝐿 = 𝜂𝐿(𝜉1, ..., 𝜉𝐿−1, 𝑥𝑡−𝐿+1, ..., 𝑥𝑡, 𝑠
(0), 𝑠(1)) ∈ {0, 1}𝐿 ×

[𝑘]𝐿 × [𝑘]𝐿.

(e) If it holds that, 𝑠
(0)
𝑧 (𝑥𝑡−𝐿+1+𝑧) = 𝑦𝑡−𝐿+1+𝑧, if 𝑏𝐿(𝑧) = 0, and

𝑠
(1)
𝑧 (𝑥𝑡−𝐿+1+𝑧) = 𝑦𝑡−𝐿+1+𝑧 , otherwise, for 𝑧 ∈ {0, 1, ..., 𝐿− 1}, then
i. Set 𝜉𝐿 = (𝑥𝑡−𝐿+1, ..., 𝑥𝑡, 𝑠

(0), 𝑠(1)) //The pattern is realized (not
forbidden).

ii. Update ℓ𝑡 = 𝐿+ 1 //Look for larger patterns.
(f) Else:

i. If 𝑗 < 𝐿 then update 𝑗 := 𝑗 + 1 and go to step (c).
ii. Else shift the block, and move to the next timestep, i.e. ℓ𝑡 = 𝐿, 𝑡 := 𝑡+ 1.

Figure 7: Pattern Avoidance Algorithm

Hence, the above procedure defines a pattern avoidance function

̂︀𝑦𝑡−1(𝑥1, ..., 𝑥ℓ𝑡−1
, 𝑠(0), 𝑠(1)) := 𝜂ℓ𝑡−1

(𝜉1, ..., 𝜉ℓ𝑡−1−1, 𝑥1, ..., 𝑥ℓ𝑡−1
, 𝑠(0), 𝑠(1)) ∈ {0, 1}ℓ𝑡−1×[𝑘]ℓ𝑡−1×[𝑘]ℓ𝑡−1 .

(1)
The intuition is that as long as the classℋ does not have an infinite NL tree and a consistent sequence
is provided to the algorithm, then whenever the “if” statement gets True, the game of Figure 6
progresses and the learner gets closer to winning the game. The finiteness of the NL tree gives the
next key lemma.

Lemma 8. For any sequence 𝑥1, 𝑦1, 𝑥2, 𝑦2, ... that is consistent with ℋ, the pattern avoidance
algorithm of Figure 7, in a finite number of steps, rules out NL patterns in the data sequence, in the
sense that the “if” statement in Line (c) is false and ℓ𝑡 = ℓ𝑡−1 <∞, ̂︀𝑦𝑡 = ̂︀𝑦𝑡−1 for all sufficiently
large 𝑡. Moreover, the mappings ℓ𝑡 and ̂︀𝑦𝑡 are universally measurable.
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Proof. Consider an infinite sequence of times 𝑡 = 𝑡1, 𝑡2, ... and assume that the “if” condition is
true for any time-step in this sequence. Since 𝜂𝑡 is a winning strategy for the learning player in the
Gale-Stewart game 𝒢, we have that there exists some finite time 𝑡⋆ so thatℋ𝜉1,𝜂1,...,𝜉𝑡⋆ ,𝜂𝑡⋆

= ∅. By
the structure of the “if” condition, we have that 𝜉𝑖 = (𝑥𝑡𝑖−ℓ𝑡𝑖−1 + 1, ..., 𝑥𝑡𝑖) and 𝜂𝑖 = (𝑦𝑡𝑖−ℓ𝑡𝑖−1 +

1, ..., 𝑦𝑡𝑖). But since the sequence is consistent with ℋ, the class ℋ𝜉1,𝜂1,...,𝜉𝑡⋆ ,𝜂𝑡⋆
must contain

the hypothesis that makes it consistent which is a contradiction since the class is empty. For the
measurability of the strategies, we refer to Remark 5.4 of [BHM+21].

C.3.3 Asymptotic Behavior of the Algorithm

As in the case of exponential rates, our first goal towards the design of our algorithms is an asymptotic
result. We first have to move from the adversarial to a probabilistic setting. Fix a realizable distribution
𝑃 over 𝒳 × [𝑘] and let (𝑋1, 𝑌1), (𝑋2, 𝑌2), ... be i.i.d. samples from 𝑃 . As it is clear in this section
for the upper bounds, we assume thatℋ ⊆ [𝑘]𝒳 does not have an infinite NL tree.

For any integer ℓ ∈ N and any universally measurable pattern avoidance function 𝑔 : 𝒳 ℓ × [𝑘]ℓ ×
[𝑘]ℓ → {0, 1}ℓ, we consider the error

per(𝑔) := perℓ(𝑔) = Pr
(𝑥1,𝑦1,...,𝑥ℓ,𝑦ℓ)

[𝑔 fails to avoid some NL pattern realized by the data 𝑥1, 𝑦1, ..., 𝑥ℓ, 𝑦ℓ] ,

i.e., there exist some colorings 𝑠(0), 𝑠(1) everywhere different that witness the pattern
𝑔(𝑥1, ..., 𝑥ℓ, 𝑠

(0), 𝑠(1)) with colors (𝑦1, ..., 𝑦ℓ). The following lemma establishes this result. It
follows the approach in [BHM+21].
Lemma 9. For the algorithm of Equation (1), it holds that

Pr[per(̂︀𝑦𝑡) > 0]→ 0 as 𝑡→∞ ,

where the probability is over the random data that are used to train the algorithm.

Proof. As in the proof of the asymptotic result in the exponential rates, since the distribution 𝑃 is
realizable, we can get that the data sequence 𝑋1, 𝑌1, 𝑋2, 𝑌2, ... is consistent with ℋ almost surely.
We can now employ Lemma 8 and get that the random variable

𝑇 = sup{𝑠 ≥ 1 : the Pattern Avoidance Algorithm of Figure 7 gets in the “if” statement}
is finite almost surely and ̂︀𝑦𝑠 = ̂︀𝑦𝑡 and ℓ𝑠 = ℓ𝑡 for all 𝑠 ≥ 𝑡 ≥ 𝑇 . We can apply the law of large
nymber for 𝑚-dependent sequences and get that the quantity Pr[perℓ𝑡(̂︀𝑦𝑡) = 0] is equal to

Pr

[︃
lim

𝑆→∞

1

𝑆

𝑡+𝑆∑︁
𝑠=𝑡+1

1{̂︀𝑦𝑡 fails to avoid some NL pattern realized by (𝑋𝑠, 𝑌𝑠, ..., 𝑋𝑠+ℓ𝑡−1, 𝑌𝑠+ℓ𝑡−1)} = 0

]︃
.

We can decrease the probability of the right-hand side by taking the intersection of the right-hand
side event with the event {𝑇 ≤ 𝑡}. Hence, we have that

Pr[perℓ𝑡(̂︀𝑦𝑡) = 0] ≥ Pr[𝑇 ≤ 𝑡]→ 1, as 𝑡→∞ ,

since 𝑇 is finite with probability one.

C.3.4 Linear Learning Rates

Given some pattern avoidance function that is correct on any tuple of size 𝑡, we can essentially use
the 1-inclusion graph in a similar manner as if the Natarajan dimension ofℋ was bounded by 𝑡. This
is established in the following lemma.
Lemma 10 (Learning NL pattern classes). Fix 𝑡 ≥ 1. Let 𝑔 : 𝒳 𝑡 × [𝑘]𝑡 × [𝑘]𝑡 → {0, 1}𝑡 be the
universally measurable NL pattern avoidance function of Figure 7. For any 𝑛 ≥ 1, there exists a
universally measurable classifier ̂︀𝑌 𝑔

𝑛 : (𝒳 × [𝑘])𝑛−1 × 𝒳 → [𝑘] such that for every training set
(𝑥1, 𝑦1, ..., 𝑥𝑛, 𝑦𝑛) ∈ (𝒳 × [𝑘])𝑛 where 𝑔(𝑥𝑖1 , ..., 𝑥𝑖𝑡 , 𝑠

(0), 𝑠(1)) is an avoiding NL pattern for all
pairwise distinct indices 1 ≤ 𝑖1, ..., 𝑖𝑡 ≤ 𝑛 and everywhere different colorings 𝑠(0), 𝑠(1), the classifier
achieves a linear permutation bound, i.e.,

Pr
𝜎∼𝒰(S𝑛)

[︁̂︀𝑌 𝑔
𝑛 (𝑥𝜎(1), 𝑦𝜎(1), ..., 𝑥𝜎(𝑛−1), 𝑦𝜎(𝑛−1), 𝑥𝜎(𝑛)) ̸= 𝑦𝜎(𝑛)

]︁
≤ 𝑡 log(𝑘)

𝑛
.
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Note that the above algorithm is transductive. This hints the use of the one-inclusion learning
algortihm.

Proof. Fix 𝑛 ≥ 1 and set 𝑋 = [𝑛]. Also let 𝐹 be a set of colorings 𝑓 : 𝑋 → [𝑘]. We can apply the
one-inclusion hypergraph algorithm (see Lemma 1) to get that there exists an algorithm A such that

Pr
𝜎∼𝒰(S𝑛)

[A(𝐹, 𝜎(1), 𝑓(𝜎(1)), ..., 𝜎(𝑛− 1), 𝑓(𝜎(𝑛− 1)), 𝜎(𝑛)) ̸= 𝑓(𝜎(𝑛))] ≤ Ndim(𝐹 ) log(𝑘)

𝑛
,

for any coloring 𝑓 ∈ 𝐹 and 𝐹 ∈ 2[𝑘]
𝑋

. By construction of the algorithm A, the output of the mapping
is preserved under relabeling of 𝑋 , i.e.,

A(𝐹, 𝜎(1), 𝑦1, ..., 𝜎(𝑛− 1), 𝑦𝑛−1, 𝜎(𝑛)) = A(𝐹 ∘ 𝜎, 1, 𝑦1, ..., 𝑛− 1, 𝑦𝑛−1, 𝑛) ,

where 𝐹 ∘ 𝜎 = {𝑓 ∘ 𝜎 : 𝑓 ∈ 𝐹}. Moreover, the mapping A is measurable since its domain is finite
(since the number of colors 𝑘 is a constant).

We will make use of the next result.

Claim 2. Consider the pattern avoidance mapping 𝑔 : 𝒳 𝑡 × [𝑘]𝑡 × [𝑘]𝑡 → {0, 1}𝑡 of Figure 7.
Consider the class 𝐹 of 𝑘-colorings of [𝑛] and fix a sequence 𝑥 = (𝑥1, ..., 𝑥𝑛) ∈ 𝒳𝑛. Fix 0 < 𝑡 ≤ 𝑛.
Define the subset 𝐹𝑥 that contains the colorings 𝑓 : [𝑛]→ [𝑘] that satisfy the following property: For
all subsets (𝑖1, ..., 𝑖𝑡) of [𝑛] of size 𝑡 and for all colorings 𝑠(0), 𝑠(1) : [𝑛]→ [𝑘] which are everywhere
different, at least one of the next 𝑡 conditions is violated:

𝑓(𝑖𝑗) = 𝑠(0)(𝑥𝑖𝑗 ) if 𝑔(𝑥𝑖1 , . . . , 𝑥𝑖𝑡 , 𝑠
(0), 𝑠(1))[𝑥𝑖𝑗 ] = 0 ,

𝑓(𝑖𝑗) = 𝑠(1)(𝑥𝑖𝑗 ) if 𝑔(𝑥𝑖1 , . . . , 𝑥𝑖𝑡 , 𝑠
(0), 𝑠(1))[𝑥𝑖𝑗 ] = 1 .

Then, we have that Ndim(𝐹𝑥) < 𝑡.

Proof. It must be the case that the Natarajan dimension cannot be more than 𝑡− 1 since we cannot
𝑁 -shatter any 𝑡-subset of [𝑛].

Given any input sequence (𝑥1, 𝑦1, ..., 𝑥𝑛, 𝑦𝑛), we introduce the concept class 𝐹𝑥 as in Claim 2.
Moreover, consider the mapping 𝑔 : 𝒳 𝑡 × [𝑘]𝑡 × [𝑘]𝑡 → {0, 1}𝑡 defined to be the pattern avoidance
function generated by Figure 7. We can introduce a data-dependent classifier̂︀𝑌𝑛(𝑔;𝑥1, 𝑦1, ..., 𝑥𝑛−1, 𝑦𝑛−1, 𝑥𝑛) = A(𝐹𝑥, 1, 𝑦1, ..., 𝑛− 1, 𝑦𝑛−1, 𝑛) .

Note that the above mapping is universally measurable due to Lemma 8. By relabeling we have that̂︀𝑌𝑛(𝑔;𝑥𝜎(1), 𝑦𝜎(1), ..., 𝑥𝜎(𝑛−1), 𝑦𝜎(𝑛−1), 𝑥𝜎(𝑛)) = A(𝐹𝑥, 𝜎(1), 𝑦𝜎(1), ..., 𝜎(𝑛− 1), 𝑦𝜎(𝑛−1), 𝜎(𝑛)) .

By the assumption of the lemma about the input (𝑥1, 𝑦1, ..., 𝑥𝑛, 𝑦𝑛), we have that the coloring
𝑦(𝑖) = 𝑦𝑖 ∈ [𝑘] satisfies 𝑦 ∈ 𝐹𝑥 (due to the construction of Claim 2). Hence, for such a sequence, we
get that

Pr
𝜎∼𝒰(S𝑛)

[︁̂︀𝑌 𝑔
𝑛 (𝑥𝜎(1), 𝑦𝜎(1), ..., 𝑥𝜎(𝑛−1), 𝑦𝜎(𝑛−1), 𝑥𝜎(𝑛)) ̸= 𝑦𝜎(𝑛)

]︁
≤ Ndim(𝐹𝑥) log(𝑘)

𝑛
.

However, due to the conclusion of Claim 2, we have that the above rate is of order log(𝑘) · 𝑡/𝑛, since
by construction Ndim(𝐹𝑥) < 𝑡.

To make use of the results we just stated, we need to come up with a pattern avoidance function that
is correct on any tuple of size 𝑡. However, we can only establish that our pattern avoidance function
is eventually correct, so there is no bound on 𝑡 that is given to the learner. To deal with this problem,
we keep track of some ̂︀𝑡𝑛 such that, with high probability, the error of the pattern avoidance function
is small. Then, we divide our sample into 𝑛/̂︀𝑡𝑛 batches of size ̂︀𝑡𝑛. For each batch 𝑖 we generate some
pattern avoidance function 𝑔𝑖, whose error probability is small. To achieve the linear rates we run the
algorithm from Lemma 10 for every different batch 𝑖 and function 𝑔𝑖 to get a classifier ̂︀ℎ𝑖. We output
the majority vote of the classifiers ̂︀ℎ𝑖.
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Lemma 11. For any 𝑛 ∈ N, Consider a training set {(𝑋𝑖, 𝑌𝑖)} consisting of 𝑛 points i.i.d. drawn
from 𝑃 . Then there exists a universally measurable ̂︀𝑡𝑛 = ̂︀𝑡𝑛(𝑋1, 𝑌1, ..., 𝑋⌊𝑛/2⌋, 𝑌⌊𝑛/2⌋) whose
definition does not depend on 𝑃 so that the following holds. Set the critical time 𝑡⋆ ∈ N be such that

Pr[per(̂︀𝑦𝑡⋆) > 0] ≤ 1/8 ,

where the probability is over the training set of the algorithm ̂︀𝑦𝑡. Then, there exist 𝐶, 𝑐 > 0 that
depend on 𝑃, 𝑡⋆ but not 𝑛 so that

Pr[̂︀𝑡𝑛 ∈ 𝑇 ⋆] ≥ 1− 𝐶𝑒−𝑐𝑛 .

where the probability is over the training of the estimator ̂︀𝑡𝑛 and 𝑇 ⋆ is the set

𝑇 ⋆ = {1 ≤ 𝑡 ≤ 𝑡⋆ : Pr[per(̂︀𝑦𝑡⋆) > 0] ≤ 3/8} ,

where the probability is over the training of ̂︀𝑦𝑡.
Proof. We consider the strategies

ℓ𝑡 = 𝐿𝑡(𝑋1, 𝑌1, ..., 𝑋𝑡, 𝑌𝑡)

and ̂︀𝑦𝑡(𝑧1, ..., 𝑧ℓ𝑡 , 𝑠(0), 𝑠(1)) = ̂︀𝑌𝑡(𝑋1, 𝑌1, ..., 𝑋𝑡, 𝑌𝑡, 𝑧1, ..., 𝑧ℓ𝑡 , 𝑠
(0), 𝑠(1)) , 6

which can be obtained by the pattern avoidance strategies. We remark that the algorithms behind
𝐿𝑡 and ̂︀𝑌𝑡 try out all the possible colorings as described in the pattern avoidance algorithm. As a
first step we decompose the training set into four parts. We will use the first quarter of the training
examples as follows: For any 1 ≤ 𝑡 ≤ ⌊𝑛/4⌋ and 1 ≤ 𝑖 ≤ ⌊𝑛/(4𝑡)⌋ =: ̂︀𝑁 , we invoke the above two
strategies to get

ℓ𝑖𝑡 = 𝐿𝑡(𝑋(𝑖−1)𝑡+1, 𝑌(𝑖−1)𝑡+1, ..., 𝑋𝑖𝑡, 𝑌𝑖𝑡)

and ̂︀𝑦𝑖𝑡(𝑧1, ..., 𝑧ℓ𝑡 , 𝑠(0), 𝑠(1)) = ̂︀𝑌𝑡(𝑋(𝑖−1)𝑡+1, 𝑌(𝑖−1)𝑡+1, ..., 𝑋𝑖𝑡, 𝑌𝑖𝑡, 𝑧1, ..., 𝑧ℓ𝑡 , 𝑠
(0), 𝑠(1)) .

For each 𝑡 in the decomposition, we estimate the value Pr[per(̃︀𝑦𝑡) > 0] using our estimates as

̂︀𝑒𝑡 = 1̂︀𝑁 ∑︁
𝑖∈[ ̂︀𝑁 ]

1
{︁̂︀𝑦𝑖𝑡 fails to avoid some NL pattern realized by (𝑋𝑠+1, 𝑌𝑠+1, ..., 𝑋𝑠+ℓ𝑖𝑡

, 𝑌𝑠+ℓ𝑖𝑡
) for some 𝑛/4 ≤ 𝑠 ≤ 𝑛/2− ℓ𝑖𝑡

}︁
.

We note that almost surely ̂︀𝑒𝑡 ≤ 𝑒𝑡 =
∑︀

𝑖∈[ ̂︀𝑁 ] 1{per(̂︀𝑦𝑖𝑡) > 0}/ ̂︀𝑁 . Moreover, we set

̂︀𝑡𝑛 = inf{𝑡 ≤ ⌊𝑛/4⌋ : ̂︀𝑒𝑡 < 1/4} ,

and we set inf ∅ =∞. Set the critical time 𝑡⋆ ∈ N be such that

Pr[per(̂︀𝑦𝑡⋆) > 0] ≤ 1/8 ,

where the probability is over the training set of the algorithm ̂︀𝑦𝑡. It holds that

Pr[̂︀𝑡𝑛 > 𝑡⋆] ≤ Pr[̂︀𝑒𝑡⋆ ≥ 1/4] ≤ Pr[𝑒𝑡⋆ −E[𝑒𝑡⋆ ] ≥ 1/8] ≤ exp(−𝑁⋆/32) ,

where 𝑁⋆ = ⌊𝑛/(4𝑡⋆)⌋. By continuity, there exists 𝜖 > 0 such that for all 1 ≤ 𝑡 ≤ 𝑡⋆ such
that Pr[per(̂︀𝑦𝑡)] > 3/8, we have that Pr[per(̂︀𝑦𝑡) > 𝜖] > 1/4 + 1/16. Fix 1 ≤ 𝑡 ≤ 𝑡⋆ with
Pr[per(̂︀𝑦𝑡) > 0] > 3/8 (if such an index exists). Standard concentration inequalities yield

Pr

⎡⎣∑︁
𝑖∈[ ̂︀𝑁 ]

1{per(̂︀𝑦𝑖𝑡) > 𝜖} <
̂︀𝑁
4

⎤⎦ ≤ exp(−𝑁⋆/128) .

We remark that any NL pattern avoidance function 𝑔 which satisfies per(𝑔) > 𝜖, we have that

Pr[𝑔 fails to avoid some NL pattern realized by (𝑋𝑠+1, 𝑌𝑠+1, ..., 𝑋𝑠+ℓ, 𝑌𝑠+ℓ) for some 𝑛/4 ≤ 𝑠 ≤ 𝑛/2−ℓ] ≥ 1−𝑝 ,
6Notice that 𝐿𝑡, ̂︀𝑌𝑡 depend also on the colorings that were used throughout the execution of the algorithm.

We try the colorings in some fixed order and we slightly abuse the notation to drop that dependence.
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where 𝑝 = 𝑝(𝜖, 𝑛, ℓ) = (1− 𝜖)⌊(𝑛−4)/(4ℓ)⌋ since there are ⌊(𝑛− 4)/(4ℓ)⌋ disjoint intervals of length
ℓ in [𝑛/4 + 1, 𝑛/2] ∩ N.

We now pass to the second quarter of the dataset to test our guesses using the above results. First,
the estimates (ℓ𝑖𝑡, ̂︀𝑦𝑖𝑡) for 1 ≤ 𝑖 ≤ ̂︀𝑁 are independent of (𝑋𝑠, 𝑌𝑠) for 𝑠 > 𝑛/4. Second, using a
union bound conditionally on the first quarter of the dataset gives that the probability that every guess
function ̂︀𝑦𝑖𝑡 with perℓ

𝑖
𝑡(̂︀𝑦𝑖𝑡) > 𝜖 (we let perℓ denote that the probability is over a sample from the

distribution 𝑃⊗ℓ) makes an error on the second quarter of the dataset is

Pr[ (∀𝑖) 1{perℓ
𝑖
𝑡(̂︀𝑦𝑖𝑡) > 𝜖} ≤ 1{𝐸𝑖,𝑡}}] ≥ 1− ̂︀𝑁(1− 𝜖)⌊(𝑛−4)/(4𝑡⋆)⌋ ,

since ℓ𝑖𝑡 ≤ 𝑡⋆, where 𝐸𝑖,𝑡 is the event that the (𝑖, 𝑡)-pattern avoidance estimate ̂︀𝑦𝑖𝑡 fails to avoid
some NL pattern realized by the data sequence (𝑋𝑠+1, 𝑌𝑠+1, ..., 𝑋𝑠+ℓ𝑖𝑡

, 𝑌𝑠+ℓ𝑖𝑡
) for some 𝑛/4 ≤ 𝑠 ≤

𝑛/2− ℓ𝑖𝑡. This yields that

Pr[̂︀𝑡𝑛 = 𝑡] ≤ Pr[̂︀𝑒𝑡 < 1/4] ≤ ⌊𝑛/4⌋(1− 𝜖)⌊(𝑛−4)/(4𝑡⋆)⌋ + exp(−𝑁⋆/32) .

Taking a union bound over the elements of 𝑇 ⋆, where

𝑇 ⋆ = {1 ≤ 𝑡 ≤ 𝑡⋆ : Pr[per(̂︀𝑦𝑡⋆) > 0] ≤ 3/8} ,

we obtain that

Pr[̂︀𝑡𝑛 /∈ 𝑇 ⋆] ≤ exp(−𝑁⋆/32) + 𝑡⋆ · (⌊𝑛/4⌋(1− 𝜖)⌊(𝑛−4)/(4𝑡⋆)⌋ + exp(−𝑁⋆/32)) .

This concludes the proof since there exist 𝐶, 𝑐 > 0 so that

Pr[̂︀𝑡𝑛 ∈ 𝑇 ⋆] ≥ 1− 𝐶 exp(−𝑐𝑛) .

Theorem 13 (Linear Rates). Assume that class ℋ ⊆ [𝑘]𝒳 does not have an infinite Natarajan-
Littlestone tree. Then,ℋ admits a learning algorithm that achieves an optimal linear rate.

Proof. The learning algorithm works as follows: It first computes the estimate ̂︀𝑡𝑛 introduced in
Lemma 11. Then it splits the data into two halves: the first half is used to compute the pattern
avoidance functions 𝑔𝑖 := ̂︀𝑦𝑖̂︀𝑡𝑛 for 1 ≤ 𝑖 ≤ ⌊𝑛/(4̂︀𝑡𝑛)⌋ and the second half is used in order to apply

Lemma 10 and get classifiers ̂︀𝑦𝑖 with ̂︀𝑦𝑖(𝑥) := ̂︀𝑌 𝑔𝑖

⌊𝑛/2⌋+2(𝑋⌈𝑛/2⌉, 𝑌⌈𝑛/2⌉, ..., 𝑋𝑛, 𝑌𝑛, 𝑥). Finally, the
algorithm outputs ̂︀ℎ𝑛 = Maj

(︁̂︀𝑦1, ̂︀𝑦2, ..., ̂︀𝑦⌊𝑛/(4̂︀𝑡𝑛)⌋)︁ .

and aims to get E[Pr(𝑋,𝑌 )[̂︀ℎ𝑛(𝑋) ̸= 𝑌 ]] ≤ 𝐶/𝑛 for some constant 𝐶, where the expectation is over
the training set used for the predescribed steps. Set ̂︀𝑁 = ⌊𝑛/(4̂︀𝑡𝑛)⌋ and 𝑁⋆ = ⌊𝑛/(4𝑡⋆)⌋. With the
notation of Lemma 11, we get

Pr

⎡⎣ 1̂︀𝑁 ∑︁
𝑖∈[ ̂︀𝑁 ]

1{per(̂︀𝑦𝑖̂︀𝑡𝑛) > 0} > 1

100𝑘
,̂︀𝑡𝑛 ∈ 𝑇 ⋆

⎤⎦ ≤ 𝑡⋆ exp(−𝐶1 ·𝑁⋆) ,

i.e., the strict majority of the pattern avoidance functions have zero error with high probability
where 𝐶1 is a fixed constant depending on the (uniformly bounded) number of labels 𝑘 ∈ N. Using
Lemma 11, we get

E[Pr[̂︀ℎ𝑛(𝑋) ̸= 𝑌 ]] ≤ Pr
[︁
Maj

(︁̂︀𝑦1(𝑋), ̂︀𝑦2(𝑋), ..., ̂︀𝑦⌊𝑛/(4̂︀𝑡𝑛)⌋(𝑋)
)︁
̸= 𝑌

]︁
≤ 𝐶 exp(−𝑐𝑛) + 𝑡⋆ exp(−𝐶1 · 𝑛⋆) + 𝑝 ,

where

𝑝 = Pr

⎡⎣̂︀𝑡𝑛 ∈ 𝑇 ⋆,
∑︁
𝑖∈[ ̂︀𝑁 ]

1{per(̂︀𝑦𝑖̂︀𝑡𝑛) = 0} ≥ (100𝑘 − 1) ̂︀𝑁/(100𝑘),Maj
(︁̂︀𝑦1(𝑋), ̂︀𝑦2(𝑋), ..., ̂︀𝑦⌊𝑛/(4̂︀𝑡𝑛)⌋(𝑋)

)︁
̸= 𝑌

⎤⎦ .
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We have that

Pr
[︁
Maj

(︁̂︀𝑦1(𝑋), ̂︀𝑦2(𝑋), ..., ̂︀𝑦⌊𝑛/(4̂︀𝑡𝑛)⌋(𝑋)
)︁
̸= 𝑌

]︁
≤ Pr

⎡⎣∑︁
𝑖∈[ ̂︀𝑁 ]

1{̂︀𝑦𝑖(𝑋) ̸= 𝑌 } ≥ ̂︀𝑁/𝑘

⎤⎦ ,

since whenever the majority makes a mistake, the right-hand side event occurs. Since 𝑘 is a fixed
constant, any two sets containing at least 1/𝑘 and 1− 1/(100𝑘) fractions of {1, 2, ..., ⌈𝑛/̂︀𝑡𝑛⌉}, must
have at least a Θ(1) fraction in their intersection. Hence, we get that

𝑝 ≤ Pr

⎡⎣̂︀𝑡𝑛 ∈ 𝑇 ⋆,
1̂︀𝑁 ∑︁

𝑖∈[ ̂︀𝑁 ]

1{̂︀𝑦𝑖(𝑋) ̸= 𝑌 } · 1{per(̂︀𝑦𝑖̂︀𝑡𝑛) = 0} ≥ Θ(1)

⎤⎦
and using Markov’s inequality

𝑝 ≤ Θ(1) ·E

⎡⎣ 1̂︀𝑁 ∑︁
𝑖∈[ ̂︀𝑁 ]

1{̂︀𝑡𝑛 ∈ 𝑇 ⋆} · 1{̂︀𝑦𝑖(𝑋) ̸= 𝑌 } · 1{per(̂︀𝑦𝑖̂︀𝑡𝑛) = 0}

⎤⎦
We can now apply Lemma 10 conditionally on the first half of the data and get

E[Pr[̂︀ℎ𝑛(𝑋) ̸= 𝑌 ]] ≤ 𝐶 exp(−𝑐𝑛)+𝑡⋆ exp(−𝑛⋆/128)+Θ(1)·log(𝑘)·E

⎡⎣1{̂︀𝑡𝑛 ∈ 𝑇 ⋆} · 1̂︀𝑁 ∑︁
𝑖∈[ ̂︀𝑁 ]

ℓ𝑖̂︀𝑡𝑛
⌊𝑛/2⌋+ 2

⎤⎦ .

Now we have that Θ(1) log(𝑘) = Θ(1) and ℓ𝑖̂︀𝑡𝑛 ≤ ̂︀𝑡𝑛 + 1 ≤ 𝑡⋆ + 1, since ̂︀𝑡𝑛 ∈ 𝑇 ⋆. This gives

E[Pr[̂︀ℎ𝑛(𝑋) ̸= 𝑌 ]] ≤ 𝐶/𝑛 .

C.4 Arbitrarily Slow Rates

The last step that is needed to establish the characterization of learnability in the multiclass setting is
to show that ifℋ has an infinite Natarajan Littlestone tree it is learnable at an arbitrarily slow rate.
The following theorem establishes that. The idea of the proof is similar as in the setting with the
infinite multiclass Littlestone tree. Intuitively, the reason that in this regime we get arbitrarily slow
rates whereas in the other one we get linear rates is that the branching factor now is exponential in
the depth of the tree, whereas before it remained constant.
Theorem 14. Assume thatℋ ⊆ [𝑘]𝒳 has an infinite Natarajan-Littlestone tree. Then, any algorithm
that learnsℋ requires arbitrarily slow rates.

Proof. For the proof, fix a vanishing rate 𝑅(𝑡) → 0, fix any learning algorithm ̂︀ℎ𝑛 for ℋ and let
{𝑥𝑢} be an infinite NL tree forℋ. Consider a random branch of the tree 𝑦 = (𝑦1, 𝑦2, ...) where the
pattern 𝑦ℓ = (𝑦0ℓ , ..., 𝑦

ℓ−1
ℓ ) ∈ {0, 1}ℓ is chosen uniformly at random from the ℓ-dimensional Boolean

hypercube for any ℓ ∈ N. Fix a finite level 𝑛 ∈ N. By the structure of the NL tree, we know that
there exist two different colorings 𝑠1, 𝑠2 and a hypothesis ℎ ∈ ℋ so that ℎ agrees either with 𝑠1 if the
pattern bit says 1 or with 𝑠2 otherwise. Our first goal in this universal lower bound is to construct a
realizable distribution. We define the random distribution that assigns non-zero mass to the points of
the branch 𝑦 with labels consistent with ℎ, i.e.,

𝑃𝑦((𝑥
𝑖
𝑦≤ℓ−1, ℎ(𝑥

𝑖
𝑦≤ℓ−1))) =

𝑝ℓ
ℓ

for 0 ≤ 𝑖 < ℓ, ℓ ∈ N ,

where 𝑝ℓ is a sequence of probabilities so that
∑︀

ℓ∈N 𝑝ℓ = 1 that we will select later in the proof.
Intuitively, the distribution 𝑃𝑦 chooses the node of the infinite branch at level ℓ with probability 𝑝ℓ;
this node contains ℓ points of 𝒳 and one of them is chosen uniformly at random.

By the structure of the infinite NL tree, we get that such a labeling ℎ ∈ ℋ exists for any level 𝑛 ∈ N
and this labeling is consistent with all the previous levels 1 ≤ 𝑛′ < 𝑛. Thus, we get that

Pr
(𝑥,𝑧)∼𝑃𝑦

[ℎ(𝑥) ̸= 𝑧] ≤
∑︁
ℓ>𝑛

𝑝ℓ .

37



Hence, as 𝑛→∞, we get that 𝑃𝑦 is realizable for any realization of the random branch 𝑦. Moreover,
the mapping 𝑦 → 𝑃𝑦 is measurable.

We now have to lower bound the loss of the potential learner ̂︀ℎ𝑛 using the probability measure 𝑃𝑦 . Let
(𝑋,𝑍), (𝑋1, 𝑍1), (𝑋2, 𝑍2), ... ∈ (𝒳 × [𝑘])∞ be a collection of i.i.d. samples from 𝑃𝑦 . Equivalently,
we can write

1. 𝑋 = 𝑥𝐼
𝑦≤𝑇−1 and 𝑍 = 𝑧𝐼𝑇 for two random variables (𝑇, 𝐼) with joint distribution Pr[𝑇 =

ℓ, 𝐼 = 𝑖] = 𝑝ℓ

ℓ for 0 ≤ 𝑖 < ℓ, ℓ ∈ N.

2. For 𝑗 ∈ N, set 𝑋𝑗 = 𝑥
𝐼𝑗
𝑦≤𝑇𝑗−1 and 𝑍𝑗 = 𝑧

𝐼𝑗
𝑇𝑗

for two random variables (𝑇𝑗 , 𝐼𝑗) with joint
distribution Pr[𝑇𝑗 = ℓ, 𝐼𝑗 = 𝑖] = 𝑝ℓ

ℓ for 0 ≤ 𝑖 < ℓ, ℓ ∈ N.

We underline that in the above the random variables (𝑇, 𝐼), (𝑇1, 𝐼1), (𝑇2, 𝐼2) are i.i.d. and independent
of the random branch 𝑦. Our goal is to lower bound the error of any learning algorithm: For all 𝑛 and
ℓ,

Pr[̂︀ℎ𝑛(𝑋) ̸= 𝑍, 𝑇 = ℓ] ≥
ℓ−1∑︁
𝑖=0

Pr[̂︀ℎ𝑛(𝑥
𝑖
𝑦≤ℓ−1) ̸= 𝑧𝑖ℓ, 𝑇 = ℓ, 𝐼 = 𝑖, 𝑇1, ..., 𝑇𝑛 ≤ ℓ, (𝑇1, 𝐼1), ..., (𝑇𝑛, 𝐼𝑛) ̸= (ℓ, 𝑖)] ,

where in the right hand side the probability is decreased by additionally requiring that the whole
training set is concentrated before the level ℓ+1 and the testing example is not contained in the training
set. Consider this event 𝐸𝑛,ℓ,𝑖 = {𝑇 = ℓ, 𝐼 = 𝑖, 𝑇1, ..., 𝑇𝑛 ≤ ℓ, (𝑇1, 𝐼1), ..., (𝑇𝑛, 𝐼𝑛) ≤ (ℓ, 𝑖)}. If
we condition on 𝐸𝑛,ℓ,𝑖, we have that the prediction of ̂︀ℎ𝑛(𝑋) = ̂︀ℎ𝑛(𝑥

𝑖
𝑦≤ℓ−1) is independent of the

label 𝑧𝑖ℓ. Hence, we have that

Pr[̂︀ℎ𝑛(𝑋) ̸= 𝑍, 𝑇 = ℓ] ≥
ℓ−1∑︁
𝑖=0

Pr[̂︀ℎ𝑛(𝑥
𝑖
𝑦≤ℓ−1) ̸= 𝑧𝑖ℓ|𝐸𝑛,ℓ,𝑖]Pr[𝐸𝑛,ℓ,𝑖] ≥

1

2

ℓ−1∑︁
𝑖=0

Pr[𝐸𝑛,ℓ,𝑖] .

By the choice of the randomness over 𝑇, 𝐼, 𝑇1, 𝐼1, ..., we get that

Pr[̂︀ℎ𝑛(𝑋) ̸= 𝑍, 𝑇 = ℓ] ≥ 𝑝ℓ
2

(︃
1−

∑︁
𝑚>ℓ

𝑝𝑚 −
𝑝ℓ
ℓ

)︃𝑛

.

To conclude the proof we have to choose the sequence of probabilities (𝑝ℓ) and relate it to the
vanishing rate 𝑅. By combining Lemma 5.12 of [BHM+21] and by applying the reverse Fatou’s
lemma (see e.g., the end of the proof of Theorem 5.11 of [BHM+21]), the proof is concluded.

C.5 A Sufficient Condition for Linear Rates for Multiclass Learning

Another approach to come up with an algorithm that works in the multiclass setting is to use the
algorithm that was developed in [BHM+21] for the binary setting. Towards this end, we define a
slightly different combinatorial measure for a classℋ.

Definition 14. A Graph-Littlestone (GL) tree forℋ ⊆ [𝑘]𝒳 of depth 𝑑 ≤ ∞ consists of a tree⋃︁
0≤ℓ<𝑑

{𝑥𝑢 ∈ 𝒳 ℓ+1, 𝑢 ∈ {0, 1} × {0, 1}2 × ...× {0, 1}ℓ}

and a coloring 𝑠 mapping each position 𝑢𝑖 ∈ 𝑢 for any node with pattern 𝑢 ∈ {0, 1} × ...× {0, 1}ℓ
for 𝑖 ∈ {0, 1, ..., ℓ} and ℓ ∈ {0, 1, ..., 𝑑− 1} of the tree to some color {0, 1, ..., 𝑘} such that for every
finite level 𝑛 < 𝑑, the subtree 𝑇𝑛 = ∪0≤ℓ≤𝑛{𝑥𝑢 : 𝑢 ∈ {0, 1} × {0, 1}2 × ...× {0, 1}ℓ} satisfies the
following:

1. For any path 𝑦 ∈ {0, 1} × ...× {0, 1}𝑛+1, there exists a concept ℎ ∈ ℋ so that ℎ(𝑥𝑖
𝑦≤ℓ

) =

𝑠(𝑥𝑖
𝑦≤ℓ

) if 𝑦𝑖ℓ+1 = 1 and ℎ(𝑥𝑖
𝑦≤ℓ

) ̸= 𝑠(𝑥𝑖
𝑦≤ℓ

) otherwise, for all 0 ≤ 𝑖 ≤ ℓ and 0 ≤ ℓ ≤ 𝑛,
where

𝑦≤ℓ = (𝑦01 , (𝑦
0
2 , 𝑦

1
2), ..., (𝑦

0
ℓ , ..., 𝑦

ℓ−1
ℓ )), 𝑥𝑦≤ℓ

= (𝑥0
𝑦≤ℓ

, ..., 𝑥ℓ
𝑦≤ℓ

) .
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We say thatℋ has an infinite GL tree if it has a GL tree of depth 𝑑 =∞.

We note that in the above definition we identify the color 𝑠(𝑥𝑖
𝑦≤ℓ) with the (unique) position of this

point 𝑥𝑖
𝑦≤ℓ (since typically the coloring is over positions). One can again verify that if ℋ has an

infinite GL tree, then it has an infinite multiclass Littlestone tree. We show that if a classℋ does not
have an infinite GL tree, then it is possible to learnℋ at a linear rate. The proof of this statement is
via a reduction to the binary setting. In fact, we invoke the well-studied “one versus all” approach,
where we are trying to learn 𝑘 different classesℋ𝑖 that distinguish between points that belong to the
𝑖-th class and points that belong to some class 𝑗 ̸= 𝑖.

Theorem 15. Assume thatℋ ⊆ [𝑘]𝒳 does not have an infinite Graph-Littlestone tree. Then, there
exists an algorithm that learnsℋ at a linear rate.

Proof. Consider 𝑘 binary classesℋ𝑖 induced by the hypothesis classℋ whereℋ𝑖 = {𝑥 ↦→ 1{ℎ(𝑥) =
𝑖} : ℎ ∈ ℋ}, i.e., for ℎ ∈ ℋ,̃︀ℎ ∈ ℋ𝑖 we have that ̃︀ℎ(𝑥) = 1 if and only if ℎ(𝑥) = 𝑖.

Claim 3. Assume that ℋ does not have an infinite GL tree. Then for any 𝑖 ∈ [𝑘] the class ℋ𝑖 is
learnable at a linear rate.

Proof. Fix 𝑖 ∈ [𝑘]. It suffices to show that the class ℋ𝑖 does not have an infinite VCL tree (VCL
trees are introduced in [BHM+21] and, intuitively, a VCL tree is a GL tree with 𝑘 = 1 and 𝑠 = 1
everywhere). Towards contradiction, assume thatℋ𝑖 admits an infinite VCL tree 𝒯 = {𝑥𝑢}. We can
construct the following Graph-Littlestone tree: we use the same nodes as in 𝒯 and for any node in the
tree we use the coloring that colors each point with the color 𝑖. Fix an arbitrary level 𝑛 and a path 𝑦.
We know that there exists a binary hypothesis ̃︀ℎ ∈ ℋ𝑖 that realizes this path in the VCL tree. Due to
the construction of the classℋ𝑖, we have that there exists a mapping ℎ ∈ ℋ (where ̃︀ℎ = 1{ℎ(·) = 𝑖})
that realizes the path in the constructed tree. This property holds for any path and any level. Hence,
we have constructed an infinite GL tree forℋ which yields a contradiction.

Assume that we get 𝑘 binary classifiers ̂︀ℎ(𝑖)
𝑛 , one for each class ℋ𝑖. Finally, we set ̂︀ℎ𝑛(𝑥) =

argmax𝑖
̂︀ℎ𝑖
𝑛(𝑥) for any 𝑥 ∈ 𝒳 . The above claim concludes the proof since

E Pr
(𝑥,𝑦)∼𝑃

[̂︀ℎ𝑛(𝑥) ̸= 𝑦] = E Pr
(𝑥,𝑦)∼𝑃

[∃𝑖 ∈ [𝑘] : ̂︀ℎ(𝑖)
𝑛 (𝑥) ̸= 1{𝑦 = 𝑖}] ≤

∑︁
𝑖∈[𝑘]

E[err(̂︀ℎ(𝑖)
𝑛 )] ≤ 1/𝑛 ,

since 𝑘 is a fixed constant.

We close this section with an open question. Is the GL tree roughly speaking equivalent to the
NL tree? This should remind the reader the connection between the Graph and the Natarajan
dimension in the uniform multiclass PAC learning. In fact, it holds that Ndim(ℋ) ≤ Gdim(ℋ) ≤
Ndim(ℋ) ·𝑂(log(𝑘)).

Open Question 1. Letℋ ⊆ [𝑘]𝒳 for some fixed constant 𝑘 ∈ N.

1. Is it true thatℋ has an infinite NL tree if and only if it has an infinite GL tree?

2. Is it possible to obtain an analogue of the inequality between the Graph and the Natarajan
dimensions for the ordinal GL and NL dimensions?

One approach to tackle this problem is to show that ifℋ has an infinite GL tree, then it is learnable
at an arbitrarily slow rate. It is not clear to us that the current proof can be modified to work in this
setting. If we try to follow the same steps we cannot guarantee the realizability of the sequence. If
we pick an infinite random path and let 𝑝𝑖 be the path up to depth 𝑖, we know that for each such
depth there exists some ℎ𝑖 that realizes this path, i.e., if 𝑏𝑖 = 1 =⇒ ℎ(𝑥𝑖) = 𝑦ℎ𝑖 = 𝑠(𝑥𝑖) and if
𝑏𝑖 = 0 =⇒ ℎ(𝑥𝑖) = 𝑦ℎ𝑖 ̸= 𝑠(𝑥𝑖). Now if consider some depth 𝑗 > 𝑖 then the hypothesis ℎ𝑗 will
agree with ℎ𝑖 on every 𝑥𝑖 with 𝑏𝑖 = 1. However, we cannot guarantee that ℎ𝑗(𝑥𝑖) = ℎ𝑖(𝑥𝑖) if 𝑏𝑖 = 0.
Hence, the straightforward way to modify the proof to account for that would be to consider a family
of different distributions. Note that this is not allowed in the universal learning setting, since we fix
the distribution.
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D Multiclass Learning for Partial Concepts

In this section, we provide our results on multiclass learnability in the context of partial concept
classes.

D.1 PAC Multiclass Learnability for Partial Concepts: The Proof of Theorem 6

We show the following theorem, which implies Theorem 3. For reader’s convenience, we restate
Theorem 6.
Theorem. For any partial concept class ℋ ⊆ {0, 1, ..., 𝑘, ⋆}𝒳 with Ndim(ℋ) ≤ ∞, the sample
complexity of PAC learning the classℋ satisfies

ℳ(𝜖, 𝛿) = 𝑂

(︂
Ndim(ℋ) log(𝑘)

𝜖
log(1/𝛿)

)︂
andℳ(𝜖, 𝛿) = Ω

(︂
Ndim(ℋ) + log(1/𝛿)

𝜖

)︂
.

In particular, if Ndim(ℋ) =∞, thenℋ is not PAC learnable.

Proof. Our algorithm will make use of the one-inclusion hypergraph algorithm whose utility is
provided by Lemma 1 for total concepts. We first show the next lemma for the one-inclusion
hypergraph predictor for partial concepts.

Lemma 12. Fix a positive constant 𝑘. For any partial concept class ℋ ⊆ {0, 1, ..., 𝑘, ⋆}𝒳 with
Ndim(ℋ) <∞, there exists an algorithm A : (𝒳 × [𝑘])* ×𝒳 → [𝑘] such that, for any 𝑛 ∈ N and
any sequence {(𝑥1, 𝑦1), ...., (𝑥𝑛, 𝑦𝑛)} ∈ (𝒳 × [𝑘])𝑛 that is realizable with respect toℋ,

Pr
𝜎∼𝒰(S𝑛)

[A(𝑥𝜎(1), 𝑦𝜎(1), ..., 𝑥𝜎(𝑛− 1), 𝑦𝜎(𝑛− 1), 𝑥𝜎(𝑛)) ̸= 𝑦𝜎(𝑛)] ≤
Ndim(ℋ) log(𝑘)

𝑛
.

Proof. Fix 𝑛 ∈ N. Consider a set of points 𝑆 = {𝑥1, ..., 𝑥𝑛} and let 𝑆𝑑 be the set of distinct elements
of the sequence 𝑆. Define the hypothesis classℋ𝑆𝑑

that contains all the total functions ℎ : 𝑆𝑑 → [𝑘]
such that the sequence {(𝑥, ℎ(𝑥)) : 𝑥 ∈ 𝑆𝑑} is realizable with respect toℋ.

CASE A: Assume that ℋ𝑆𝑑
̸= ∅. This is a total concept class and so let A𝑆𝑑

be the algorithm
guaranteed to exist by Lemma 1 with 𝑋 = 𝑆𝑑 and ℋ = ℋ𝑆𝑑

. For any 𝑦1, ..., 𝑦𝑛 ∈ [𝑘] so that the
training sequence (𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛) is realizable with respect toℋ (and so realizable with respect
toℋ𝑆𝑑

), define

A(𝑥1, 𝑦1, ..., 𝑥𝑛−1, 𝑦𝑛−1, 𝑥𝑛) = A𝑆𝑑
(ℋ𝑆𝑑

, 𝑥1, 𝑦1, ..., 𝑥𝑛−1, 𝑦𝑛−1, 𝑥𝑛) .

Moreover, we can consider any permutation of the sequence 𝑥1, ..., 𝑥𝑛 and let the feature space 𝑆𝑑

and the hypothesis classℋ𝑆𝑑
the same. Finally, we have that Ndim(ℋ𝑆𝑑

) ≤ Ndim(ℋ). This gives
the desired bound.
CASE B: Assume that ℋ𝑆𝑑

is empty. In this case, set 𝒜(𝑥1, 𝑦1, ..., 𝑥𝑛−1, 𝑦𝑛−1, 𝑥𝑛) = 0 for all
sequences (𝑥1, ..., 𝑥𝑛) ∈ 𝒳𝑛 and (𝑦1, ..., 𝑦𝑛−1) ∈ [𝑘]𝑛−1 so that {ℎ ∈ ℋ : ℎ(𝑥𝑖) = 𝑦𝑖 with 𝑖 <
𝑛 and ℎ(𝑥𝑛) ∈ [𝑘]} = ∅.

Let us now focus on the upper bound given that Ndim(ℋ) <∞. For any distribution 𝑃 realizable
with respect to ℋ and for a sequence of 𝑛 labeled i.i.d. examples from 𝑃 , we define the strategŷ︀ℎ𝑛(·) = A(𝑋1, 𝑌1, ..., 𝑋𝑛, 𝑌𝑛, ·) and so

E[er𝑃 (̂︀ℎ𝑛)] = E
(𝑋𝑖,𝑌𝑖)𝑖≤𝑛

[︂
Pr

(𝑋𝑛+1,𝑌𝑛+1)
[A(𝑋1, 𝑌1, ..., 𝑋𝑛, 𝑌𝑛, 𝑋𝑛+1) ̸= 𝑌𝑛+1]

]︂
≤ Ndim(ℋ)Θ(log(𝑘))

𝑛+ 1
.

We next have to convert this algorithm which guarantees an expected error bounded by
Ndim(ℋ)Θ(log(𝑘))/(𝑛 + 1) into an algorithm that guarantees a bound on the error with prob-
ability at least 1 − 𝛿. In order to boost the algorithm, we use a standard boosting algorithm by
decomposing the dataset into log(1/𝛿) parts and using Chernoff bounds. For the details we refer to
the boosting trick of [HLW94] and the proof of Theorem 34.(i) of [AHHM22].

Let Ndim(ℋ) = ∞. We will show that ℋ is not PAC learnable. For any ℓ ≤ Ndim(ℋ), let
𝒳ℓ = {𝑥1, ..., 𝑥ℓ} be a set 𝑁 -shattered by ℋ using the function 𝑓 . Let ℋℓ be the class of all
total functions 𝒳ℓ → {0, 1, ..., ℓ}, any distribution 𝑃 on 𝒳ℓ × {0, 1, ..., ℓ} realizable with respect
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to ℋℓ can be extended to a distribution on 𝒳 × {0, 1, ..., ℓ} realizable with respect to ℋ with
𝑃 ((𝒳 ∖ 𝒳𝑘)× {0, 1, ..., ℓ}) = 0. Thus, any lower bound on the sample complexity of PAC learning
the total concept class ℋℓ is also a lower bound on the sample complexity of learning the partial
classℋ. This gives the desired lower bound. Also, the partial concept classes with infinite Natarajan
dimension are not PAC learnable.

D.2 The Proof of Proposition 2

Our goal is to understand when the ERM principle succeeds in the partial setting. To address
this natural and important task, we pose the following question: What is the difference between
learning partial concepts with output in {0, 1, ..., 𝑘, ⋆} and learning total concepts with labels in
{0, 1, ..., 𝑘, 𝑘 + 1}, where 𝑘 is a positive integer? Conceptually, the key difference between partial
concepts with 𝑘+1 labels and (𝑘+2)-label multiclass classification has to do with the support of the
distribution: In the latter, the learning problem is a distribution over 𝒳 × {0, 1, ..., 𝑘, 𝑘 + 1}, while
in the former we have a distribution only over 𝒳 × {0, 1, ..., 𝑘} (recall Definition 4). We address this
question in Proposition 2. We show that any partial concept classℋ is learnable in the (𝑘 + 2)-label
setting if and only if ℋ is learnable in the partial setting and the VC dimension of the set family
{supp(ℎ) : ℎ ∈ ℋ} is finite. This result is helpful since it guarantees that when the VC dimension
of the above family is bounded, the ERM principle provably holds and can be applied in the partial
setting.

The next result gives a formal connection between the two settings.
Proposition 2. Any partial class ℋ ⊆ {0, 1, . . . , 𝑘, ⋆}𝒳 is PAC learnable in the (𝑘 + 2)-
label multiclass setting if and only if ℋ is PAC learnable in the partial concepts setting and
VCdim({supp(ℎ) : ℎ ∈ ℋ}) <∞.

The following proof is an adaptation of Proposition 23 of [AHHM22] to the multiclass setting.

Proof. Let us first assume thatℋ is PAC learnable in the (𝑘+2)-label multiclass setting. This implies
that Ndim𝑘+2(ℋ) ≤ Gdim𝑘+2(ℋ) ≤ 𝑂(log(𝑘 + 2)) · Ndim𝑘+2(ℋ) < ∞. This implies that ℋ
is also learnable in the partial concepts setting by Theorem 3 (by the definitions of the extended
Graph and Natarajan dimensions; intuitively in the partial setting, we can use one less color). Now
consider the collection of sets S = {supp(ℎ) : ℎ ∈ ℋ} = {{𝑥 ∈ 𝒳 : ℎ(𝑥) ̸= ⋆} : ℎ ∈ ℋ}. For any
sequence of 𝑑 points 𝑥1, . . . , 𝑥𝑑 shattered by S, let us take the hypothesis 𝑓 : 𝒳 → {0, 1, ..., 𝑘, ⋆}
so that 𝑓(𝑥𝑖) = ⋆ for any 𝑖 ∈ [𝑑]. As an implication, this sequence 𝑥1, ..., 𝑥𝑑 is also shattered
by {𝑥 ↦→ 1{ℎ(𝑥) = 𝑓(𝑥)} : ℎ ∈ ℋ}. By the definition of the graph dimension, we get that
Gdim𝑘+2(ℋ) := sup𝑓 :𝒳→{0,1,...,𝑘,⋆} VCdim(𝑥 ↦→ 1{ℎ(𝑥) = 𝑓(𝑥)} : ℎ ∈ ℋ) ≥ VCdim(S).
Sinceℋ is PAC learnable in the (𝑘+2)-label multiclass setting, we get that VCdim({supp(ℎ) : ℎ ∈
ℋ}) <∞.

Let us now assume that ℋ is PAC learnable in the partial concepts setting and VCdim({supp(ℎ) :
ℎ ∈ ℋ}) <∞. We are going to show that the Natarajan dimension ofℋ is not infinite in the (𝑘+2)-
label multiclass setting. Fix a sequence (𝑥𝑖, 𝑦

(0)
𝑖 , 𝑦

(1)
𝑖 )𝑖∈[𝑑] ∈ (𝒳 ×{0, 1, ..., 𝑘, ⋆}×{0, 1, ..., 𝑘, ⋆})𝑑

for some 𝑑 ∈ N, as in the definition of the (𝑘 + 2)-label Natarajan dimension. For this sequence,
consider the set {𝑥𝑖 : ⋆ /∈ {𝑦(0)𝑖 , 𝑦

(1)
𝑖 }} with 𝑦

(0)
𝑖 ̸= 𝑦

(1)
𝑖 . This set is shattered by the partial concept

classℋ by the extension of the Natarajan dimension to the partial concepts setting. Moreover, the
set {𝑥𝑖 : ⋆ ∈ {𝑦(0)𝑖 , 𝑦

(1)
𝑖 }} is shattered by the set S = {supp(ℎ) : ℎ ∈ ℋ}. This implies that

Ndim𝑘+2(ℋ) ≤ Ndim(ℋ) + VCdim(S) <∞.

D.3 Multiclass Disambiguations

We extend the definition of [AHHM22] to multiclass partial concepts classes.

Definition 15 (e.g., [AHHM22]). A total concept classℋ ⊆ [𝑘]𝒳 is a special type of partial concept
class such that every ℎ ∈ ℋ has range {0, 1, ..., 𝑘}, i.e., is a total concept. A total concept classℋ
is said to disambiguate a partial concept class ℋ ⊆ {0, 1, ..., 𝑘, ⋆}𝒳 if every finite data sequence
𝑆 ∈ (𝒳 × [𝑘])* realizable with respect toℋ is also realizable with respect toℋ. In this case,ℋ is
called a disambiguation ofℋ.
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We will make use of the following key result in graph theory and communication complexity. We let
𝜒(𝐺) be the chromatic number of the simple graph 𝐺. We also set bp(𝐺) be the biclique partition
number of 𝐺, i.e., the minimum number of complete bipartite graphs needed to partition the edge
set of 𝐺. The following result lies in the intersection of complexity theory and graph theory and is a
result of numerous works [HS12, Ama14, AHHM22, SA15, Göö15, GPW18, BDHT17, BBDG+22].
Motivation was the Alon–Saks–Seymour problem in graph theory, which asks: How large a gap can
there be between the chromatic number of a graph and its biclique partition number?
Proposition 3 (Biclique Partition and Chromatic Number [BBDG+22]). For any 𝑛 ∈ N, there exists
a simple graph 𝐺 with bp(𝐺) = 𝑛 such that

𝜒(𝐺) ≥ 𝑛(log(𝑛))1−𝜖(𝑛)

,

where 𝜖(𝑛) is a sequence that tends to 0 as 𝑛→∞ .

Let us consider the binary classification setting. In the work of [AHHM22], it was shown that the
(combinatorial version) of the Sauer-Shelah-Perles (SSP) lemma fails in the partial concepts setting.
In the total concepts setting, this lemma controls the size of a concept class ℋ in terms of its VC
dimension. Another variant of this lemma controls the growth function of the class. Given a set
𝐶 = {𝑥1, ..., 𝑥𝑚} ⊆ 𝒳 , the growth function ofℋ ⊆ {0, 1}𝒳 with respect to 𝐶 is the cardinality of
the set Πℋ(𝐶) of binary patterns realized by hypotheses inℋ when projected to 𝐶, i.e.,

Πℋ(𝐶) = {(ℎ(𝑥1), ..., ℎ(𝑥𝑚)) : ℎ ∈ ℋ} ⊆ {0, 1}𝑚 .

We define the growth function ofℋ at 𝑚 ∈ N as

Πℋ(𝑚) = sup
𝐶⊆𝒳 :|𝐶|=𝑚

|Πℋ(𝐶)| .

This definition naturally extends to partial concepts where we still look only for binary patterns.
Interestingly, while the combinatorial [Sau72] and the growth function [SSBD14] versions of the
SSP lemma are both true in the total concepts setting, this is not true in the partial case. We show that
the growth function variant still holds, while the combinatorial one fails [AHHM22].
Lemma 13 (Growth Function - SSP Lemma for Partial Concepts). Letℋ ⊆ {0, 1, ⋆}𝒳 be a partial
concept class with finite VC dimension. For any 𝑚 ∈ N, it holds that

Πℋ(𝑚) ≤
VCdim(ℋ)∑︁

𝑖=0

(︂
𝑚

𝑖

)︂
.

Proof. Set 𝑑 = VCdim(ℋ). Consider a set 𝐶 = {𝑥1, ..., 𝑥𝑚} ⊆ 𝒳 of 𝑚 points and define
Πℋ(𝐶) = {(ℎ(𝑥1), ..., ℎ(𝑥𝑚)) : ℎ ∈ ℋ} ⊆ {0, 1}𝑚 (where we ignore any vector that contains the
⋆ symbol). Note that if 𝑚 ≤ 𝑑, then it holds |Πℋ(𝐶)| = 2𝑚, by the definition of the VC dimension
in the partial setting. We are going to prove the next claim.

Claim 4. For any 𝐶 = {𝑥1, ..., 𝑥𝑚} and any binary partial concept classℋ, we have that

|Πℋ(𝐶)| ≤ |{𝐵 ⊆ 𝐶 : ℋ shatters 𝐵}| .

The above claim suffices since the RHS is at most
∑︀VCdim(ℋ)

𝑖=0

(︀
𝑚
𝑖

)︀
. Now we prove the above claim.

For 𝑚 = 1, the result holds. Assume that the claim is true for sets of size ℓ < 𝑚 and let us prove it
for sets of size 𝑚. Fix some partial binary concept classℋ ⊆ {0, 1, ⋆}𝒳 and set 𝐶 = {𝑥1, ..., 𝑥𝑚}.
Let 𝐶 ′ = 𝐶 ∖ {𝑥1} and define

𝑌0 = {(𝑦2, ..., 𝑦𝑚) ∈ {0, 1}𝑚−1 : (0, 𝑦2, ..., 𝑦𝑚) ∈ Πℋ(𝐶) ∨ (1, 𝑦2, ..., 𝑦𝑚) ∈ Πℋ(𝐶)} ,
and

𝑌1 = {(𝑦2, ..., 𝑦𝑚) ∈ {0, 1}𝑚−1 : (0, 𝑦2, ..., 𝑦𝑚) ∈ Πℋ(𝐶) ∧ (1, 𝑦2, ..., 𝑦𝑚) ∈ Πℋ(𝐶)} ,
Note that |Πℋ(𝐶)| = |𝑌0| + |𝑌1| (due to double counting). Our first observation is that |𝑌0| ≤
|Πℋ(𝐶 ′)|, since there may exist some ℎ ∈ ℋ which is undefined at 𝑥1 and that generates a pattern
that is not contained in 𝑌0. Using the inductive hypothesis onℋ and 𝐶 ′ for the second inequality and
the definition of 𝐶 ′ for the third equality, we get

|𝑌0| ≤ |Πℋ(𝐶 ′)| ≤ |{𝐵 ⊆ 𝐶 ′ : ℋ shatters 𝐵}| = |{𝐵 ⊆ 𝐶 : 𝑥1 /∈ 𝐵 ∧ℋ shatters 𝐵}| .
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Let us now set

ℋ′ = {ℎ ∈ ℋ : ∃ℎ′ ∈ ℋ such that (ℎ(𝑥1), ℎ(𝐶
′)) = (1− ℎ′(𝑥1), ℎ

′(𝐶 ′)) ∧ ⋆ /∈ ℎ(𝐶)} ,

i.e.,ℋ′ contains all the pairs of hypotheses that (i) are well defined over 𝐶, (ii) agree on 𝐶 ′ and (iii)
differ on 𝑥1. Note that if ℋ′ shatters a set 𝐵 ⊆ 𝐶 ′ then it also shatters 𝐵 ∪ {𝑥1} and vice versa.
Moreover we have that 𝑌1 = Πℋ′(𝐶 ′). By the inductive hypothesis onℋ′ and 𝐶 ′, we have that

|𝑌1| = |Πℋ′(𝐶 ′)| ≤ |{𝐵 ⊆ 𝐶 ′ : ℋ′ shatters 𝐵}| .

This gives that

|𝑌1| ≤ |{𝐵 ⊆ 𝐶 ′ : ℋ′ shatters 𝐵 ∪ {𝑥1}}| = |{𝐵 ⊆ 𝐶 : 𝑥1 ∈ 𝐵 ∧ℋ′ shatters 𝐵}| .

Finally sinceℋ′ lies insideℋ, we get

|𝑌1| ≤ |{𝐵 ⊆ 𝐶 : 𝑥1 ∈ 𝐵 ∧ℋ shatters 𝐵}|

Combining our observations for 𝑌0 and 𝑌1, we get that

|Πℋ(𝐶)| ≤ |{𝐵 ⊆ 𝐶 : ℋ shatters 𝐵}| .

We invoke the above SSP variant to prove a bound for the Natarajan dimension of a partial concept
class with multiple labels.
Lemma 14. Let ℋbin ⊆ {0, 1, ⋆}𝒳 be a partial concept class with finite VC dimension and ℋ =
{ℎ = 𝑟(ℎ1, ..., ℎℓ) : ℎ𝑖 ∈ ℋbin} for some 𝑟 : {0, 1}ℓ → [𝑘]. It holds that

Ndim(ℋ) ≤ ̃︀𝑂(𝑘 ·VCdim(ℋbin)) .

Proof. Let the VC dimension of the binary concept class be 𝑑. Let 𝑆 ⊆ 𝒳 be a shattered set by the
partial concept classℋ. Hence we have that

|Πℋ(𝑆)| ≥ 2|𝑆| .

Now any hypothesis ℎ ∈ ℋ is identified by 𝑘 binary partial concepts fromℋbin. We have that

|Πℋ(𝑆)| ≤ |Πℋbin
(𝑆)|𝑘 ,

by the structure ofℋ. This implies that

|Πℋ(𝑆)| ≤ 𝑂(|𝑆|𝑑) ,

by the properties of the growth function. This gives that |𝑆| ≤ ̃︀𝑂(𝑑𝑘) and concludes the proof.

The next theorem is one of the main results of this section; it essentially states that there exists some
simple (with small Natarajan dimension) partial concept class ℋ⋆ in the multiclass classification
setting which cannot be disambiguated in the sense that any extension ofℋ⋆ to a total concept class
has unbounded Natarajan dimension. Hence, for this class, there is no way to assign labels to the
undefined points and preserve the expressivity of the induced collection of total classifiers.
Theorem 16 (Disambiguation). Fix 𝑘 ∈ N. For any 𝑛 ∈ N, there exists a partial concept class
ℋ𝑛 ⊆ {0, 1, ..., 𝑘, ⋆}[𝑛] with Ndim(ℋ𝑛) = 𝑂𝑘(1) such that any disambiguation ℋ of ℋ𝑛 has size
at least 𝑛log(𝑛)1−𝑜(1)

, where the 𝑜(1) term tends to 0 as 𝑛 → ∞. This implies that there exists
ℋ∞ ⊆ {0, 1, ..., 𝑘, ⋆}N with Ndim(ℋ∞) = 𝑂𝑘(1) but Ndim(ℋ) =∞ for any disambiguationℋ of
ℋ∞.

Proof. The proof is essentially a tensorization of the construction of [AHHM22]. Fix 𝑘, 𝑛 ∈ N. Set
𝐿 = log2(𝑘 + 1) and assume that 𝐿 ∈ N without loss of generality. Let us consider the partial
concept class

ℋ𝑛 = ℋ(1)
𝑛 × . . .×ℋ(𝐿)

𝑛 ,

whereℋ(𝑖)
𝑛 ⊆ {0, 1, ⋆}[𝑛]. Let us now explain the partial concepts that lie inℋ(𝑖)

𝑛 and subsequently
in ℋ𝑛. To this end, we invoke Proposition 3 which lies in the intersection of combinatorics and
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complexity theory. Consider 𝐿 independent and disjoint copies of the graph promised by Proposition 3
and let 𝐺 be the union of these 𝐿 graphs. Fix 𝑖 ∈ [𝐿]. Define the partial class ℋ(𝑖)

𝑛 ⊆ {0, 1, ⋆}[𝑛]

using the graph 𝐺(𝑖) and its 𝑛 bipartite complete graphs 𝐵(𝑖)
𝑗 = (𝐿

(𝑖)
𝑗 , 𝑅

(𝑖)
𝑗 , 𝐸

(𝑖)
𝑗 ) with 𝑗 ∈ [𝑛]. The

class contains |𝑉 (𝐺(𝑖))| concepts, each one identified by a vertex 𝑣 ∈ 𝑉 (𝐺(𝑖)) with

𝑐(𝑖)𝑣 (𝑗) =

⎧⎪⎨⎪⎩
0 if 𝑣 ∈ 𝐿

(𝑖)
𝑗 ,

1 if 𝑣 ∈ 𝑅
(𝑖)
𝑗 ,

⋆ otherwise.

⎫⎪⎬⎪⎭ .

Using Lemma 31 from [AHHM22], we have that VCdim(ℋ(𝑖)
𝑛 ) = 1.

We overload the “+” notation by setting 𝑔 + ⋆ = ⋆ for any 𝑔 ∈ N. The partial concept class ℋ𝑛

contains all the partial concepts ℎ𝑣1,...,𝑣𝐿(𝑖) =
∑︀

𝑗∈[𝐿] 2
𝐿 · 𝑐(𝑗)𝑣𝑗 (𝑖) ∈ {0, 1, ..., 𝑘, ⋆}. Hence we have

thatℋ𝑛 ⊆ {0, 1, ..., 𝑘, ⋆}[𝑛]. We can use the growth function of the partial concepts setting and get
that Ndim(ℋ𝑛) = 𝑂(log(𝑘 + 1) ·VCdim(ℋ(1)

𝑛 )) = 𝑂𝑘(1).

Consider some disambiguationℋ ⊆ [𝑘][𝑛] ofℋ𝑛. The classℋ induces 𝐿 disambiguationsℋ(𝑖) for
the binary partial classesℋ(𝑖)

𝑛 . Thenℋ defines a coloring of 𝐺 using min𝑖 |ℋ(𝑖)| colors. Proposition 3
implies that

min
𝑖
|ℋ(𝑖)| ≥ 𝑛log(𝑛)1−𝑜(1)

.

Finally, we can consider the classℋ∞ as the disjoint union ofℋ𝑛. Eachℋ𝑛 has domain 𝒳𝑛, where
the domains 𝒳𝑛 are mutually disjoint andℋ∞ is the union

⋃︀
𝑛
̃︀ℋ𝑛, where ̃︀ℋ𝑛 is obtained fromℋ𝑛

by adding ⋆ outside of its domain. Then Ndim(ℋ∞) = 𝑂𝑘(1). Since the size of its disambiguations
is unbounded, then the multiclass Sauer-Shelah-Perles Lemma [BCHL95] implies that the Natarajan
dimension of any disambiguation ofℋ∞ is infinite.
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